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supervised classification-maximum likelihood algo-
rithm, to identify changes in LULC. Additionally, 
an accuracy assessment was conducted using ground 
truth data. Findings from this study show significant 
increase in built-up areas at the cost of loss in dense 
vegetation over a 38-year period thereby, putting pres-
sure on available green spaces. In terms of the area 
under each LULC category, most significant changes 
have been observed in built-up area (410.86%), bare 
surface (− 79.79%), sparse vegetation (− 53.42%), 
and dense vegetation (− 31.83%). Effective conserva-
tion strategies should focus on promoting connectiv-
ity between green spaces, engaging stakeholders in 
the planning and implementation of green infrastruc-
ture projects.

Keywords Land use · Land cover · Green 
infrastructure · Lagos state · FESTAC Town

Introduction

Land use and land cover change (LULC) are key indi-
cators of environmental change and have significant 
impacts on ecosystem services in cities (Belay et al., 
2022; Tolessa et  al., 2017). From identifying areas 
with high potential for development, understanding 
the distribution and density of various land use types 
to detecting changes in land use over time, LULC 
assessment has become valuable for providing infor-
mation for urban planning and is one of the main 

Abstract In addressing environmental challenges 
and ecosystem resilience, green networks are pre-
served, repaired, and rebuilt by green infrastructure. 
However, urbanization effects have seen urban land 
form undergo significant modifications over time due 
to different anthropogenic activities. The objective of 
this study is to evaluate the land use and land cover 
(LULC) change in FESTAC Town, a government-
owned residential neighborhood in Lagos, with the 
goal of recommending interventions for conserving 
green infrastructure. The study mainly focuses on 
employing remote sensing and geographic informa-
tion system (GIS) techniques to detect alterations in 
land use in FESTAC Town from 1984 to 2022. The 
ERDAS Imagine software was utilized, employing a 
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determinants of most landscape structures and func-
tions globally (Liu et al., 2020).

LULC change is one of the contributing factors 
in both the development and intensity of urban heat 
island (UHI) effects (Kafy et  al, 2021). Mitigating 
UHI involves urban planning strategies that prior-
itize green infrastructure. The intersections between 
LULC change and green infrastructure conservation 
provide an effective method to evaluate future land 
use change and landscape connectivity (Sun et  al., 
2022). With increasing urbanization and population 
growth, several natural spaces have been reclaimed 
for diverse socioeconomic activities ranging from 
residential, industrial, agricultural, and commercial 
land uses (Xu et al., 2019; Zhang et al, 2021). Reduc-
tion in vegetation cover through housing and infra-
structural development in course of urban expansion 
(Wu et  al., 2016), leading to increase in impervious 
surfaces (Rizvi et al, 2020), alters surface reflectivity 
(Fu & Weng, 2016) and increases energy consump-
tion (Kumari et  al., 2021) and atmospheric changes 
(Shahrin et  al, 2019) in addition to other corollaries 
of change LULC.

Green infrastructure (GI) remains an integral com-
ponent of sustainable, livable, and healthy places 
(Calvert et al., 2018), because it entails using nature-
based approaches to address environmental chal-
lenges and ecosystem resilience (Hansen et al., 2019; 
Norton et  al., 2015). Similarly, green networks are 
preserved, repaired, and rebuilt by green infrastruc-
ture (Apostolopoulou & Adams, 2015; Ying et  al., 
2011; Zhai, 2012). Although GI operates across dif-
ferent spatial scales, at the urban scale, where human 
activities are prevalent, GI connects public spaces like 
streets and parks with surrounding landscapes and 
ecological resources. Other features, which include 
street trees, shrubs, vertical green systems (VGSs), 
permeable pavers, and other forms of land cover, per-
form other important ecological functions.

Urban green infrastructure provides diverse oppor-
tunities by making connections between people and 
nature for sustainable cities (Herzog et  al., 2019). 
Similarly, for residential neighborhoods, GI is crucial 
to improving quality of life as it provides a range of 
benefits such as protecting and enhancing urban bio-
diversity (Sinnett, 2015), supporting well-being and 
overall health (Frumkin et  al., 2017), increasing the 
thermal performance of buildings, reducing urban 
heat island effect (Zölch et  al., 2016), increasing 

aesthetic quality of the built environment (Swanwick, 
2009), climate change adaptation (Demuzere et  al., 
2014), temperature regulation, manage rainfall dis-
charge and pollutant sources (Lovell & Taylor, 2013), 
and improving air and water quality (Salmond et al., 
2016).

Many studies have explored the use of remote 
sensing technology for LULC assessment and green 
infrastructure conservation in urban centers within 
developing countries (see for example Sam & Balasu-
bramanian, 2023; Abebe et  al., 2022; Hassan et  al., 
2016). Even in extremely varied and complicated 
urban contexts, remote sensing offers a beneficial 
array of technologies that can reduce the need for field 
investigations. Modern advancements like enhanced 
spatial resolution imaging and free data access regu-
lations make it more suitable (Shahtahmassebi et al., 
2021). Similarly, remote sensing assists in mapping 
street trees and plants effectively (Chance, 2016; 
Parmehr et al., 2016), improving air quality in urban 
spaces (Wang et  al., 2021), measuring urban heat 
island (UHI) effects (Ngie et al., 2014), and GI con-
servation in urban areas (Abebe et al., 2022; Sam & 
Balasubramanian, 2023). It is relevant in the context 
of cities in developing countries where land uses are 
changing rapidly and the ensuing land cover patterns 
should be tracked.

Lagos, the largest and thriving city in Nigeria, 
is a typical example of an urban center re undergo-
ing accelerated urbanization, which is significantly 
impacting the quantity of vegetative cover as strong 
contradictions and conflicts are currently being expe-
rienced between socioeconomic development and nat-
ural ecosystems. Evidence on land use and land cover 
analysis in Lagos, for example, indicates the vanish-
ing at a fast rate of the available soft green infrastruc-
ture in exchange for more construction (Okorie, 2012, 
Olaleye et al., 2009). In FESTAC Town, for example, 
a total of 128,880.73  m2 in land area was earmarked 
as open spaces during its creation, which represents 
a total of 64% (Fasona & Omojola, 2004; Anyakora 
et al., 2013). The current situation reveals that a sig-
nificant portion of the green spaces provided in the 
original plan has since been encroached upon and 
converted into other commercial land uses.

In summary, decline in nature systems affects 
green infrastructure as land use and land cover change 
in context of urbanisation. Also, there is knowledge 
gap on actual extent of this change which precludes 
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appropriate information that can guide initiatives for 
green space planning and development. Literature 
suggests that geospatial analysis forms an important 
tool for assessing LULC changes in cities and iden-
tifying opportunities to conserve and enhance green 
infrastructure (Shahfahad et  al., 2022; Uddin et  al, 
2023). Similarly, in promoting a sustainable and resil-
ient residential neighborhood, geospatial analysis pro-
vides strong potential such as monitoring micro-cli-
mate parameters, urban growth resulting from rapid 
urbanization and areas with risk of disaster (Mour-
shed et al., 2015, Kadhim et al., 2016).

The goal of this study is therefore to assess the 
LULC changes and change detection within a resi-
dential neighborhood in Lagos, Nigeria, between 
1984 and 2022, using remote sensing technol-
ogy, with a view to recommending GI conservation 
approaches. Using remote sensing and geospatial 
tools is not new, but its application to a residential 
setting in Lagos is novel. The available studies on 

housing transformation in Nigeria have mainly 
engaged changes in the dwellings that is, the physi-
cal structure (See for example Aduwo & Ibem, 
2017; Maina, 2023), often poorly considering spaces 
between the buildings. This study’s originality lies 
is the focus on land use and land cover (landscape) 
transformations over time in the largest formally 
planned public housing estate in Lagos, Nigeria.

Research methods and materials

Study area

Geographically, FESTAC Town is located along the 
Badagry Expressway, Lagos, Nigeria with a lati-
tude of 6°27′59.2″N and a longitude of 3°17′0.65″E, 
respectively (Fig. 1). It is a government-owned hous-
ing estate that is managed by the Federal Housing 
Authority (FHA). The original acquisition of FES-
TAC Town encompasses roughly 17  km2 and has a 

Fig. 1  Map of study area
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perimeter of about 220 km. It is situated about 10 km 
southwest of central Lagos, between Amuwo Odofin 
and Alimosho LGAs of the metropolitan area (Fig. 1).

In terms of both land size and resident population, 
the FESTAC Town housing estate is the largest public 
residential housing estate in Nigeria (Ibiyemi et  al., 
2013). It includes every income class, dwelling units 
of various sorts, and floor heights. FESTAC town fea-
tures building structures with a variety of typologies.

Evaluating changes in land use and land cover 
using satellite images was the main focus in this 
study. The GIS procedure was undertaken by map-
ping out the study area to highlight the quantity of 
greenery present at the site/neighborhood scale. Two 
remote sensing-based indices, namely normalized dif-
ference vegetative index (NDVI) and the normalized 
difference built-up index (NDBI), which both bene-
fit from the distinctive spectral outcomes of built-up 
areas and other land cover types, were adopted for the 
study.

The amount and quality of green areas were meas-
ured using the NDVI and the NDBI. LULC assess-
ment of various years between 1984 and 2022 was 
carried out to look into the various patterns of land 
changes over time. The green space ratio (GSR) and 
vegetation cover area (VGA) are two examples.

Vegetation indices on one hand provide relevant 
statistics from the multispectral data. The most recent 
estimates of an area’s density, quality, and distribu-
tion of urban green space are made using the normal-
ized difference vegetative index. NDVI is calculated 
as the difference between near-infrared (NIR) and red 
(R) reflectance divided by their sum. NDVI values 
range from + 1 to − 1, wherein − 1 is generally area 
with no vegetative cover such as bare earth, deserts 
and water bodies and + 1 is generally area with avail-
able vegetation cover (Gessesse & Melesse, 2019; 
Gupta et al, 2021).

It has the following formula:

Values between 0.6 and 0.8 reveal agricultural 
fields and parks, while values between 0.2 and 0.6 
show shrub and grassland. Values below 0.2 indicate 
a lack of green space (Lotfata, 2021).

NDBI analysis measures built-up cover because it 
has a relatively low measuring value for vegetation 
(Ettehadi et  al, 2019; Lotfata, 2021). To highlight 

NDVI =
NIR − R

NIR + R

man-made built-up regions, it uses the near-infrared 
(NIR) and short-wave infrared (SWIR) bands. The 
formula for measuring NDBI is shown below:

SWIR 1 (Band 11) and NIR (Band 8)  are two 
abbreviations for short wave near-infrared and near-
infrared  reflectance, respectively. The range of the 
NDBI value is − 1 to + 1. NDBI has a negative value 
for water bodies and a positive value for built-up 
areas.

In order to create the NDVI and NDBI maps for 
the year 2022, Sentinel-2A imagery was chosen 
over Landsat due to its superior spatial resolution 
and the significantly smaller land of the study area. 
While Landsat has a wider resolution, Sentinel-2A 
has a smaller resolution. This made gathering the 
required information simpler. Due of its temporal 
characteristics and longer year duration, Landsat 
was preferred to Sentinel-2A for the LULC maps. 
Sentinel does have limitations in that sense because 
it was only launched in 2014, taking into account 
the length of time (1984–2022) needed for the 
LULC data.

Satellite data represent the principal information 
source for detecting LULC changes in any geographi-
cal region (Chughtai et  al, 2021). The selection of 
Landsat imagery has been driven by the desire for 
cost-effectiveness and the availability of suitable data 
with a 30-m spatial resolution, enabling a broad spec-
trum of applications. To analyze land use and land 
cover changes in FESTAC, we obtained cloud-free 
satellite images (Table 1) from the United States Geo-
logical Survey (USGS) on the following dates: Land-
sat-5 Thematic Mapper on December 11, 1984, Land-
sat-7 Enhanced Thematic Mapper Plus on December 
28, 2002, and Landsat-8 Operational Land Imager on 
December 27, 2022.

Band combination of 543 (Landsat 8 OLI) and 
432 (Landsat ETM + and TM) color composites 
were processed using the maximum likelihood algo-
rithm for supervised classification in Erdas Imag-
ine 2015. The accuracy assessment was carried 
out using ground truth data obtained from selected 
points during the fieldwork, coupled with high-res-
olution Google Earth images and visual interpreta-
tion. Error matrices were applied in the statistical 
comparison of reference data and classification 

NDBI =
SWIR1 − NIR

SWIR1 + NIR
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results. The error matrices were generated to assess 
the user’s accuracy, producer’s accuracy, and over-
all classification accuracy.

The post-classification comparison (PCC) method 
was utilized to detect the LULC change dynamics of 
the study area, between 1984 and 2022 to produce a 
land use change matrix using independently classified 
imageries of two different time nodes. The study per-
formed the post-classification comparison in ArcGIS 
10.7.1 using a thematic classified map overlay and 
various geospatial operations. The result indicates the 

numerous land use transformations that occurred dur-
ing the period between 1984 and 2022.

Results

Green infrastructure quality and quantity

The quantity of green space within the bound-
ary of the study area for the year 2022 is shown in 
the resulting NDVI image (Fig.  2). The difference 

Table 1  Landsat data information

Sensor ID Landsat path and row Acquisition date Resolution 
(m)

Source

LT05_L1TP_191055_19841218_20200918_02_T1 p191/r055 (Landsat 5 TM) 11/12/1984 30 USGS
LE07_L1TP_191055_20021228_20200916_02_T1 p191/r055 (Landsat 7 ETM +) 28/12/2002 30 USGS
LC08_L1TP_191055_20221227_20230104_02_T1 p191/r055 (Landsat 8 OLI) 27/12/2022 30 USGS

Fig. 2  NDVI analysis result 2022
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in shade of color green (light and dark) on a color 
scale represents how much green space is arranged 
in the study area. The areas indicated by light green 
exhibit a low green space, while the areas indi-
cated by dark green show a large green space. FES-
TAC Town has a low percentage of green space, as 
seen by the NDVI range of − 0.05 to 0.2. The lack 
of greenness is indicated by values of green space 
cover in the 0.1 and below range.

The graphic representation of the NDBI of the 
study area demonstrates the degree of built-up 
urban density. The difference in color between blue, 
yellow, and orange (Fig. 3) depicts the organization 
of built-up areas at various levels within the study 
region. In contrast to places with orange, which 
have the most built-up densities, the blue area 
exhibits no built-up areas. On the NDBI map, Fig. 3 
indicates a pattern of built-up areas expanding 
towards the east and west limits, with some scatted 
built-up areas in the middle.

Multi-index land use and land cover pattern of study 
area

The Anderson classification system used in USGS 
LULC Level 1 class datasets was used in this study. 
Five general categories were used to classify the 
study area. Table  2 contains details of the classes, 
with each class developed based on texture, tone, and 
color (Radhakrishnan et al., 2014).

Kappa coefficient and overall accuracy for the 
classified images

The study focused on two types of correctness within 
the confusion matrix: user accuracy and producer 
accuracy (Table  3). Total image classification cor-
rectness and overall kappa statistics were then deter-
mined based on these classification types. The accu-
racy assessment was conducted for the LULC maps 
of 1984, 2002, and 2022. Classifiers were employed 

Fig. 3  NDBI analysis result 2022
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Table 2  Image classification details adopted for this study

Source: Anderson et al. (1976)

s/n Class Description

1 Water bodies Areas submerged in water, such as rivers, reservoirs, ponds, lakes, and streams
2 Sparse vegetation (forest) A region with a generally sparse amount of forest vegetation
3 Dense vegetation (agricultural land) Areas with a high concentration of grasses, plants, and crops, such as parks and consist-

ently cultivated, cultivated croplands
4 Built-up area Concrete-covered ground, comprising low-, medium-, and high-density road networks, 

houses, businesses, and other structures constructed by humans, as well as landfills for 
solid waste, educational facilities, and transportation

5 Bare surface Areas with minimal vegetation, whether present or absent, that could change or accom-
modate new users in the future. This group comprises lands devoid of crops, rocky 
terrain, and sandy shorelines near rivers and streams

Table 3  Matrix indicating the overall accuracy and kappa statistics for 1984, 2002, and 2022 LULC map of the study area

Year 1984
Data Water body Densed veg Sparse veg Bare surface Built-up area Row total Producer’s (%) User’s (%)
Water body 98.64 0.34 0.07 0 0 29,055 91.3 90.8
Densed veg 1.35 91.68 31.69 2.41 0.28 1,760,869 83.2 85.5
Sparse veg 0.01 7.2 40.53 1.72 1.21 267,381 72 70.1
Bare surface 0 0.72 8.57 75 22.94 583,481 82.1 80
Built-up area 0 0.05 19.14 20.88 75.57 229,871 74.7 72.1
Column total 22,975 1,794,345 309,711 717,395 26,231 2,870,657
Overall kappa coefficient = 85.6%
Year 2002
Data Densed veg Sparse veg Water body Built-up area Bare surface Row total Producer’s (%) User’s (%)
Densed veg 97.37 1.51 1.64 0.01 0.1 790,612 93.2 90.2
Sparse veg 1.67 93.98 0.19 3.9 3.23 76,849 91.5 93.1
Water body 0.19 0 97.36 0 0.01 38,043 93 88.9
Built-up area 0 2.81 0.03 82.66 24.07 118,776 79.6 80.3
Bare surface 0.77 1.7 0.77 13.42 72.59 325,121 74.8 70.5
Column total 810,115 51,720 37,410 15,263 434,893 1,349,401
Overall kappa coefficient = 89.1%
Year 2022
Data Water body Densed veg Sparse veg Bare surface Built-up area Row total Producer’s (%) User’s (%)
Densed veg 98.81 0.23 0.23 0.25 0 680,883 95.6 93.2
Sparse veg 0.5 99.15 0.19 0 0.11 51,777 97.1 95.5
Bare surface 0.69 0.61 87.79 0.15 11.5 56,093 85.1 84.1
Water body 0 0 3.09 99.58 0 31,633 96.4 98.7
Built-up area 0.01 8.69 0.02 0.02 88.39 33,716 85.6 87.5
Column total 688,776 48,626 53,755 30,097 32,848 854,102
Overall kappa coefficient = 89.9%
Overall classification accuracy = 86.4% Overall kappa coefficient = 88.2%
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to validate the accuracy calculation of the various 
land use maps produced. The outcomes revealed dif-
ferent accuracy measures, including overall accuracy, 
user accuracy, producer accuracy, and the kappa coef-
ficient for the land use maps.

The overall accuracy results for the classified 
imageries in the years 1984, 2002, and 2022 were 
86.4%, with overall kappa coefficient as 88.2%. The 
water body category had a minimum producer accu-
racy of 91.3%, while the correctness for the other four 
land use and land cover classes (dense vegetation, 
sparse vegetation, bare surface, and built-up area) was 
below 90% in the year 1984. User accuracy results 
for dense vegetation in 1984, 2002, and 2022 were 
85.5%, 90.2%, and 93.2%, respectively, compared to 
the other land use classes.

According to the 2002 results, the land area mainly 
comprised of built-up area (7.28  km2, 44.83% of 
total area) followed by dense vegetation (4.47  km2, 
27.52%). The other land use categories were water 
bodies (0.79  km2, 4.86%), sparse vegetation (1.97 
 km2, 12.13%), and bare surface (1.73  km2, 10.65%). 
The year 2022 shows that the largest category was the 
built-up area (8.94  km2, 55.05%), followed by dense 
vegetation (4.54  km2, 27.96%). Others include water 
bodies (0.8  km2, 4.93%), sparse vegetation (1.02  km2, 
6.28%), and bare surface (1.73  km2, 5.79%). His-
togram of LULC change of the study area (Fig.  7) 
reveals the changes over the 38-year period.

The LULC map layout is displayed in Fig.  4, 5, 
and 6, respectively. It includes vegetative cover area 
(VCA) and green space ratio (GSR) categories for 
the years 1984, 2002, and 2022 and their statistics, 
respectively.

Change detection from 1984 to 2022

The area covered by LULC classes and how it 
changed between 1984 and 2022 is displayed in 
Table  4. In 1984, there was minimal built-up area, 
and there was a substantial amount of dense vegeta-
tion and bare surface.

Over the course of 38 years, both good and nega-
tive developments were seen in the area covered by 
the LULC categories. In contrast to the built-up area, 
which showed an increase in land area, water bod-
ies, sparse and dense vegetation, and bare surfaces all 
showed considerable decreases in respective areas.

The following equation was used to calculate the 
percentages of change observed in LULC:

where A1 and A2 are beginning and final, and Δ is 
the proportion of land use/land cover change. Nega-
tive values denote loss while positive values suggest 
gain.

Water bodies
The area occupied by water bodies decreased by 
0.19  km2 (− 19.19%), from 0.99  km2 in 1984 to 
0.80  km2 in 2022. One factor contributing to this 
reduction is the alteration of water bodies into 
other land uses.
Sparse vegetation/forest
The area under sparse vegetation decreased from 
2.19  km2 (− 53.42%) in 1984 to 1.02  km2 in 2022, 
representing a net decrease of 1.17  km2. The trans-
formation of forest lands into developed areas, 
such as parks, highways, and other development 
initiatives, is responsible for this loss.
Dense vegetation
The area occupied by dense vegetation decreased 
by 2.12  km2 (− 31.83%), from 6.66  km2 in 1984 to 
4.54  km2 in 2022. This decline is due to the ongo-
ing demand for urban housing and other socioeco-
nomic growth. Another factor contributing to the 
fall is a decrease in farming activities for other 
enterprises.
Built-up area
Residential, industrial, and commercial areas 
make up an urban built-up area. The outcome 
demonstrates that as the area covered by built-up 
land increased, the development of built-up areas 
has surpassed other land uses from 1.75 to 8.94 
 km2 between 1984 and 2022. This represents an 
increase of 7.19  km2 (+ 410.86%). Continuous rise 
in urban population leading to increased demand 
for housing is responsible for the increase. The 
locational attribute of the study area is also a sig-
nificant factor.
Bare surface
The area occupied by bare land reduced from 4.65 
to 0.94  km2 from 1984 to 2022, representing a 
decrease of 3.71  km2 (− 79.79%). The conversion 
of bare land into other uses is attributed to the 
observed decrease.

Δ =
A2 − A1

A1
× 100
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Fig. 4  LULC map of study area indicating both the vegetation cover area (VCA) and green space ratio (GSR) in 1984
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Fig. 5  LULC map of study area indicating both the vegetation cover area (VCA) and green space ratio (GSR) in 2002
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Fig. 6  LULC map of study area indicating both the vegetation cover area (VCA) and green space ratio (GSR) in 2022
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Discussion

In this research, we have shown through both NDVI 
and NDBI analysis the pattern of green space frag-
mentation within FESTAC Town for a 38-year period 
(1984–2022). During this period, green infrastruc-
ture quantity has experienced decimation (see Fig. 7). 
The change detection statistics (Table 5) agrees with 

trends observed in related previous studies outside 
Nigeria (Alam et al, 2020; Nanda et al, 2014; Vive-
kananda et  al, 2021). The rate of change observed 
in FESTAC also aligns with changes reported from 
other cities in Nigeria. Adegun et al.’s (2021) review 
shows consistent decline in vegetation cover across 10 
Nigeria cities on which meso-scale land cover analy-
sis was conducted. For example, in Dutse city (Jigawa 

Table 4  LULC statistics of the 1984, 2002, and 2022 map of the study area

s/n Class 1984  (km2) % 2002  (km2) % 2022  (km2) %

1 Water bodies 0.99 6.10 0.79 4.86 0.80 4.93
2 Sparse vegetation (forest) 2.19 13.49 1.97 12.13 1.02 6.28
3 Dense vegetation (agricultural land) 6.66 41.01 4.47 27.52 4.54 27.96
4 Built-up area 1.75 10.77 7.28 44.83 8.94 55.04
5 Bare surface 4.65 28.63 1.73 10.65 0.94 5.79

Total 16.24 16.24 16.24

Fig. 7  Histogram of 
LULC change of study area 
between 1984, 2002 to 2022

Table 5  The total land area 
comprising each LULC 
class in the datasets from 
1984 and 2022 and change 
in the area over a 38-year 
period

Over 38 years (1984–2022), 
( +) represents an increase 
and ( −) represents a decline 
in the area under the LULC 
class

s/n Classified data 1984 2022 Area changed 
 (km2)
2022–1984

Percent change (%)

1 Water bodies 0.99 0.80  − 0.19  − 19.19
2 Sparse vegetation 2.19 1.02  − 1.17  − 53.42
3 Dense vegetation 6.66 4.54  − 2.12  − 31.83
4 Built-up area 1.75 8.94  + 7.19 410.86
5 Bare surface 4.65 0.94  − 3.71  − 79.79

Total 16.24 16.24
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State), 19.3% of cultivated land and vegetation cover 
was transformed to built-up areas between 1986 and 
2014 (Zangina et  al., 2019). The 19.19% reduction 
in water bodies (blue spaces) also follows the same 
decline trend for vegetation loss.

The ongoing convergence due to socioeconomic 
development and population expansion has resulted 
in the diminishing availability of green areas in the 
study area. This loss of green spaces is replaced by 
more socioeconomically inclined activities. This is 
one of the characteristics of urbanization which has 
led to green space fragmentation worldwide (Xu 
et al., 2019; Zhang et al, 2021).

Urbanization and industrialization represent essen-
tial phases in the progression of social and economic 
systems (Hu et al, 2019). LULC matrix as an intrin-
sic component of the landscape exhibits both direct 
and indirect connections with diverse geophysical 
and socioeconomic processes (Alam et  al, 2020). 
The LULC pattern in FESTAC Town indicates that 
both urbanization and industrialization pose a signifi-
cant challenge, contributing to the reduction of green 
infrastructure.

The decline also has implication for human com-
fort. Decline in quantity and quality of green infra-
structure and blue spaces usually leads to higher tem-
peratures due to urban heat island that ensues in such 
neighborhoods. In their analysis of a part of Akure—
Ondo state’s capital city—Daramola and Balogun 
(2019) shows that parts of urban areas with the high-
est land surface temperature were notably with the 
least or lower vegetation cover.

Results build on existing evidence that green infra-
structure actively supports the preservation, restoring, 
construction, and even renovation of ecological net-
works (Ying et  al, 2011; Zhai, 2012). To attain sus-
tainable urban development and curtail the unplanned 
growth associated with rapid urbanization, it is nec-
essary that relevant authorities formulate planning 
models that ensure rational and optimal utilization of 
every available piece of land in FESTAC Town.

Conclusion and future work

This study demonstrates the pattern of LULC change 
between 1984 and 2002, and 2022 in FESTAC Town 
using remote sensing technology. It firstly reiterates 
the potential of geospatial analysis to inform planning 

and management decisions that conserve and enhance 
green infrastructure. More importantly, the study 
shows pattern of change in this formally planned and 
developed housing estate. The decline in coverage of 
green and blue spaces is evident. Majority of these 
changes in LULC are primarily driven by human 
activities, leading to a variety of adverse environmen-
tal consequences. The loss of natural systems affects 
green infrastructure and ecosystem services deriv-
able. There is need to conserve what is remaining 
and re(green) lost areas. This would demand effec-
tive site-scale GI strategies given that less land is and 
will be available. Vertical greening systems (VGSs) 
and green roofs which demand no or little land hold 
potentials in greening the housing estate. There is 
need to emphasize fostering connectivity between 
green spaces, as well as engaging stakeholders in the 
planning and execution of green infrastructure pro-
jects, to ensure that all residents have equitable access 
to green spaces.

Further research could explore the effectiveness of 
different green infrastructure conservation measures 
implemented or possible and their impact on revers-
ing current LULC patterns in the FESTAC case study 
and other similar residential neighborhoods within 
African cities. Additionally, research could also 
investigate the relationship between socioeconomic 
factors, LULC, and green infrastructure conserva-
tion in the areas. The further impact of the decline in 
green space on micro-climate and environmental fac-
tors, such as land surface temperature and air quality, 
can be also established in future studies.
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