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Abstract  The estimation of exposures to humans 
from the various sources of radiation is important. 
Radiation hazard indices are computed using pro-
cedures described in the literature for evaluating the 
combined effects of the activity concentrations of 
primordial radionuclides, namely, 238U, 232Th, and 
40  K. The computed indices are then compared to 
the allowed limits defined by International Radiation 
Protection Organizations to determine any radiation 
hazard associated with the geological materials. In 
this paper, four distinct radial basis function artificial 
neural network (RBF-ANN) models were developed 
to predict radiation hazard indices, namely, exter-
nal gamma dose rates, annual effective dose, radium 
equivalent activity, and external hazard index. To 
make RBF-ANN models, 348 different geological 
materials’ gamma spectrometry data were acquired 
from the literature. Radiation hazards indices pre-
dicted from each RBF-ANN model were compared 
to the radiation hazards calculated using gamma 
spectrum analysis. The predicted hazard indices 
values of each RBF-ANN model were found to pre-
cisely align with the calculated values. To validate 
the accuracy and the adaptability of each RBF-ANN 
model, statistical tests (determination coefficient (R2), 
relative absolute error (RAE), root mean square error 

(RMSE), Nash–Sutcliffe Efficiency (NSE)), and sig-
nificance tests (F-test and Student’s t-test) were per-
formed to analyze the relationship between calculated 
and predicted hazard indices. Low RAE and RMSE 
values as well as high R2, NSE, and p-values greater 
than 0.95, 0.71, and 0.05, respectively, were found for 
RBF-ANN models. The statistical tests’ results show 
that all RBF-ANN models created exhibit precise per-
formance, indicating their applicability and efficiency 
in forecasting the radiation hazard indices of geologi-
cal materials. All the RBF-ANN models can be used 
to predict radiation hazard indices of geological mate-
rials quite efficiently, according to the performance 
level attained.

Keywords  Radiation hazard indices · Radial 
basis function · Artificial neural networks · Gamma 
spectrometry measurements

Introduction

Natural sources are the principle radioactive sources 
in the environment (Hanfi et al., 2021). Human popu-
lations are exposed to a broad spectrum of radiation 
in their surroundings because of the abundance of 
natural sources (Mehra et  al., 2007; Amini Birami 
et al., 2019; Gaffar et al., 2021). To assess the effects 
of radiation exposure from both terrestrial and extra-
terrestrial sources, radionuclide dispersion and 
radiation concentrations in the environment must be 
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understood (El-Arabi, 2007). The principal sources 
of extraterrestrial radiation are high-intensity cos-
mic rays produced from the earth’s outer atmosphere 
(Prasad et  al., 2020). Terrestrial radiation is caused 
by radioactive nuclides found in varying levels in 
rocks, construction materials, soils, water, and the 
atmosphere (Al-khawlany, 2017). Primordial radionu-
clides such as the 232Th series, 238U series, and 40K 
are found in the earth’s crust, which is the main root 
of background radiation in the environment (Haydar 
et  al., 2021). When these radionuclides decay, their 
daughters emit radiations of gamma, beta, and alpha 
into the environment (Algattawi et  al., 2019). As a 
result, people are constantly exposed to ionizing radi-
ation both inside and outside their homes (Algattawi 
et  al., 2019). These exposures may differ depending 
on the geology of any given place (Erzin & Yaprak, 
2022).

The human body may be internally exposed to 
harmful radiation through three main routes: inges-
tion, inhalation, and skin contact (UNSCEAR, 2008). 
Of these, ingestion is the most prevalent and nearly 
inevitable route (Sarker et al., 2021). In reality, food 
and water intake are the primary routes via which 
radionuclides enter the human body (Sarker et  al., 
2021). Radionuclides are quickly incorporated into 
soft human tissues after intake. This results in com-
plex health-threatening illnesses that may last a life-
time (Sarker et al., 2021). Therefore, individuals who 
wish to reduce long-term exposure should be aware 
of the distribution of 238U, 232Th, and 40K (Erzin & 
Yaprak, 2022). Measuring radionuclide concentra-
tions aids in the monitoring of environmental radia-
tion (Lasheen et al., 2021). Radiation hazard indices 
were thus computed using procedures described in 
the literature for evaluating the combined effects of 
the activity concentrations of 238U, 232Th, and 40K, 
and then compared to those obtained from other 
countries as well as the allowed limits defined by 
International Radiation Protection Organizations 
(UNSCEAR, 2000).

Machine learning (ML) approaches have grown 
in popularity in recent decades, enabling greater 
flexibility and less presumptuous options (Wadoux 
et  al., 2020). Using data mining techniques, the ML 
approach determines if there are linear or nonlinear 
correlations between environmental factors and soil 
parameters (McBratney et al., 2003). This allows fore-
casts to be created without considering an unknown 

soil’s physical field or producing a fictional disper-
sion from unprocessed data (Shi & Wang, 2021). The 
most commonly used ML models are support vector 
regression, artificial neural networks (ANNs), and 
random forest (Khaledian & Miller, 2020). Dragović 
(2022) outlined the use of ANN modeling in envi-
ronmental radioactivity investigations. This included 
mapping, distributing, and detecting radionuclides, as 
well as anticipating their movement in the environ-
ment, improving measuring techniques, monitoring 
nuclear plant activities, and conducting real-time data 
analyses.

Broomhead and Lowe (1988) introduced the radial 
basis function artificial neural network (RBF-ANN) 
into the neural network literature as an efficient three-
layer feedforward ANN based on the function approxi-
mation approach (Fu & Wang, 2003). The RBF-ANN 
is a typical ANN model that offers significant advan-
tages in learning speed, parameter adjustment, and 
nonlinear adaptability (Dragović, 2022). RBF-ANNs 
are well-known for their simplicity of design, excellent 
tolerance to input noise, and quick and comprehensive 
training (Yu et  al., 2011). In the presence of patterns 
that are not employed for learning, RBF-ANN works 
well (Yu et  al., 2011). RBF-ANNs are widely used 
in a number of applications, such as noisy interpola-
tion, function approximation, and pattern classification 
(Fu & Wang, 2003; Moody & Darken, 1989; Nabney, 
2004; Pochmullcr et  al., 1994). However, RBF-ANNs 
have not been extensively used in the literature to pre-
dict the activity concentrations of radionuclides except 
two studies carried out by Einian et  al. (2015) and 
Erzin and Yaprak (2022). Einian et  al. (2015) exam-
ined the RBF-ANN method’s suitability for predicting 
the 234U/238U activity ratio. According to the findings 
of their investigation, the RBF-ANN technique can 
reliably forecast the 234U/238U activity ratio for alpha 
spectrometry. They identified three major advantages 
of RBF-ANN: (1) quick RBF-ANN training, (2) high 
accuracy in forecasting the activity ratio for spectrum 
data, and (3) the best network to estimate the activity 
ratio for alpha spectrometry. In a recent study, Erzin 
and Yaprak (2022) examined the suitability of RBF-
ANNs in predicting the activity concentrations of pri-
mordial radionuclides, namely 232Th, 238U and 40K. To 
do this, they used 126 different geological materials’ 
gamma spectrometry measurements while develop-
ing RBF-ANN models. They concluded that the con-
structed RBF-ANN models are very good at predicting 
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the primordial radionuclides’ activity concentrations in 
geological materials. Additionaly, RBF-ANNs have not 
been used in the literature to predict the hazard indices 
from gamma spectrometry measurements. Taking into 
consideration Erzin and Yaprak’s (2022) findings on 
the appropriateness of RBF-ANNs for gamma spec-
trometry, the present work focus on RBF-ANNs for the 
prediction of radiation hazard indices from geological 
materials’ gamma spectrometry measurements.

Using the findings of gamma spectrometry measure-
ments, four independent RBF-ANN models were devel-
oped to predict radiation hazard indices, namely, exter-
nal gamma dose rate in air (D), annual effective dose 
(AED), radium equivalent activity (Raeq), and external 
hazard index (Hex). To do this, the data of 348 differ-
ent geological materials’ gamma spectrometry meas-
urements acquired from Kaynar et  al. (2014), Tabar 
et al. (2017), and Erzin and Yaprak (2022) were used. 
To evaluate the prediction performance of RBF-ANN 
models, the predicted radiation hazard indices were 
compared to the determined radiation hazard indices. 
Furthermore, the prediction accuracy of the built RBF-
ANN models was assessed using a variety of perfor-
mance metrics.

Experiment with gamma ray spectroscopy using a 
NaI(Tl) detector

To estimate the activity concentration of primordial 
radionuclides, gamma ray spectrometry techniques 
employing high resolution HPGe and NaI(Tl) detec-
tors are used (Hofstadter, 1949). Despite their limited 
resolution, NaI(Tl) detectors are the most commonly 
employed for measuring both man-made and natu-
ral radionuclides in a wide range of materials (Eker & 
Çağlar, 2019; Pilakouta et  al., 2018). The method of 
gamma ray spectroscopy for 232Th, 238U, and 40K activ-
ity concentrations using a NaI(Tl) detector has already 
been widely published (Sahin & Cavas, 2008; Yaprak, 
1995; Yaprak & Aslani, 2010). As a result, it will only 
be briefly explored here. To calculate the activity con-
centrations of the primordial radionuclides 232Th, 238U, 
and 40K, three linear equations were solved.

(1)eTh(Bq kg−1) = C(232Th)∕K1

(2)eU(Bq kg−1) = [C(238U) − α C(232Th)]∕K2

where C(40K), C(238U), and C(232Th) are the count 
rates in channels potassium, uranium, and thorium, e 
indicates the acceptance of series equilibrium condi-
tion, α, β, and γ are the stripping ratios, K1, K2, and 
K3 are the sensitivity factors, while αC(232Th) and 
βC(232Th) are the count rates including thorium con-
tributions in the windows of uranium and the potas-
sium, γC(238U) is the count rate including the ura-
nium contribution in the window of potassium (Erzin 
& Yaprak, 2022). The uranium and potassium con-
centrations cannot be determined spectroscopically 
unless these count rates are taken into consideration 
(Erzin & Yaprak, 2022).

A variety of parameters, including detector vol-
ume, counting geometry, and the widths of the cho-
sen energy windows, influence sensitivity factors, and 
stripping ratios (Yaprak, 1995; Sahin & Cavas, 2008; 
Yaprak & Aslani, 2010), which must be computed 
using the activity concentrations of 232Th, 238U, and 
40K standards for each gamma spectrometric system 
(Erzin & Yaprak, 2022).

Radiation hazard indices

Different radiation hazard indices, such as D, AED, 
Raeq, and Hex, are used by national regulatory organi-
zations and agencies worldwide to assess the harm 
posed by radionuclides in soil (Shabbir et al., 2023). 
In order to analyze the health risks associated with 
these gamma emissions, D, AED, Raeq, and Hex are 
first estimated and then compared to the permissible 
limits (Khan et  al., 2023). The D value from 238U, 
232Th, and 40K exposure at 1 m from the earth’s sur-
face depends on the activity concentrations of 238U, 
232Th, and 40K and may be calculated using the fol-
lowing equation (UNSCEAR, 2000);

where CK, CTh, and CU are 40K, 232Th, and 238U activ-
ity concentrations in Bq kg−1, respectively.

Equation  (5) can be used to calculate the AED 
value. In this equation, 8760 (h y−1) is the exposure 
duration, and 0.2 and 0.7 (Sv Gy−1) are the occu-
pancy and dose conversion factors, respectively 

(3)
K(Bq kg−1) = [C(40K) − γ [C(238U) − α C(232Th)] − β C(232Th)]∕K

3

(4)
D (nGy h−1) = 0.0417CK + 0.604CTh + 0.462CU
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(UNSCEAR, 2000). The equation was multiplied 
by10−3 to convert to μSv.

The Raeq value is the most commonly used radia-
tion hazard indice in environmental radioactivity 
investigation. The following equation can be used to 
calculate the Raeq of a sample having varied quanti-
ties of primordial radionuclides:

Hex, another common radiation hazard indice, is 
used to monitor radioactive material consumption 
and to limit external gamma radiation exposure to 1.5 
nGy. The Hex values should be less than unity to meet 
the safety criteria. The following calculation can be 
used to calculate the Hex of a sample having different 
quantities of primordial radionuclides.

Radial basis function artificial neural networks 
(RBF‑ANNs) and RBF‑ANN models

Radial basis function artificial neural networks 
(RBF‑ANNs)

RBF-ANN has three layers: an input layer, a hid-
den layer, and an output layer (Fig.  1). The number 
of neurons in the input layer equals the number of 
input variables. The input layer provides data to the 
hidden layer, which contains neurons that compute 

(5)

AED (μ Sv y−1) = D (nGy h−1) × 8760 (h y−1)

× 0.2 × 0.7 (Sv Gy−1) × 10−3

(6)

(7)

the distance from a central point of given input val-
ues (Segal et al., 2000). The hidden layer uses RBFs 
to apply a nonlinear mapping to the data (Segal et al., 
2000). After applying RBFs to an input vector, the 
hidden layer neurons’ outputs are transmitted to the 
output layer (Segal et al., 2000). A flow chart of RBF-
ANN is shown in Fig. 2.

A general formulation of RBF-ANN that expresses 
the output-input relationship is as follows (Robert & 
Howlett, 2001);

where y is the output produced by the network, N is 
the hidden layer’s cell number, x ∈ Rn×1 is the input 
data, wik are weights of the output layer, ck ∈ Rn×1 
are the radial-based centers selected from a subset of 
the input vector space, and ∅k(.) is the radial-based 
activation function (Segal et  al., 2000; Szczurek & 
Maciejewska, 2004).

RBF-ANN models rely largely on cell centers, the 
weights of output layer, and the form of radial basis 
function (RBF). Linear, multi-quadratic, inverse 
multi-quadratic, Gaussian, and cubic RBFs can all be 
employed with RBF-ANN models. The Gauss func-
tion was chosen for this study because it can be fac-
tored. The Gauss function’s mathematical structure is 
depicted in the following equation:

where ‖.‖2istheEuclideannorm, ck is the centers, x is 
the input vector, and � denotes the standard deviation, 
commonly referred to as the spread parameter, which 

(8)
yi =

∑N
k=1

wik∅k

�
x, ck

�
=
∑N

k=1
wik∅k

�
‖x − ck‖2

�
i = 1, 2, 3, ..m

(9)∅k(x) = exp
�
−‖x − ck‖2

2∕2σ2
�

Fig. 1   The structure of 
RBF-ANN (Buhmann, 
2003)

Fig. 2   Flow chart of a RBF-ANN
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has a significant impact on the the RBFNN model’s 
performance.

The training of RBF-ANN models is divided 
into two phases. The first step is to select cent-
ers from the training data or cluster the training 
data to generate centers. The second phase is the 
weight computation between the hidden layer and 
the output layer. There are numerous approaches 
in the literature for identifying output weights and 
cell centers. For finding cell centers, the Kohonen 
clustering and K-means methods are often utilized. 
The Moore–Penrose pseudo-inverse and least mean 
squares methods are used to calculate the output 
weights (Haykin, 2009). The spread parameter is 
almost completely constant. There are approximate 
equivalences in the literature for finding the spread 
parameter, but it can also be determined by trial and 
error (Ham & Kostanic, 2001).

RBF‑ANN models

In this paper, four different RBF-ANN models desig-
nated as RBF-ANN1, RBF-ANN2, RBF-ANN3, and 
RBF-ANN4 were constructed for the prediction of 
the radiation hazard indices D, AED, Raeq, and Hex, 
respectively. To achieve this, the results of the gamma 
spectrometry measurements acquired from Kaynar 
et al. (2014), Tabar et al. (2017), and Erzin and Yaprak 
(2022) were used. In these measurements, activity 
concentrations of 238U, 232Th, and 40K of 348 geologi-
cal materials of various origins, involving soil, granite, 
rock, fertilizer and marble samples, were determined 
systematically using a NaI(Tl) detector with one sigma 
error and then expressed relatively to dry weight. The 
determined activity concentrations’ relative uncertain-
ties at 68% confidence level were found to be commonly 
less than 10%. In all RBF-ANN models, the count rates 
C(238U), C(232Th), and C(40K) were employed as input 
parameters. The ouput parameter was selected as D, 
AED, Raeq, and Hex in the RBF-ANN1, RBF-ANN2, 
RBF-ANN3, and RBF-ANN4 models, respectively. 
Tables  1 and 2 show the descriptive statistics for the 
input and output parameters, respectively. Each RBF-
ANN model’s input and output data are standardized 
into the range 0 to 1, utilizing the variable’s maximum 
and lowest values across all data sets. The normalized 
data was then utilized to generate a training and testing 
set. The training set was used to build each RBF-ANN 
model. The testing set was used to evaluate the perfor-
mance of each RBF-ANN model. All the RBF-ANN 
models used 278 training and 70 testing data from 348 
data sets. The same 70 testing data was used for each 
RBF-ANN model.

Table 1   The descriptive statistics of the input parameters 
(C(232Th), C(238U), and C(40 K)) used for all RBF-ANN mod-
els developed

SEM: standard errors of means

Statistic C(232Th) C(238U) C(40 K)

No of samples 348 348 348
Minimum 0 0 0
Maximum 3301 7760 58,576
Arithmetic mean ± SEM 802 ± 33 1518 ± 67 5696 ±280
Median 745 1397 6576
Skewness 0.16 0.70 5.49
Kurtosis  − 1.09 1.52 49.98
Standard deviation 623 1243 5232

Table 2   The descriptive 
statistics of the output 
parameters (D, AED, Raeq, 
and Hex) used for RBF-
ANN models developed

SEM: standard errors of 
means

Statistic Radiological hazard indices

D AED Ra
eq

H
ex

(nGy h−1) (μSv y−1)

No of samples 348 348 348 348
Minimum 0 0 0 0
Maximum 522 640 876 2.60
Arithmetic mean ± SEM 70 ± 3 86 ± 3 145 ± 5 0.40 ± 0.02
Median 63 78 132 0.37
Skewness 3.56 3.56 2.41 2.75
Kurtosis 24.00 24.00 12.49 15.75
Std. deviation 53 65 100 0.28

(Bq kg−1)
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The MATLAB7.0 neural network toolbox was used 
to train and evaluate each RBF-ANN model. While 
developing each RBF-ANN model, the Gauss func-
tion, a commonly utilized RBF (Bors & Pitas, 1996), 
was used. As mentioned earlier, the spread parameter 
has a major influence on the RBF-ANN model’s per-
formance. In this work, each RBF-ANN model’s opti-
mal spread parameter was found by gradually raising 
the parameter from a minimum of 0.5 to a maximum 
of 10, adding 0.5 to the parameter each time. To evalu-
ate the RBF-ANN models’ validity, a variety of statis-
tical error measures can be applied. The relative abso-
lute error (RAE), root mean square error (RMSE), and 
Nash–Sutcliffe efficiency (NSE) statistical error indices 
were employed in this study for evaluating the devel-
oped RBF-ANN models’ performance, as shown in 
Eqs. (10), (11), and (12).

where RHIExp
i

 and RHIPred
i

 are the measured and the 
predicted radiation hazard indice values, RHIExpMean

i
 

is the mean value of the measured radiation hazard 
indice, N is the sample number. To normalize the 
error, RAE divides the total absolute error by the pre-
dictor’s total absolute error. RAE values range from 
0 to ∞. In a precise prediction, RAE equals 0; the 
numerator value increases as the model prediction 
error increases. The RMSE measures the difference 
between the actual and projected values. The smaller 
the difference between actual and anticipated values, 
the closer the RMSE is to zero. NSE is a coefficient 
that is particularly effective for assessing a model’s 
ability to forecast. The NSE values vary from − ∞ to 
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tions and observations agree exactly. A NSE value 
less than 0 indicates that the residual variance is 
greater than the data variance, but a NSE value of 0 

(10)RAE =

∑N

i=1

����

�
RHIPred

i
− RHI

Exp

i

�����
∑N

i=1

����

�
RHI

Exp

i
− RHI

ExpMean

i

�����

(11)RMSE =

√
1

N

∑N

i=1

(
RHI

Exp

i
− RHIPred

i

)2

(12)NSE = 1 −

∑N

i=1

�
RHIPred

i
− RHI

Exp

i

�2

∑N

i=1

�
RHI

Exp

i
− RHI

ExpMean

i

�2

Ta
bl

e 
3  

(c
on

tin
ue

d)

Sp
re

ad
 

pa
ra

m
et

er
D

at
a 

se
t

R
B

F-
A

N
N

1
R

B
F-

A
N

N
2

R
B

F-
A

N
N

3
R

B
F-

A
N

N
4

R
A

E
(n

G
y 

h−
1 )

R
M

SE
 (n

G
y 

h−
1 )

N
SE

R
A

E
(μ

Sv
 y

−
1 )

R
M

SE
 (μ

Sv
 y

−
1 )

N
SE

R
A

E
(B

q 
kg

−
1 )

R
M

SE
(B

q 
kg

−
1 )

N
SE

R
A

E
R

M
SE

N
SE

8.
0

Tr
ai

ni
ng

0.
36

19
.0

6
0.

89
0.

36
23

.3
8

0.
89

0.
37

39
.4

6
0.

86
0.

37
0.

11
0.

87

Te
sti

ng
0.

42
18

.4
7

0.
67

0.
42

22
.6

6
0.

67
0.

42
38

.8
8

0.
67

0.
42

0.
11

0.
67

8.
5

Tr
ai

ni
ng

0.
36

19
.0

6
0.

89
0.

36
23

.3
8

0.
89

0.
37

39
.4

6
0.

86
0.

37
0.

11
0.

87
Te

sti
ng

0.
42

18
.5

1
0.

66
0.

42
22

.7
0.

66
0.

42
38

.9
5

0.
67

0.
42

0.
11

0.
67

9.
0

Tr
ai

ni
ng

0.
36

19
.0

7
0.

89
0.

36
23

.3
8

0.
89

0.
37

39
.4

7
0.

86
0.

37
0.

11
0.

87
Te

sti
ng

0.
42

18
.5

5
0.

66
0.

42
22

.7
4

0.
66

0.
42

39
.0

1
0.

67
0.

42
0.

11
0.

67
9.

5
Tr

ai
ni

ng
0.

36
19

.0
6

0.
89

0.
36

23
.3

8
0.

89
0.

37
39

.4
7

0.
86

0.
37

0.
11

0.
87

Te
sti

ng
0.

42
18

.5
7

0.
66

0.
42

22
.7

8
0.

66
0.

42
39

.0
5

0.
67

0.
42

0.
11

0.
66

10
.0

Tr
ai

ni
ng

0.
36

19
.0

7
0.

89
0.

36
23

.3
9

0.
89

0.
38

39
.4

9
0.

86
0.

37
0.

11
0.

87
Te

sti
ng

0.
42

18
.6

0.
66

0.
42

22
.8

1
0.

66
0.

42
39

.0
9

0.
67

0.
42

0.
11

0.
66



	 Environ Monit Assess (2024) 196:315

1 3

315  Page 8 of 13

Vol:. (1234567890)

shows that model predictions are as accurate as the 
actual data’s average. In general, models with NSE 
between 0 and 1 are viable; otherwise, the model is 
considered unsuitable for application.

The details of the optimal performance of each 
RBF-ANN model were given in Table  3. When the 
performance indices (RAE, RMSE, and NSE) of each 
RBF-ANN model in Table 3 were compared, it was 
found that RBF-ANN1, RBF-ANN2, RBF-ANN3, 
and RBF-ANN4 models with spread parameters of 
5.0, 5.0, 1.5, and 5.0, respectively, (shown in bold in 

Table 3), yielded lower RAE and RMSE values and 
higher NSE values and were thus chosen as the best 
RBF-ANN models.

In order to validate the model’s fit, significance 
tests are conducted to the relationship between 
determined and predicted databases (Reyes-Téllez 
et  al., 2020). The most widely used significance 
tests for testing the null hypothesis are the F-test, 
also known as the Fisher’s F-test, and the Student’s 
t-test (Verma, 2005). Student’s t-test were used to 
assess the effectiveness of each RBF-ANN model’s 

Fig. 3   Comparison of the determined D values with the pre-
dicted D values from RBF-ANN1 model for training set

Fig. 4   Comparison of the determined D values with the pre-
dicted D values from RBF-ANN1 model for testing set

Fig. 5   Comparison of the determined AED values with the 
predicted AED values from RBF-ANN2 model for training set

Fig. 6   Comparison of the determined AED values with the 
predicted AED values from RBF-ANN2 model for testing set
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performance. A Fisher’s F-test was carried out by 
using Microsoft Excel software (Microsoft Corp., 
Redmond, WA, USA) prior to the Student’s t-test 
to assess whether the fluctuations of the determined 
and anticipated radiation hazard indices were equal 
(Snedecor & Cochran, 1989). After conducting 
Fisher’s F-tests, p-values for each RBF-ANN model 
were obtained. When the p-values exceed 0.05, it 
is not possible to reject the null hypothesis (Gupta, 
2010). Stated otherwise, there exists no distinction 
in the variances of predicted and determined hazard 

indices. In addition, if the p-values are more than 
0.05, a Student’s t-test for each RBF-ANN model 
may be run, providing the variances of predicted 
and determined values are identical. If the p-values 
are less than 0.05, a Student’s t-test for each RBF-
ANN model may be run, providing the variances of 
predicted and determined values are not identical. 
Then, for each RBF-ANN model, a Student’s t-test 
was carried out by using Microsoft Excel software 
(Microsoft Corp., Redmond, WA, USA) to test the 
null hypothesis, and p-values for each RBF-ANN 

Fig. 7   Comparison of the 
determined Raeq values with 
the predicted Raeq values 
from RBF-ANN3 model for 
training set

Fig. 8   Comparison of the determined Raeq values with the 
predicted Raeq values from RBF-ANN3 model for testing set

Fig. 9   Comparison of the determined Hex values with the pre-
dicted Hex values from RBF-ANN4 model for training set
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model were produced. The produced p-values 
exceed 0.05, indicating strong support for the null 
hypothesis and no significant difference in experi-
mental and predicted data.

Results and discussion

In this study, four separate RBF-ANN models (RBF-
ANN1, RBF-ANN2, RBF-ANN3, and RBF-ANN4) 
were developed for the prediction of radiation hazard 
indices of D, AED, Raeq and Hex, respectively, using 
gamma spectrometry measurements’ results acquired 
from the literature. Individual RBF-ANN models’ 
prediction performance was then evaluated by com-
paring measured and predicted radiation hazard indi-
ces. Figures 3 and 4 compare the predicted D values 
from the RBF-ANN1 model with the determined D 
values from gamma spectrometry measurements. 
Figures  3 and 4 show that the RBF-ANN1 model 
has the minimum scatter around the line of equality 
between predicted and determined D values, with 
coefficients of determination (R2) values of 0.970 
both for training and testing samples. Figures  5 and 
6 show a comparison of AED values predicted using 
the RBF-ANN2 model with those determined using 
gamma spectrometry measurements. Figures 5 and 6 
illustrate that the predicted AED values were fairly 
similar to the determined AED values, since the R2 
values of 0.970 for both training and testing samples 
are very close to unity. The predicted Raeq values 

Fig. 10   Comparison of the determined Hex values with the 
predicted Hex values from RBF-ANN4 model for testing set
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using the RBF-ANN3 model were plotted against the 
determined Raeq values from gamma spectrometry 
measurements in Figs. 7 and 8. As shown in Figs. 7 
and 8, predicted Raeq values were found to be in good 
agreement with determined Raeq values, with R2 val-
ues of 0.983 and 0.952 for training and testing sam-
ples. The Hex values predicted from the RBF-ANN4 
model were shown against the determined Hex values 
from gamma spectrometry measurements in Figs.  9 
and 10. As demonstrated in Figs. 9 and 10, predicted 
Hex values were very close to the determined Hex val-
ues, with R2 values of 0.968 and 0.967 for training 
and testing samples.

The RAE, RMSE, and NSE values for each RBF-
ANN model constructed in this research were com-
puted using Eqs. (10), (11), and (12), respectively, and 
were shown in Table  4. The computed performance 
parameters in Table  4 show that all the RBF-ANN 
models created exhibit precise performance, indicat-
ing their applicability and efficiency in forecasting the 
radiation hazard indices of geological materials.

The p-values for the RBF-ANN1, RBF-ANN2, 
RBF-ANN3, and RBF-ANN4 models were found 
to be 0.228, 0.228, 0.464, and 0.189, respectively, 
according to the results of the Fisher’s F-tests. The 
p-value found for each RBF-ANN model is more than 
0.05, making refutation of the null hypothesis unfeasi-
ble (Gupta, 2010). In layman’s words, the determined 
and forecasted radiation hazard indices have the same 
variance. As a result, for each RBF-ANN model, 
a Student’s t- test was performed under the premise 
that the variances of predicted and determined values 
were similar. The Student’s t-test yielded p-values of 
0.990, 0.990, 0.944, and 0.985 for the RBF-ANN1, 
RBF-ANN2, RBF-ANN3, and RBF-ANN4 models, 
respectively. The p-value for each RBF-ANN model 
exceed 0.05, indicating no significant difference 
between the determined and estimated radiation haz-
ard indices. Given these p-values, it is advised that 
all the RBF-ANN models be used for predicting the 
radiation hazard indices in geological materials if the 
count rates C(40K), C(238U), and C(232Th) are known.

Conclusions

In this study, four different RBF-ANN models 
(RBF-ANN1, RBF-ANN2, RBF-ANN3, and RBF-
ANN4) have been developed for the prediction of 

radiation hazard indices of D, AED, Raeq, and Hex, 
respectively, using gamma spectrometry meas-
urements obtained from the literature. For this 
purpose, the results of 348 geological materials’ 
the gamma spectrometry measurements acquired 
from Kaynar et al. (2014), Tabar et al. (2017), and 
Erzin and Yaprak (2022) were used. The results 
obtained from RBF-ANN models were compared 
vis-à-vis those acquired by the measurements. It is 
found that the radiation hazard indices predicted 
by RBF-ANN models match very well with those 
determined from the measurements, with R2 val-
ues greater than 0.95. Performance indices (RAE, 
RMSE, and NSE) were computed to validate the 
developed RBF-ANN model’s accuracy and reli-
ability. The performance of the RBF-ANN1 model 
(RAE = 0.35 nGy h−1, RMSE = 13.31 nGy h−1, 
and NSE = 0.83), RBF-ANN2 model (RAE = 0.35 
μSv y−1, RMSE = 16.33 μSv y−1, and NSE = 0.83), 
RBF-ANN3 model (RAE = 0.37  Bq  kg−1, 
RMSE = 36.52  Bq  kg−1, and NSE = 0.71), and 
RBF-ANN4 model (RAE = 0.36, RMSE = 0.080, 
and NSE = 0.83) for training samples show that 
all RBF-ANN model constructed in this research 
exhibit precise performance, highlighting their 
applicability and efficiency in predicting the radi-
ation hazard indices. Furthermore, significance 
tests, including Fisher’s F-test and Student’s t-test, 
support the hypothesis that the variances and 
means of the predicted and determined values are 
similar, further validating the accuracy and reli-
ability of the RBF-ANN models. Therefore, based 
on the obtained p-values, it is recommended to uti-
lize the established RBF-ANN models for predict-
ing radiation hazard indices of geological materi-
als when the corresponding count rates are known.
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