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Abstract High spatial and temporal resolution data
is crucial to comprehend the dynamics of water
quality fully, support informed decision-making, and
allow efficient management and protection of water
resources. Traditional in situ water quality measure-
ment techniques are both time-consuming and labor-
intensive, resulting in databases with limited spatial
and temporal frequency. To address these challenges,
satellite-driven water quality assessment has emerged
as an efficient and effective solution, offering compre-
hensive data on larger-scale water bodies. Numerous
studies have utilized multispectral and hyperspectral
remote sensing data from various sensors to assess
water quality, yielding promising results. However, the
recent popularity of unmanned aerial vehicle (UAV)
remote sensing can be attributed to its high spatial and
temporal resolution, flexibility, ability to capture data at
different times of day, and relatively low cost compared
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to traditional platforms. This study presents a compre-
hensive review of the current state of the art in moni-
toring water quality in small inland water bodies using
satellite and UAV remote sensing data. It encompasses
an overview of atmospheric correction algorithms and
the assessment of different water quality parameters.
Furthermore, the review addresses the challenges asso-
ciated with monitoring water quality in these bodies of
water and emphasizes the potential of UAVs to over-
come these challenges by providing accurate and reli-
able data.

Keywords Water quality · High resolution · Satellite
images · UAV ·Multispectral · Hyperspectral

Introduction

Water, particularly inland water bodies, plays a cru-
cial role in various sectors such as agriculture, urban
planning, industry, aquaculture, recreation, wildlife,
and ecological health (Wang et al., 2022; Welcomme,
2011). With the rapid growth of the global population,
the increased demand for water access and use has
caused increased pollution and degraded water qual-
ity (United Nations, 2022). Water quality impairments
can occur due to elevated nutrient levels, resulting from
the discharge of pollutants in residential and indus-
trial areas (Karakoc et al., 2003; Osibanjo et al., 2013),
excessive use of fertilizers and pesticides (Dosskey,
2001; Muscutt et al., 1993), changes in land use/land
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cover (El Saadi et al., 2014;Mbuh, 2019; Rostom et al.,
2017), and erosion during storm events (Grissinger &
McDowell, 1970). Given the potential impact of poor
water quality on both human health andmarine ecosys-
tems, the assessment of water quality holds utmost
significance. Hence, it is essential to employ effective
methods for measuring water quality to ensure sustain-
able management. Regular and extensive assessments
are necessary for the adaptive management of water
bodies, facilitating the development of long-term plans
and the implementation of new policies and regulations
based on the intricate relationships between human
practices and water quality within lakes and reservoirs
(United Nations Environment Programme, 2021).

Water quality parameters encompass the physical,
chemical, and biological characteristics of awater body
(Gholizadeh et al., 2016; Wen & Yang, 2011). Tra-
ditionally, these parameters are measured from small
volumes of water using in situ sensors or grab sam-
ples that are subsequently analyzed in a laboratory.
However, it is important to note that water quality
exhibits spatial-temporal variability across the water
surface (Sagan et al., 2020). Spatial variability refers to
variations in parameter values or concentrations across
different locations, while temporal variations represent
changes caused by seasonal fluctuations in natural pro-
cesses, such as temperature, precipitation, and hydro-
logical conditions (Zhang et al., 2008). Consequently,
attempting to discern water quality using limited sam-
ples poses challenges, necessitating thorough sampling
and measurement. The use of traditional techniques in
this regard can be expensive, labor-intensive, and time-
consuming, and collecting a sufficient number of sam-
ples to adequately represent an entire water body is
often impractical. These limitations impede the attain-
ment of continuous and synoptic water quality assess-
ments (Giardino et al., 2001; Nas et al., 2009; Skar-
bøvik & Roseth, 2014).

Remotely sensed water quality assessment presents
a promising approach to overcome the limitations of
traditional methods and enables more cost-effective,
efficient, and larger-scale monitoring and assessments.
In recent years, unmanned aerial vehicles (UAVs) have
gained popularity for remote water quality assessment
due to their ability to provide very high spatial and
temporal resolution data. This capability is particularly
valuable for monitoring small inland water bodies such
as lakes, streams, rivers, wetlands, or reservoirs (Castro
et al., 2020; Cui et al., 2022; Govender et al., 2007;

Guimarães et al., 2019; Isgró et al., 2022; Keith et al.,
2014;Moses et al., 2015;Murugan et al., 2016; Olivetti
et al., 2020; Su et al., 2015; Tan et al., 2011; Wu et al.,
2014; Yang et al., 2022; Zang et al., 2012; Zeng et al.,
2017; Zhang et al., 2023, 2021).

While several reviews have explored water quality
assessmentwith a focus on utilizingmulti-sourcing and
multi-sensor satellite remote sensing data (Gholizadeh
et al., 2016; Palmer et al., 2015; Yan et al., 2015; Yang
et al., 2022), there is a literature gap regarding the joint
review of UAV and satellite remote sensing of water
quality in small inland water bodies. A comprehen-
sive review is needed to support managers in evaluating
trade-offs and selecting the most appropriate measure-
ment technique. As a result, this study aims to bridge
this gap in the literature by reviewing the current state-
of-the-art water quality monitoring using both satellite
and UAV remote sensing data for small inland water
bodies. The review encompasses an analysis of the
challenges associated with monitoring water quality in
such water bodies using satellite remote sensing data,
as well as the potential of UAVs to overcome these
challenges and provide reliable data.

Remote sensing for water quality assessments

Remote sensing data plays a vital role in studying the
Earth’s surface, examining changes, identifying prob-
lems, and formulating solutions for maintaining or
enhancing the environment. Advancements in technol-
ogy have contributed to the widespread use of remote
sensing data in water quality assessments, yielding
promising and satisfactory results (Guimarães et al.,
2019; Olivetti et al., 2020; Zhang et al., 2023). This
approach provides data across various spatial and tem-
poral scales in a cost-effective and time-efficient man-
ner (Mbuh, 2019).Moreover, the automatic and contin-
uous acquisition of data allows for the timely identifica-
tion of surface changes on Earth (Chebud et al., 2012).
To date, numerous studies have leveraged remote sens-
ing data for diverse applications, including water vol-
ume calculations (Lu et al., 2013), water resource man-
agement (Giardino et al., 2010), groundwater mapping
(Elbeih, 2015), water bodies identification (Sun et al.,
2012),water storage and levelmeasurements (Frappart,
2005), and water quality monitoring in both small and
large water bodies (Bresciani et al., 2017; Castro et al.,
2020).
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Remote sensing has been proven to be a valuable and
effective method for capturing water quality param-
eters (Bonansea et al., 2018; Hellweger et al., 2004;
Saberioon et al., 2020; Su & Lo, 2022; Yulong et al.,
2022).Variouswater quality components are developed
and used to determine the presence and level of con-
tamination using remote sensing, thus asserting water
quality. These components are measured based on their
reflectance signals, known as water-leaving radiance,
captured by the sensors. Figure1 displays the interac-
tionof light betweenwater quality components and sen-
sors. The reflectance, absorbance, and scattering spec-
tral characteristics of these components, called inherent
optical properties (IOP) (IOCCG, 2006), make it possi-
ble to detect and monitor water pollutants using spec-
tral reflectance signatures (Rostom et al., 2017; Wen
& Yang, 2011). Optically active components can be
directlymeasured using the relationship between inher-
ent optical properties (IOP) and remote sensing reflec-
tion (Kirk, 1994; Kutser, 2004; Matthews, 2011). In
contrast, optically inactive components do not exhibit
optical activity and do not interact with light in the
sameway as optically active parameters. Due to the low
optical properties and low signal-to-noise ratio of opti-
cal inactive components (Gholizadeh et al., 2016; Yang
et al., 2022), several studies have primarily focused
on optically active components. Similarly, the optically
active properties are often used as proxies to estimate
optically inactive properties (Yang et al., 2022). Table 1
presents commonlymeasuredwater quality parameters
using remote sensing techniques.

Platforms and sensor types

Water quality components can be assessed using multi-
spectral and hyperspectral optical sensors deployed on
both airborne and satellite platforms (Fig. 2). Each of
these platforms and sensor types is described next in
the context of inland water quality monitoring.

Satellite platform

Satellite platforms have transformed water quality
assessments by providing a broad-scale and compre-
hensive view of water bodies on the Earth’s sur-
face. These platforms have the advantage of enabling
continuous monitoring of large areas without caus-
ing any disturbance to the aquatic environment. This

feature makes satellite-based platforms an invaluable
tool for environmental assessment and management
(Harvey et al., 2015; Topp et al., 2020).

UAVs platform

Unmanned aerial vehicles/systems (UAVs/UASs), com-
monly known as drones, have emerged as an effec-
tive remote sensing platform for environment monitor-
ing (Cheng et al., 2020; Gebrehiwot & Hashemi-Beni,
2021;Hashemi-Beni&Gebrehiwot, 2021). UAVs offer
several advantages over satellite remote sensing, such
as the ability to fly at lower altitudes (Castro et al.,
2020; Olivetti et al., 2020), providing higher spatial
resolution, and offering flexible deployment options at
a reasonable cost (Isgró et al., 2022).

Multispectral sensors

Multispectral sensors capture data within a limited
number of bands, typically ranging from 5 to 10 bands
with broad spectral resolution. These bands cover
wavelengths from 430 to 1500 nm, encompassing the
visible, near-infrared, and short-wave infrared regions
of the electromagnetic spectrum. Multispectral sen-
sors have been extensively employed for the detection
and monitoring of water body dynamics and quality
(Bonansea et al., 2018; Castro et al., 2020; He et al.,
2008; Hellweger et al., 2004; Knight & Voth, 2012;
Pahlevan et al., 2020; Soriano-González et al., 2022).

Hyperspectral sensors

Hyperspectral sensors capture several narrow and con-
tinuous spectral bands across the entire spectrum, from
visible to thermal infrared regions. These sensors can
record hundreds of spectral bands in a single acquisi-
tion (Govender et al., 2007), providing detailed spec-
tral information for each pixel in an image. As a result,
hyperspectral remote sensing data offers exceptional
differentiation of water quality parameters based on
their narrow-band spectral response. Its capability to
capture fine-grained spectral information and identify
specific water quality parameters has made hyperspec-
tral data particularly valuable for monitoring and char-
acterizing water quality parameters (Banerjee & Shan-
mugam, 2021; Giardino et al., 2007; Östlund et al.,
2001; Palmer et al., 2015; Zeng et al., 2017).
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Fig. 1 Interactions of light
between water quality
components and sensors
(Dörnhöfer & Oppelt, 2016)

In certain investigations, researchers have employed
a combination of multispectral and hyperspectral sen-
sors to obtain comprehensive data sets, resulting in
cost-effective solutions (Giardino et al., 2010; Topp
et al., 2020; Yang et al., 2022). Similarly, in ongoing
efforts to maximize the periodicity of data acquisition
and address data gaps in small inlandwater bodies, sev-
eral studies have applied a combination of satellite and
UAV platforms. These studies conduct separate analy-
ses and develop predictive models (Castro et al., 2020).
Additionally, other studies focus on integrating and fus-
ing the datasets to construct predictive models (Rahul
et al., 2023). This approach aims to enhance the accu-
racy of inland water quality monitoring by leveraging
the unique strengths of both satellite andUAVtechnolo-
gies. Tables 2 and 3 provide an overview of commonly
used satellite and UAV sensors, including their spectral
and spatial resolutions.

Data pre- and postprocessing

Preprocessing

The preprocessing of remote sensing data is a crucial
step in obtaining accurate information and improving
the retrieval of water quality parameters. This process

involves multiple steps, including geometric correction
(Nas et al., 2009), radiometric correction, and primar-
ily atmospheric correction. Each of these steps plays
a significant role in ensuring the quality and accuracy
of the data. Geometric correction involves aligning and
georeferencing the remote sensing data to ensure pre-
cise spatial alignment. This step is essential for accurate
analysis and comparison of different datasets. Radio-
metric correction is the process of calibrating the sensor
data to convert digital numbers into physical units of
radiance or reflectance. By removing sensor-specific
effects and calibrating the data, radiometric correction
allows for quantitative analyses and comparisons of
images acquired at different times or by different sen-
sors.

Atmospheric correction is a critical preprocess-
ing method that corrects the influence of atmospheric
components on the remote sensing data. Atmospheric
effects, such as aerosols, water vapor, and atmospheric
path radiance, can significantly impact the accuracy of
the data, especially in aquatic environments. The suc-
cessful application of remote sensing algorithms for
water quality assessment relies on employing appro-
priate atmospheric correction methods to accurately
retrieve the remote sensing reflectance (Hu et al., 2004;
Hussein & Assaf, 2020; Moses et al., 2017). This cor-
rection is particularly important inmitigating the atmo-
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Table 1 Commonly measured water quality parameters

Optical property Water quality parameter Abbreviation

Optically active Chlorophyll-a Chl-a

Total suspended matter/solid/sediment TSM/TSS

Turbidity TUR

Chromophoric/colored dissolved organic matter CDOM

Secchi disk depth/Secchi disk transparency SDD/SDT

Total dissolved solids TDS

Electrical conductivity/specific conductance EC/ SC

Temperature T 0

Crude oil contamination C.O

Fluorescent dissolved organic matter fDOM

Salinity S

Phycocyanin (characteristic pigment of cyanobacteria) PC

Optically inactive pH pH

Biological oxygen demand/biochemical oxygen demand BOD

Chemical oxygen demand COD

High dissolved oxygen HDO, DO

Oxygen O2

Dissolved organic carbon DOC

Particulate organic carbon POC

Phosphorus/total phosphorus/dissolved phosphorus P

Ortho-phosphate P O4

Oxidation-reduction potential ORP

Nitrogen N

Ammonia nitrogen NH3-N

Nitrate nitrogen NO3-N

Potassium permanganate oxidant C O DMn

Total alkalinity TA

spheric effects on water bodies, which typically exhibit
low reflectance values (Martins et al., 2017; Pahlevan et
al., 2021). The specific preprocessingmethods required
may vary depending on the type of remote sensing data,
platforms, and water type (Pahlevan et al., 2021).

Satellite remote sensing

Satellite data often requires more rigorous atmospheric
correction than UAV data due to the higher altitude and
greater atmospheric attenuation. Several atmospheric
correction algorithms have been designed for aquatic
environments to obtain reliable water-leaving radi-
ance estimates from satellite measurements. In brief,
these algorithms can be categorized into two groups:
image-based models and radiative transfer codes mod-

els (RTCs) (Hadjimitsis et al., 2004). The first group,
image-based atmospheric correction techniques, uti-
lizes the information contained within the satellite
image itself to estimate and correct atmospheric effects.
These methods employ look-up tables to simulate the
interaction of radiation with the atmosphere based on
the estimated aerosol optical thickness (Mobley et al.,
2016). Some commonly used algorithms in this cat-
egory include atmospheric correction for L8 OLI and
Sentinel 3 Ocean and Land Colour Instrument (ACOL-
ITE) (Ansper & Alikas, 2018; Page et al., 2019; Pahle-
van et al., 2020; Rodrigues et al., 2017; Saberioon et
al., 2020), Case 2 Regional Coast Colour processor
(C2RCC) (Ansper & Alikas, 2018; Isgró et al., 2022;
Shen et al., 2020), Improved Contrast between Ocean
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Fig. 2 Remote sensing platforms operating altitudes and spatial resolution

and Land (ICOL) (Bresciani et al., 2017; Harvey et
al., 2015; Philipson et al., 2016), POLYnomial-based
algorithm applied to MERIS (POLYMER) (Ansper &
Alikas, 2018; Pahlevan et al., 2020; Shen et al., 2020),
and SeaWiFSDataAnalysis System (SeaDAS) (Baner-
jee & Shanmugam, 2021; Chavula et al., 2009; Dev
et al., 2022; Pahlevan et al., 2021, 2020; Shen et al.,
2020). These algorithms are relatively simple to imple-
ment and require minimal ancillary data, making them
accessible to a wide range of users and applications.
However, they may encounter limitations in complex
atmospheric conditions or when dealing with specific
optical properties of water bodies (Ansper & Alikas,
2018; Rodrigues et al., 2017).

The second group, radiative transfer code (RTC)
models, simulates the interaction of solar radiationwith
the atmosphere and the underlying surface. Thesemod-
els take into account atmospheric constituents, such
as gases, aerosols, clouds, and profiles (e.g., temper-

ature, pressure, humidity), as well as surface proper-
ties (e.g., reflectance, emissivity) and sensor character-
istics to quantify the atmospheric effects on satellite
measurements (Vermote et al., 1997). The most com-
monly used RTC models for inland and coastal waters
are quasi-analytical algorithm (QAA) (Li et al., 2016;
Ogashawara et al., 2022) and generalized IOP algo-
rithm (GIOP) (Shi&Wang, 2019;Werdell et al., 2013).
RTC-based algorithms provide physically meaning-
ful surface reflectance values, allowing for quantita-
tive analysis and accurate comparison of remote sens-
ing data. However, they require accurate estimation of
atmospheric parameters and input data, and uncertain-
ties in these parameters can introduce errors in the cor-
rection process (Kutser, 2012).

In addition to water-specific atmospheric correction
models, several researchers have also utilized atmo-
spheric correction algorithms designed for land envi-
ronments. The dark object subtraction (DOS) algorithm
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Table 3 Commonly used UAV-based sensors for water quality assessment

Type Sensor Number of bands Spectral resolution (nm) Spatial resolution
(cm)

Multispectral RedEdge Micasense 5bands (475–840nm)VNIR B and G 20, R and red-edge
10 and NIR 40

8

MicaSense
RedEdge-MX Dual

10 bands (444–842 nm)
VNIR

− 8

Canon Powershot
S110 RGB and NIR
sensors

3 RGB bands (450–660 nm)
and 3 NIR bands (550–
850nm)

− 3.5

Canon ELPH 110HS
camera

3 NGB bands (NIR, green,
and blue)

− 5

DJI Phantom 4 3 RGB bands (400–700 nm) − 3.1

Parrot Sequoia 4 bands ( 550–790) green -
NIR

40 13

Hyperspectral Gaia Sky-M 272 bands (399.69–1001.08
nm)

2.21 0.2

Headwall NANO-
Hyperspec

270 bands (400–1000 nm) 6 17.3

Gaiasky-mini2-VN 176 bands (400–1000 nm) 4 27

Gaia Sky-mini 270 bands (401.81–999.28
nm)

− 40

is widely used in water quality monitoring (Bonansea
et al., 2015; Carvalho et al., 2022; Markogianni et
al., 2020; Matthews et al., 2010; Zhou et al., 2008).
It assumes that certain dark targets in an image, such
as deep-water bodies or dark pixels, exhibit no atmo-
spheric signal and can serve as references for atmo-
spheric correction. Other atmospheric correction algo-
rithms, such as Sen2cor atmospheric correction pro-
cedure for MSI imagery (Ansper & Alikas, 2018;
Grendaitė et al., 2018;Kutser et al., 2016; Toming et al.,
2016; Yang et al., 2022), atmospheric and topographic
correction method (ATCOR) (Bresciani et al., 2019;
Chebud et al., 2012; Kutser et al., 2016; Rodrigues et
al., 2017), Land Surface Reflectance Code (LaSRC)
(Peterson et al., 2020; Rubin et al., 2021), Second Sim-
ulation of a Satellite Signal in the Solar Spectrum (6S)
(Bonansea et al., 2015; Bresciani et al., 2017; Flores-
Anderson et al., 2020; Ma & Dai, 2007; Matthews et
al., 2010; Oyama et al., 2009; Shen et al., 2020), and
Fast Line-of-Sight Atmospheric Analysis of Hyper-
cubes (FLAASH) (Abdelmalik, 2018; Ha et al., 2017;
Kutser, 2012; Kutser et al., 2005; Rodrigues et al.,
2017; Tebbs et al., 2013; Watanabe et al., 2015; Yang
et al., 2022) have been applied for different types of
satellite imagery.

UAV remote sensing

One significant advantage of UAV remote sensing is
that the imagery captured by UAVs is less affected by
atmospheric conditions compared to satellite imagery
(Castro et al., 2020; Del Pozo et al., 2014; Zeng et al.,
2017). Since UAVs fly at lower altitudes, the atmo-
spheric effects on the imagery are minimized, but
rather, the acquired imagery may suffer from more
distortions and perspective effects (Zang et al., 2012).
Because of this, in UAV remote sensing, more atten-
tion is typically given to geometric correction to rectify
these distortions and align the UAV imagery accurately
(Su et al., 2015). Additionally, other preprocessing
steps, such as georeferencing, reflectance correction,
and ortho-mosaicking, are necessary for UAV imagery
(Castro et al., 2020; Cheng et al., 2020; Guimarães et
al., 2017; Isgró et al., 2022; Olivetti et al., 2020; Zhang
et al., 2021, 2020).

Data analysis

Coastal and inland water bodies are often characterized
as Case II and exhibit complex optical properties due
to the presence and varying concentrations of organic
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matter, suspended particles, and dissolved substances
(Doerffer et al., 1999;Morel&Prieur, 1977). For exam-
ple, chlorophyll-a, a pigment utilized in photosynthesis
by plants and algae, shows high reflectance in the green
(reflectance peak at 550 nm), red-edge (670–675 nm),
and near-infrared (reflectance peak at 700 nm) spectral
bands, as well as high absorption in the blue (450–475
nm) spectral range (Avdan et al., 2019; Castro et al.,
2020; Gholizadeh et al., 2016; Hussein & Assaf, 2020;
Zhang et al., 2022). On the other hand, suspended par-
ticles, which consist of sediment, organic matter, and
plankton (containing algal cells) suspended in thewater
column, are characterized by high reflectance through-
out the spectral range, while colored dissolved organic
matter (CDOM) absorption increases with decreasing
wavelength, from blue to some portion of the green.
Figure3 shows the spectral characteristics ofwaterwith
high turbidity, chlorophyll-a, and colored dissolved
organic matter. Complex waters can contain all three
constituents, introducing complexity in the relation-
ship between the sensor radiance and the water qual-
ity parameters (Sudheer et al., 2006) and posing chal-
lenges for remote sensing-based water quality retrieval
(Maciel et al., 2021). To overcome these challenges,
specific retrieval algorithms that account for the unique
spectral responses of the constituents are needed (Har-
vey et al., 2015; Yang et al., 2022). Indeed, numer-
ous models, such as those implemented in the NASA
SeaDAS software (https://seadas.gsfc.nasa.gov), have
been developed on global and larger regional scales.
However, these models may not be suitable for most
inlandwater bodies since theywere originally designed
for Case I water bodies, such as oceans, characterized
by a dominant presence of chlorophyll-a. These mod-
els often rely on simpler algorithms that may not ade-
quately capture the complexity of inland water systems
(Qin et al., 2007). As a result, developing models for
inland water bodies necessitates a high degree of cus-
tomization, tailoring them to the specific characteris-
tics of the inland water, including its unique proper-
ties and water type. Unlike open oceans, inland water
ecosystems exhibit diverse dynamics, requiring more
meticulous and context-specific approaches to achieve
accurate predictions of water quality. Developing and
utilizing these algorithms are essential for effective
water quality monitoring and management in complex
aquatic environments.

To address the difficulties associated with moni-
toring Case II waters, various approaches have been

Fig. 3 Spectral illustration of water with high turbidity,
chlorophyll-a (Chl-a), and colored dissolved organic matter
(CDOM) (Pahlevan et al., 2021). OWT stands for optical water
types, a classification based on water’s reflectance and absorp-
tion. OWT1 and OWT2 represent clear waters, OWT3 shows
high chlorophyll concentrations, OWT4, OWT5, and OWT6
indicate high concentrations of different phytoplankton blooms
and high turbidity, and OWT7 represents waters with high sedi-
ment concentrations

developed and used for the accurate retrieval of water
constituent concentrations from remote sensing data.
Figure 4 shows a framework acquisition and analysis
of water quality parameters using remote sensing data.
In this review, these approaches are categorized as fol-
lows: empirical methods, semi-analytical methods, and
artificial intelligence (AI) approaches.

Empirical approach

The empirical approach establishes statistical relation-
ships between remote sensing observations and water
quality parameters. This approach can involve single
band analysis (Brezonik et al., 2009; El Saadi et al.,
2014; Simis et al., 2005;Tarrant et al., 2010), band com-
binations including ratio (He et al., 2008; Kutser et al.,
2005), or band indices (Castro et al., 2020). The rela-
tionships can be expressed as linear functions (Tom-
ing et al., 2016), power functions (Ha et al., 2017), or
polynomial functions (Flores-Anderson et al., 2020),
depending on the regression analysis and the dynamic
range of the calibration data used (Yang et al., 2011).
The empirical approach is simple, flexible, and rela-
tively easy to implement (Matthews et al., 2010). How-
ever, the physical interpretability of models is limited,
as they do not explicitly incorporate underlying physi-
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Fig. 4 Workflow for water quality parameters prediction using remote sensing data
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cal processes, making it difficult to derive mechanistic
insights. Transferability and generalization of empir-
ical models can also be challenging when applied to
different regions or time periods due to variations in
water body composition andoptical properties (Bukata,
2005; Fukushima et al., 2016; Oyama et al., 2009).
Likewise, empirical models heavily rely on the avail-
ability of accurate and representative ground truth data,
which can be limited or expensive to acquire.

Semi-analytical approach

The semi-analytical approach combines physical prin-
ciples, such as radiative transfer models and bio-
optical algorithms, along with empirical relationships
to retrieve water quality information from remote sens-
ing data. This approach provides a more mechanis-
tic understanding of the underlying processes (Lee
et al., 2015). Retrieving inherent optical properties
allows for improved atmospheric correction, improv-
ing water quality parameter estimation accuracy. The
semi-analytical approach can capture complex bio-
optical relationships, making it applicable to various
aquatic environments (Mishra et al., 2014). However, it
requires accurate and representative input parameters,
including accurate atmospheric correction and knowl-
edge of inherent optical properties (Matthews et al.,
2010). Representing the complexity of bio-optical pro-
cesses and the variability of environmental conditions
also poses challenges in modeling (Yang et al., 2011).
Calibration and validation can be difficult, particularly
when ground truth data are limited or hard to obtain
(Yang et al., 2011).

Artificial intelligence techniques

The emergence of AI techniques has revolutionized
water quality monitoring from remote sensing data.
These data-driven techniques can handle large vol-
umes of data and extract complex patterns without
prior knowledge that may not be evident to tradi-
tional approaches (Chang & Vannah, 2013; Keller et
al., 2018), and capture nonlinear relationships between
remote sensing variables and water quality parameters
(Maciel et al., 2021; Rubin et al., 2021; Sudheer et
al., 2006). They can adapt to changing environmental
conditions and integrate multi-source and multi-sensor
data (Chang & Vannah, 2013), resulting in improved
estimation accuracy (Sudheer et al., 2006). AI mod-
els enable automation and efficiency of water qual-
ity monitoring processes. Support vector regression

(SVR), artificial neural network (ANN), and extreme
gradient boosting (XGBoost) are commonly used AI
models in water quality retrieval, and they have shown
great success and relatively satisfactory results in many
recent studies (Arias-Rodriguez et al., 2021; Hafeez et
al., 2019; Tian et al., 2023; Xiao et al., 2022; Yan et
al., 2023). Figure5 illustrates a neural network struc-
ture for water quality retrieval. Although most studies
using AI approaches have reported significant results,
there are limitations to consider. Large and represen-
tative training datasets are required to effectively train
AImodels. Insufficient or biased training datamay lead
to poor generalization and inaccurate predictions. The
black-box nature of some AI algorithms limits their
interpretability, hindering the understanding of under-
lying processes (Petch et al., 2022). Overfitting can
occur if models are overly complex or trained on lim-
ited datasets, compromising their performance on new
data. Moreover, implementing AI approaches requires
computational resources and expertise formodel devel-
opment, implementation, and maintenance.

Satellite remote sensing

Multispectral remote sensing

A number of multispectral satellite sensors have been
used for quantitative monitoring of water quality
parameters. All the images are free of charge, pub-
licly available, and provided in single and multi-day
aggregate products in a variety of spatial and spectral
resolutions.

Among the several multispectral satellite sensors
specifically designed for ocean color measurements,
Sentinel-3 Ocean and Land Color Instrument (OLCI),
Medium Resolution Imaging Spectrometer (MERIS),
Coastal Zone Color Scanner (CZCS), Moderate Reso-
lution Imaging Spectroradiometer (MODIS), and Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) have
been widely used in inland water quality monitoring.
These sensors offer advantages such as repeat cycles
(e.g., 1–2 days), narrow spectral bands (ranging from
400 to 1100nm), andhigh radiometric resolution.How-
ever, their spatial resolution (respectively of the order of
300m to 1.1 km) is limited to large-scale water mon-
itoring, such as an open ocean, where chlorophyll-a
is the major optically active constituent. Inland water
bodies with complex optical characteristics may expe-
rience reduced estimation precision, which can hinder
the monitoring of water quality changes, particularly
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Fig. 5 Illustration of neural
network for chlorophyll-a
retrieval (Pahlevan et al.,
2020)

at specific sites of interest (Topp et al., 2020). Some
of the models for water quality parameters are listed in
Table 4.

There are several satellites that have sufficient spa-
tial resolution for use in inlandwater qualitymonitoring
studies. These include the Landsat program (including
Landsat’s ThematicMapper (TM), EnhancedThematic
Mapper Plus (ETM+) and Operational Land Imager
(OLI)), Sentinel-2, Advanced Spaceborne Thermal
Emission andReflectionRadiometer (ASTER),World-
View, and Satellite Pour I’Observation de la Terre
(SPOT).Despite these sensors beingprimarily designed
for land-based remote sensing applications and having
less frequent satellite revisit time (3–16 days vs. 1 daily
revisit for ocean color sensors), several studies have
estimated and proposed reliable algorithms between
the remote sensing data andwater quality parameters in
inland water. Examples of parameters studied include
chlorophyll-a (Cao et al., 2020; Chebud et al., 2012; Lu
et al., 2021; Sudheer et al., 2006), water clarity (Maciel
et al., 2021; Shen et al., 2020), and total suspended sed-
iments (Sudheer et al., 2006). The patterns observed
in these satellite sensors demonstrate more detail than
those of thewater-based sensors due to the resolution of
10–30m as opposed to 300m respectively. Some of the
models for water quality parameters using land-based
sensors are presented in Table 5.

Althoughmultispectral satellites provide data in dif-
ferent spectral bands, the number of bands and their
specific wavelengths may not be optimized for water
quality monitoring (Fu et al., 2018). Some water qual-
ity parameters, such as chlorophyll-a concentration, as
shown in Tables 4 and 5, are typically measured using
visible NIR bands, and their spectral ranges may over-
lap with other optically active water quality parame-
ters. This overlap can lead to challenges in accurately

estimating these parameters using multispectral satel-
lite data. Certain water quality parameters, such as
suspended particle matter and turbidity, have shown
higher correlations with specific spectral combinations
(Avdan et al., 2019), emphasizing the need for more
specific spectral bands or higher spectral resolution
than what is available in multispectral satellite data.

Researchers (Dekker et al., 2001; Gholizadeh et
al., 2016; Ha et al., 2017; Kutser et al., 2016) have
highlighted that the distribution of spectral bands in
most multispectral satellite sensors, such as Landsat-
7 ETM+, Landsat 8 OLI, Sentinel-2, ASTER, and
SPOT HRV, further complicates the extraction of exact
reflectance and absorbance peak points for each water
quality parameter. The spectral band positioning of
Landsat-7 ETM + and Landsat 8 OLI with respect to
spectral characteristics of water quality parameters are
presented in Fig. 6. This limitation can indirectly result
in the overlapping of reflectance signature positions
and omission of reflectance peak for certain parame-
ters, leading to errors in their estimation.

Hyperspectral remote sensing

The fine spectral resolution of hyperspectral satel-
lite sensors allows for more precise and accurate
identification and quantification of specific absorp-
tion and reflectance of certain water quality param-
eters, thus reducing the issue of parameter overlap-
ping that commonly occurs inmultispectral data. Addi-
tionally, it facilitates the development of advanced
retrieval algorithms specifically tailored to estimating
water quality parameters. These algorithms can exploit
detailed spectral information to derive more precise
relationships between spectral signatures and the cor-
responding water quality measurements. This leads to
improved accuracy in estimating parameters such as
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Fig. 6 Example of chlorophyll-a reflection in relation to band positions of Landsat-7 ETM+ (left) (Gholizadeh et al., 2016) and Landsat
8 OLI (right) (Ha et al., 2017). The different colors in the right image represent chlorophyll-a reflectance in nine lakes

temperature, pH, turbidity, oxidation-reduction poten-
tial (ORP), specific conductivity, high dissolved oxy-
gen (HDO), crude oil contamination (Rostom et al.,
2017), chlorophyll-a concentration (Murugan et al.,
2016), total suspended solids (Tan et al., 2011; Wu
et al., 2014), and colored dissolved organic matter
(CDOM) (Moses et al., 2015). Hyperspectral satellite
sensors that have been used in water quality studies
includeHyperion onNASAEO-1 andPRecursore Iper-
Spettrale della Missione Applicativa (PRISMA), and
some retrievalmodels using hyperspectral satellite data
are presented in Table 6.

Although hyperspectral imaging offers high spectral
resolution, allowing for precise identification and mea-
surement of water quality parameters, data processing
can be complex. Zhong et al. (2021) noted that one
challenge is the spectral combination problem, where
multiple parameters can contribute to a single spectral
signature. This makes it difficult to isolate and quan-
tify individual parameters accurately. Another limita-
tion of hyperspectral satellite data is its limited avail-
ability, especially for specific regions or sensors (Yang
et al., 2022). This can restrict the temporal resolution of
water quality monitoring in small water bodies. Simi-
lar to multispectral satellite sensors, noise and atmo-
spheric influences and coarse spatial resolution can
further complicate the analysis of hyperspectral data.
These challenges can be addressed through the use of
advanceddata processing techniques and algorithms, as
well as through the development of new and improved
remote sensing technologies.

Limitations of satellite remote sensing

The use of satellite remote sensing in monitoring water
quality parameters in inland water bodies has been
tested and applied in several individual studies. How-
ever, developing operational and widely applicable
monitoring tools is difficult due to several drawbacks.

The correction of atmospheric effects in satellite
images is vital as most reflectance comes from the
atmosphere (Hussein & Assaf, 2020; Moses et al.,
2017). Failure to do so may lead to inaccuracies in
water quality measurements. Atmospheric corrections,
on the other hand, may significantly impact the satel-
lite product (Harvey et al., 2015) and lead to uncer-
tainty (Bresciani et al., 2017; Castro et al., 2020; El
Saadi et al., 2014; Toming et al., 2016). This uncer-
tainty is attributed to different factors, such as varia-
tions in atmospheric conditions (Werdell et al., 2010),
the complexity of inland water bodies (IOCCG, 2018;
Shen et al., 2020), and errors in atmospheric correc-
tion algorithms (Kutser, 2012). It has been observed
that using top-of-atmosphere (TOA) measurements
instead of atmospherically corrected data or bottom-
of-atmosphere (BOA) data can yield better results
(Grendaitė et al., 2018;Kutser, 2012; Tebbs et al., 2013;
Toming et al., 2016).

In addition, the use of land-based atmospheric cor-
rection algorithms onwater surfacesmay lead to signif-
icant errors (Grendaitė et al., 2018; Maciel et al., 2021;
Toming et al., 2016) due to the distinct optical proper-
ties and atmospheric effects specific towater (Bonansea
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et al., 2015; Liu et al., 2016). Several studies have com-
pared the performance of land-based atmospheric cor-
rection algorithms with specialized algorithms devel-
oped for water quality studies (Ansper & Alikas, 2018;
Rodrigues et al., 2017). For example,Wang et al. (2019)
recommend the use of water-specific atmospheric cor-
rection algorithms, such as the EXP atmospheric algo-
rithm (based on exponential extrapolation) that is inte-
grated into the ACOLITE algorithm, to improve the
accuracy of satellite-based water quality monitoring.
In parallel, a study by Pahlevan et al. (2021) that eval-
uated the performance of different water-based atmo-
spheric correctionmethods for Landsat-8 and Sentinel-
2 over various water bodies, including lakes, rivers,
and coastal waters, showed a performance difference
of water-specific algorithms in different optical charac-
teristics of inland waters. Therefore, specialized water-
specific atmospheric correction algorithms should be
used to ensure accurate monitoring of water parame-
ters. The choice of the atmospheric correction method
should consider the specific characteristics of the water
body and thegoals of the analysis (Pahlevan et al., 2021;
Tyler et al., 2006). Similarly, validation of the atmo-
spheric correction outputs against ground-based mea-
surements is necessary to assess accuracy and quality.

The impact of cloud coverage on satellite images
results in data gaps (Bonansea et al., 2015) and limits
the availability of suitable images for analysis (Cheng
et al., 2020; Olivetti et al., 2020), particularly during
winter and rainy seasons. Small water bodies are espe-
cially susceptible to cloud coverage, making it chal-
lenging to obtain consistent and representative satellite
imagery. The frequent occurrence of clouds and haze
can further complicate the study of small areas and hin-
der themonitoring ofwater quality parameters (Olivetti
et al., 2020).

Satellite remote sensing data with both high spa-
tial and spectral resolution, suitable for water qual-
ity studies, is currently limited (Palmer et al., 2015).
Manymultispectral sensorsmounted on satellites show
potential for evaluating water quality parameters, such
as Sentinel-2 and Landsat series data, which have com-
parable high spatial and low spectral resolution (Bre-
zonik et al., 2009). However, their spatial resolution is
generally not high enough to study small inland water
bodies (McCullough et al., 2012). Moreover, sensors
built solely for aquatic remote sensing, like MODIS
and MERIS, have valuable narrow wavelength bands
for global-scale water quality assessments (Hellweger

et al., 2004; Sayers et al., 2015), but they also have lim-
itations in studying small inland water bodies (Keith et
al., 2014; Tyler et al., 2006). The lack of high spatial
and spectral resolution data poses a challenge in accu-
rately monitoring water quality parameters.

The temporal resolution of satellite remote sensing
data is another significant challenge in water quality
monitoring. Obtaining high temporal resolution satel-
lite imagery for water quality studies is often not read-
ily available. There is usually a temporal gap between
satellite imagery and in situ measurements, which
could be a few days to weeks, making it difficult
to develop accurate regression models between water
quality parameters and satellite data. For instance, Har-
vey et al. (2015) used MERIS images with a 0–3-day
gap, while Kutser et al. (2016) obtained Sentinel-2 and
Landsat-8 images with a 3-day gap. He et al. (2008)
used the closest Landsat-5 images with a 9-day gap,
and in some cases, it was challenging to find imagery
that approximated the date of field measurement (Tom-
ing et al., 2016). Bonansea et al. (2015) noted that
the maximum time lag between in situ measurements
and satellite overpass should be no more than 1 day
to ensure effective matching. Larger time lags may
lead to discrepancies between the field measurements
and satellite data, resulting in less accurate estimation
of water quality parameters (Kabiri, 2023). Further-
more, it is difficult to observe rapid changes in the
trophic state of water bodies, such as algal blooms,
with satellite imagery due to its lower temporal res-
olution (Gholizadeh et al., 2016; Kloiber et al., n.d.;
McCullough et al., 2012; Sayers et al., 2015; Su et al.,
2015).

The limited availability of satellite imagery with
high spectral, spatial, and temporal resolution has been
a significant challenge in studyingwater quality param-
eters in small water bodies. To address this issue,
some researchers have proposed data fusion of mul-
tiple satellite images to combine the advantages of the
high spatial, spectral, and temporal resolution (Castro
et al., 2020; Fu et al., 2018; Lai et al., 2021). How-
ever, this approach can be computationally demanding
(Yulong et al., 2022). In studies conducted by Hell-
weger et al. (2004) and Niroumand-Jadidi et al. (2020),
it was concluded that achieving satellite imageswith all
three resolutions is nearly impossible due to signal-to-
noise conditions. As a result, unmanned aerial vehi-
cles (UAVs) have emerged as a promising alternative
for conducting measurements instead of relying solely
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on satellite-based observation (Brezonik et al., 2009).
UAVs have the potential to provide high-resolution
images with improved spatial and temporal resolution
based on the quality of their onboard sensors and cam-
era capabilities. This allows researchers to overcome
some of the limitations posed by satellite imagery.
UAVs also have the ability to capture data with greater
detail, enabling the detection of water quality param-
eters such as harmful algal blooms and pollutants at
small scales.

Unmanned aerial vehicle (UAV) remote sensing

Unmanned aerial vehicles (UAVs) have emerged as a
promising tool for water quality monitoring, providing
high-resolution imageswith a spatial resolution of up to
a few centimeters (Olivetti et al., 2020). This enhanced
resolution enables the detailed and accurate mapping
of water quality parameters, allowing for the detec-
tion of subtle changes in water quality that might be
missed. Furthermore, the versatility of UAVs in cap-
turing images at different times of the day facilitates
the monitoring of diurnal cycles and can provide infor-
mation on daily fluctuations in temperature, dissolved
oxygen, and pH (Castro et al., 2020). One of the key
advantages of UAVs is their ability to bridge the gap
between in situ sampling and satellite sensors; UAVs
offer a unique way to obtain water quality data at the
local scale while also integrating with regional and
global data sets obtained from satellites (Isgró et al.,
2022). These reasons make UAVs an attractive alterna-
tive for water quality monitoring, particularly for small
waterbodies that are not well served by satellite data.
In recent years, several studies have explored the use of
UAV remote sensing data for water quality monitoring
(Castro et al., 2020; Cui et al., 2022; Guimarães et al.,
2019; Olivetti et al., 2020; Zhang et al., 2023).

Multispectral remote sensing

Various multispectral remote sensing sensors such as
Canon Powershot S110 and RedEdge Micasense have
been used for water quality studies. In Table 7, the use
of multi-temporal imagery from UAV remote sensing
data shows good performance with R2 ranging from
0.84 to 0.94, and higher R2 values are observed for
single images, ranging from 0.86 to 1.

Hyperspectral remote sensing

Similarly, hyperspectral UAV remote sensing has been
used to monitor water quality parameters, as shown in

Table 8. The results of these studies have demonstrated
satisfactory performance with R2 ranging from 0.94 to
0.96 using multi-temporal imagery and 0.72 to 0.955
using single-date images. These findings suggest that
UAV-basedmodels can be used to expandwater quality
databases in both space and time.

Discussion

The studies reviewed in this paper demonstrate a strong
agreement between remote sensing-driven values and
field measurements, indicating the potential of remote
sensing-basedwater quality algorithms inCase II water
bodies. However, it is important to consider several fac-
tors that contribute to the consistency and robustness
of these algorithms.

One significant challenge in developing robustwater
retrieval algorithms is the sample size. Inland water
bodies exhibit spatial and temporal variability influ-
enced by factors such as land use and point source
pollution. Obtaining a small sample size can introduce
potential biases in assessing water quality conditions.
Several studies (mentioning some (Avdan et al., 2019;
Bonansea et al., 2018; Bresciani et al., 2017; Harvey et
al., 2015; Lai et al., 2021;Ma&Dai, 2007)) have relied
on small sample sizes to build their remote sensing-
based water quality algorithms, with only a few sur-
face waters considered in each study. Limited obser-
vations make it difficult to capture the complex nature
of inland water, resulting in reduced statistical power,
which hampers drawing robust conclusions and mak-
ing accurate predictions. Moreover, small sample sizes
pose challenges in obtaining a sufficient number of
ground truth measurements for validation purposes (Fu
et al., 2018; Moses et al., 2009), which ultimately hin-
ders effective management and mitigation strategies.

Validation plays a crucial role in establishing the
accuracy and reliability of remote sensing water retrieval
algorithms. It provides insights into how well algo-
rithms capture specific optical properties and helps
identify their strengths,weaknesses, and potential areas
for improvement (Yen et al., 2015). However, several
studies have neglected the validation step (El Saadi et
al., 2014; Gons et al., 2008; Kloiber et al., n.d.; Nas
et al., 2010), possibly due to limited sample sizes, as
calibration and validation require a large dataset. This
limitation can make it challenging to perform cross-
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comparisons between different sensors, platforms, and
algorithms. Further, the absence of validation deprives
researchers of the opportunity to identify and address
deficiencies in sensors, platforms, or algorithms.

A commonly used approach in water quality assess-
ment is the utilization of a single-date or single-image
model, where a single snapshot of the water body is
used. This approach can be practical when continu-
ous monitoring or extensive temporal coverage is not
required. The literature review indicates the good per-
formance of these approaches under optimal condi-
tions. However, water quality parameters often exhibit
significant temporal variations influenced by seasonal
cycles, diurnal patterns, and occasional events. By rely-
ing solely on a single-date approach, these variations
are not captured, potentially leading to an incomplete
understanding of the dynamics and trends of water
quality over time. Furthermore, due to the fact that
these models are sensitive to water-specific character-
istics and the atmospheric conditions of the day, they
can not necessarily be applied to other places or time
frames (Rubin et al., 2021).

Conclusion

The use of remote sensing data offers advantages
over conventionalwater quality assessment techniques,
which often necessitate extensive fieldwork and costly
laboratory analysis. Based on the comprehensive review
conducted, it can be concluded that the advancements
in remote sensing technology can support the mon-
itoring, assessment, and estimation of various water
quality parameters, including CDOM, Chl-a, TSS, TS,
SD, and turbidity, among others. Several retrieval algo-
rithms are frequently employed, such as empirical,
semi-analytical, and artificial intelligence approaches.

The development of multispectral and hyperspec-
tral satellite sensors has played a significant role in
this regard, enabling high-resolution spatial and tem-
poral observations of water bodies and offering valu-
able insights into variations in water quality. The inte-
gration of UAVs in remote sensing has significantly
addressed limitations of low spatial and temporal reso-
lution, atmospheric effects, and cloud conditions. UAV
imagery provides high spatial resolution byoperating at
flexible and low-flight altitudes. This capability allows
for the detection of short-term changes in small water
bodies and facilitates the measurement and monitor-

ing of water quality with the appropriate spatial and
temporal resolution, even under challenging climatic
conditions like clouds or haze.

Overall, this review provides a comprehensive over-
view of the current knowledge and applications of
remote sensing in inland water quality assessment.
Additionally, it offers invaluable insights into data pre-
processing and analysis techniques and the limitations
of remote sensing approaches in inland water quality
assessment. These insights can guide researchers in
selecting from alternative remote sensing approaches
for water quality assessments in inland water bodies.

Appendix

The complete review on inland water quality moni-
toring using remote sensing can be found here: https://
docs.google.com/spreadsheets/d/1EjM1Vl48Hi8oavK
2QOxnVm7TMyFpgdBn/edit?usp=sharing&ouid=11
1951620892723892246&rtpof=true&sd=true.
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