
Vol.: (0123456789)
1 3

Environ Monit Assess (2024) 196:203 
https://doi.org/10.1007/s10661-024-12316-8

RESEARCH

Impacts of a severe storm on carbon accumulation in coarse 
woody debris within a secondary Atlantic Forest fragment 
in Brazil

Paulo Henrique Villanova · Carlos Moreira Miquelino Eleto Torres · Laércio Antônio Gonçalves Jacovine · 
Bruno Leão Said Schettini · Sabina Cerruto Ribeiro · Samuel José Silva Soares da Rocha · 
Maria Paula Miranda Xavier Rufino · Mariany Filipini de Freitas · Lucas Abreu Kerkoff

Received: 27 September 2023 / Accepted: 5 January 2024 / Published online: 26 January 2024 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

by the storm was 2.01 MgC ha−1, with a higher con-
centration in the CWD less decomposed and smaller 
diameter class. The forest fragment plots showed dis-
tinct increments (0.05–0.35 MgC), being influenced 
by spatial (elevation, declivity, and slope angle) struc-
tural (basal area) and qualitative factors (trunk qual-
ity and tree health), intrinsic to the forest. Thus, it is 
concluded that severe storms cause a large increase in 
carbon in CWD, making it essential to understand the 
susceptibility of forests to the action of intense rains 
and strong winds to model and monitor the future 
impacts of these extreme weather events on Atlantic 
Forest and other tropical forests in the world.

Keywords  Necromass · Tree mortality · Climate 
changes · Extreme weather events

Introduction

Extreme weather events have been increasingly fre-
quent due to climate change (Neumann et  al., 2017; 
O’Neill et  al., 2017; Taccoen et  al., 2021). Storms 
with intense rains and strong winds, for example, have 
been observed in recent years, causing changes in the 
forests structure and the carbon cycle due to increased 
tree mortality (Aleixo et al., 2019; Chao et al., 2022; 
Crockett & Westerling, 2018; Klein & Hartmann, 
2018; Taccoen et al., 2019). In tropical forests, mor-
tality from severe storms is estimated to cause car-
bon reductions in aboveground living biomass on 
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the order of approximately 1.7 PgC year−1 (Espírito-
Santo et al., 2014a; Silvério et al., 2019).

The impacts generated by these events on tree mor-
tality are influenced by storm strength (Canham et al., 
2010), topography (de Toledo et  al., 2012), forest 
structure (Schwartz et al., 2017), and the trees’ quali-
tative, physical, and anatomical characteristics (Rifai 
et al., 2016). The way in which these variables inter-
act during the event determines the damage severity 
caused to trees, ranging from crown or trunk break-
age or even the toppling of entire trees (Chao et al., 
2009; de Toledo et al., 2013; Fontes et al., 2018).

All these types of damage caused to trees increase 
the coarse wood debris (CWD) production, impact-
ing the carbon cycle (Lladó et al., 2017; Malhi et al., 
2011). Initially, CWD accumulates under the forest 
floor, storing substantial amounts of carbon (Köhl 
et al., 2015). It is estimated that the carbon enclosed 
within CWDs may endure retention for over 30 years 
in tropical climate forests (Barbosa et  al., 2017; 
Yizhao et  al., 2015). In subsequent phases, this car-
bon can be incorporated into the soil (dos Santos 
et al., 2016) or returned to the atmosphere due to the 
decomposition process (Brienen et al., 2015; Harmon 
et al., 2020). This carbon loss can potentially be off-
set by the recruitment and growth of remaining trees 
(Chambers et al., 2004).

While there exists a comprehensive understand-
ing of tree damage and carbon cycle, the impact of 
severe storms on CWD production and carbon stock 
remains insufficiently investigated, especially within 
the ecosystem of the Atlantic Forest (Espírito-Santo 
et  al., 2014a, b). This knowledge gap is significant 
due to the unique ecological characteristics of the 
Atlantic Forest, coupled with its susceptibility to 
extreme weather events (Bellard et al., 2014; Scarano 
& Ceotto, 2015).

A factor contributing to this limited knowledge 
is the stochastic nature of extreme weather events, 
which makes it difficult to predict when they will 
occur (Cushman et al., 2021; Ye et al., 2021). Another 
challenging factor is the understanding of the carbon 
stock existing in the CWD before the occurrence of 
the storm. Generally, necromass forest inventories 
are carried out once and using temporary sampling 
methods (Maas et  al., 2020; Moreira et  al., 2019; 
Russell et  al., 2015), without recording the identity 
of the CWD that were measured. However, this type 
of approach makes it difficult to understand possible 

changes in the CWD carbon stock over time (Gora 
et  al., 2019; Palace et  al., 2012). Therefore, the use 
of permanent plots with the prior identification of 
CWD measured before the occurrence of the storm 
is essential to have accurate estimates of the impact 
of storms on the CWD carbon increment (Campbell 
et al., 2019; Gora et al., 2019; Villanova et al., 2019).

This study was conducted following these guide-
lines, with CWD being identified and measured in 
permanent plots before and after the occurrence of 
a severe storm in the municipality of Viçosa (Minas 
Gerais State, Brazil), which impacted fragments of 
seasonal semideciduous forests in the region (Emer-
ick & Martini, 2020; INMET, 2021). Thus, the goal 
proposed for the study were (i) quantify the CWD 
volume, necromass, and carbon stock before and 
after the occurrence of a severe storm to determine 
the impacts of this extreme climatic event on the 
increment of these parameters and (ii) determine the 
importance of spatial, structural, and qualitative vari-
ables of trees in the CWD carbon increment.

Material and methods

Study area

The research was conducted within a 17-ha secondary 
fragment of Atlantic Forest, referred to as “Mata da 
Silvicultura,” situated in Viçosa, Minas Gerais State, 
Brazil (Fig.  1). The area has pedogeomorphological 
gradients, featuring aluminum-rich dystrophic lato-
sols at hilltops, colluvial ramps with shallow latosols, 
and cambic horizons, while the lower areas of the 
groves are characterized by a prevalence of nutrient-
rich epieutrophic cambisols (Ferreira Junior et  al., 
2012). The topographic characteristics, including 
declivity, slope angle, and elevation (Table  A1 and 
Fig.  A1), were characterized using digital elevation 
models developed by the Topodata project (INPE, 
2011), which provides refined data from the Shuttle 
Radar Topography Mission (SRTM) for the Brazilian 
region (Valeriano & Rossetti, 2012).

The vegetation in the area falls under the clas-
sification of seasonal semideciduous forest (IBGE, 
2012). The studied forest fragment is currently in an 
intermediate stage of regeneration (da Rocha et  al., 
2020), where the quadratic mean diameter and total 
height of trees range from 10 to 20 cm and 5 to 12 
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m, respectively (Brasil, 2007). A forest inventory 
was executed in 2016. We measured all standing 
trees with a diameter at breast height (dbh) ≥ 5 cm 
(Table  1). Subsequently, we calculate the floristic 
composition, phytosociological parameters, and den-
drometric variables.

The study site experiences a Cwa climate classifi-
cation according to Köppen’s system, characterized by 
an average temperature of 19.9°C, humidity levels of 
79.9%, and an annual average precipitation of 1269.4 
mm (UFV, 2021). The severe storm considered in 

this study occurred on October 25, 2019 (Emerick 
& Martini, 2020). The strongest wind gusts reached 
82.40 km h−1 and their directions varied between 
south-southeast, south-southwest, and west-south-
west (Emerick & Martini, 2020). The precipitation 
recorded during the first hour of this extreme weather 
event was 67 mm. The accumulated rainfall for the 
5-h period was 112.4 mm (INMET, 2021), exceeding 
the historical average of precipitation for the refer-
ence month recorded between the years 1968 to 2019 
(Fig. 2). Given these numbers, this severe storm can 

Fig. 1   Location of the 
studied Atlantic Forest frag-
ment. Figure adapted from 
Villanova et al. (2023). The 
map was generated using 
QGIS 3.10.6—http://​qgis.​
osgeo.​org (QGIS.org, 2020)

http://qgis.osgeo.org
http://qgis.osgeo.org
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be considered an extreme weather event, as defined 
by the Intergovernmental Panel on Climate Change 
(IPCC) (Field et al., 2012).

After the severe storm, various damage was 
detected in the municipality of Viçosa (Emiliana 
& Bottrel, 2019; Maior, 2019; Prefeitura de Viçosa, 
2019). In the studied forest fragment, many trees died 
uprooted or broken due the winds gusts and heavy 
rain, leading to the formation of gaps in the forest 
canopy and the accumulation of necromass above the 
forest floor (Fig. 3).

Data collection

Coarse woody debris (CWD), including branches, 
stumps, and fallen trees with a diameter greater than 
or equal to 5 cm, was inventoried in ten permanent 
plots measuring 20 m × 50 m. The CWD was sorted 
into diameter classes with a 5-cm interval and further 
categorized into four classes based on their decom-
position stage (Harmon et  al., 1995; Keller et  al., 
2004; Villanova et  al., 2019, 2023): (DC1) materi-
als recently fallen to the forest floor, with leaves and 
bark intact; (DC2) materials similar to those in class 
“DC1,” but exhibiting signs of bark decay or peeling; 
(DC3) materials in an advanced state of decomposi-
tion, displaying some resistance to breakage; (DC4) 

materials that are highly decayed and friable, lacking 
resistance to breakage.

CWD inventories were carried out at two times: 
before and after the occurrence of the severe storm. 
The pre-storm inventory took place between August 
and October 2019, ending on October 23, 2019 
(Wednesday, 2 days before the storm). All CWD 
found inside the plots were marked with plastic 
platelets to identify the residues measured at that 
first occasion. The second inventory was carried out 
immediately after the storm, between the months of 
October and November 2019, starting on October 26, 
2019 (Saturday, 1 day after the storm). In this case, 
only those residues that had not been identified by 
plastic platelets in the first inventory were measured, 
making it possible to quantify the CWD accumulation 
due to the storm occurrence.

Volume, necromass, and carbon stock quantification

The apparent density and carbon content were 
assessed following the methodology outlined by Vil-
lanova et  al. (2023). Apparent density (g cm−3) was 
determined through mercury immersion, adopting the 
procedure by Vital (1984) and ABNT (2003). Mean-
while, carbon content (%) was analyzed using a dry 
combustion elemental analyzer (LECO TruSpec® 
Micro Elemental Series CHN/CHNS/O; St. Joseph, 

Table 1   Floristic 
composition, 
phytosociological 
parameters and 
dendrometric variables, 
per plot, of “Mata da 
Silvicultura” in 2016. Plots 
size: 20 m × 50 m (0.1 ha)

Variables Plots

1 2 3 4 5 6 7 8 9 10

Botanical families 22 26 23 21 21 18 23 15 28 21
Botanical genera 38 45 37 37 33 32 38 29 45 40
Identified species 147 141 130 123 93 108 120 160 192 132

  Pioneers 6 34 15 20 7 6 6 3 13 12
  Initial secondary 121 79 90 71 70 86 97 128 147 80
  Late secondary 26 28 25 32 16 16 17 29 32 40

Non-identified species 6 6 5 10 1 5 5 4 7 16
Shannon-Weaver Index (H′) 3.07 3.26 3.47 3.51 2.96 3.06 3.19 2.78 3.26 3.43
Density (stems per plot) 160 149 136 137 95 116 125 166 200 148
Basal area (m2 per plot) 3.52 2.49 2.08 2.02 1.61 2.95 5.13 3.31 3.00 3.26
Quadratic mean diameter (cm) 16.7 14.6 13.9 13.7 14.7 18.0 22.9 15.9 13.8 16.7
Minimum DBH (cm) 5.1 5.1 5.0 5.0 5.0 5.0 5.0 5.1 5.0 5.0
Maximum DBH (cm) 94.2 46.5 35.0 38.8 57.9 81.8 87.9 58.9 55.3 84.4
Average height (m) 12.2 13.1 13.0 12.9 11.9 13.8 14.9 13.3 11.2 12.0
Minimum height (m) 4.0 2.6 4.3 3.7 2.8 3.3 3.9 3.8 4.5 2.4
Maximum height (m) 33.6 34.0 27.0 25.6 33.0 33.6 38.0 33.0 34.5 30.7
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MI). The average values of apparent density and car-
bon content were extracted from distinct CWD decay 
classes, as documented by Villanova et  al. (2023), 
within the same forest fragment analyzed in this study 
(Fig. 4). These values played a key role in the quanti-
fication of necromass and carbon stock, respectively.

The CWD volume were calculated using the 
Smalian’s formula (Smalian, 1837), according to 
the expression V = (SA1 + SA2)/2 × L, where V is the 
volume, in m3; SA1 and SA2 are the sectional areas 
obtained at the ends of the CWD sections, in m2; 
and L is the length of the section, in m. The nec-
romass was quantified by multiplying the volume 
per the CWD apparent density (N = V × ρi, where 

N is the necromass, in Mg ha−1; V is the volume, 
in m3; and ρi is the CWD apparent density of the 
ith decay class, in g cm−3). The CWD carbon stock 
were quantified by the product between the necro-
mass and the CWD carbon content, in each decay 
class (CS = Ni × Ci, where CS is the carbon stock, 
in MgC ha−1, by decay class; Ni is the necromass, 
of the i-th decay class, in Mg ha−1; and Ci is the 
carbon content, of the i-th decay class, in %). The 
CWD volume, necromass, and carbon stock were 
quantified before and after the storm. The values 
obtained after the storm characterize the increment 
of these parameters as a function of the occurrence 
of the extreme climatic event.

Fig. 2   Viçosa’s climogram 
indicating the average 
temperature and precipita-
tion, by month, for the 
years 1968 to 2019 (A) and 
2019 (B). The white bar 
indicates the monthly pre-
cipitation and the blue bar 
indicates the severe storm 
that represented, approxi-
mately 80% of the monthly 
precipitation in a single day. 
The red line represents the 
average temperature and the 
confidence region shaded in 
light red corresponds to the 
maximum and minimum 
temperatures
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Principal component analysis

Principal component analysis (PCA) (Abdi & Wil-
liams, 2010; Hotelling, 1933) was used to indicate the 
variables that most contributed to the CWD carbon 
increase in in each plot. Seven variables were used 
in the PCA, being divided into spatial variables and 
intrinsic variables to the forest fragment. The spatial 
variables refer to the terrain topography and express 
the elevation (m), declivity (%), and slope angle 
(degrees). These variables were obtained by the Point 
Sampling Tool plugin from QGIS 3.10.6 software 

(QGIS.org, 2020), using digital elevation models gen-
erated by the Topodata project (INPE, 2011; Valeri-
ano & Rossetti, 2012). The forest intrinsic variables 
refer to the tree structure and quality. The forest struc-
ture was represented by the basal area variable, in 
m2. The quality of the trees was represented by the 
variables: (i) percentage of trees with lianas; (ii) per-
centage of trees that had defective trunks; (iii) num-
ber of standing dead trees. The basal area and the first 
two qualitative variables (“i” and “ii”) were obtained 
from the forest inventory of living trees in the year 
2016, while the last qualitative variable (“iii”) was 

Fig. 3   Photos taken in the 
forest fragment after the 
occurrence of the severe 
storm, showing A) whole 
trees uprooted; B) high 
density of dead trees; C) 
trees with broken crowns; 
D) formation of gaps in the 
forest canopy and accumu-
lation of necromass above 
the forest floor

A B

C D
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obtained from the necromass inventory in the year 
of 2018 (Table  2). The data used were standardized 
to eliminate the effect of the different units (scales) 
of the variables evaluated. The Stats (R Core Team, 
2020) and factoextra (Kassambara & Mundt, 2020) 
packages were used to calculate and plot the PCA, 
respectively.

Results

The CWD volume, necromass, and carbon stock 
before the storm were 31.57 m3 ha−1, 16.05 Mg ha−1, 
and 7.93 MgC ha−1, respectively. The increment of 
these parameters after storm was 7.15 m3 ha−1 for the 
volume, 4.07 Mg ha−1 for the necromass, and 2.01 
MgC ha−1 for the carbon stock, reaching a total of 
38.72 m3 ha−1, 20.12 Mg ha−1, and 9.94 MgC ha−1, 
respectively, after the storm (Fig. 5).

The carbon stock increment was higher in the 
CWD classes with materials less decomposed and 

Fig. 4   A) Apparent density (g cm−3) and B) carbon content 
(%) for the decay classes of CWD (mean ± standard devia-
tion) obtained by Villanova et al. (2023) and used in this study 
to quantify necromass and carbon stock, respectively. Decay 
classes: (DC1) materials recently fallen to the forest floor, with 

leaves and bark intact; (DC2) materials similar to those in class 
“DC1,” but exhibiting signs of bark decay or peeling; (DC3) 
materials in an advanced state of decomposition, displaying 
some resistance to breakage; (DC4) materials that are highly 
decayed and friable, lacking resistance to breakage

Table 2   Variables used 
in principal component 
analysis per plot. Spatial 
variables: elevation (m); 
Slope angle (degrees); 
and declivity (%). Forest 
intrinsic variables: basal 
area (m2); percentage 
of trees with lianas 
incidence—lianas (%); 
percentage of trees that 
had defective trunks—
defects (%); and number of 
standing dead trees—snags 
(n)

Plots Elevation Slope_Angle Declivity Basal_Area Lianas Defects Snags

1 705.48 191.56 21.79 3.52 35.76 39.74 13
2 709.93 154.26 32.75 2.49 21.33 34.00 14
3 718.78 151.15 32.75 2.08 21.32 18.38 12
4 732.49 152.12 32.63 2.02 13.43 63.43 9
5 732.75 205.42 26.10 1.61 13.40 41.24 9
6 739.95 203.65 26.01 2.95 14.88 62.81 6
7 735.30 186.44 26.05 5.13 4.80 26.40 9
8 721.64 162.02 28.41 3.31 2.37 14.20 15
9 729.59 139.91 28.36 3.00 27.54 71.01 6
10 711.06 191.75 12.16 3.26 22.45 28.57 13
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with smaller diameters. Decay classes 1 and 2, 
together, showed an increase of 1.55 MgC ha−1 
(decay class 1 = 0.78 MgC ha−1 and decay class 2 = 
0.77 MgC ha−1), representing 77% of the total incre-
ment. In contrast, decay classes 3 and 4 showed a 
low carbon increment when compared to the less 
decomposed classes, reaching 0.38 MgC ha−1 and 
0.08 MgC ha−1, respectively. The CWD with the 
smallest diameter centers classes (7.5 to 17.5 cm) 
showed an increase of 1.29 MgC ha−1 (64.34% of 
the total increment) while the other centers of diam-
eter classes (22.5 to 42.5 cm) had an increase of 
0.72 MgC ha−1 (Fig. 6).

The carbon increment of the plots varied from 0.05 
to 0.35 MgC. The largest increases were observed 
in plots 5, 7, 8, and 9. Plot 5 showed an increase of 
0.35 MgC, with the largest fraction being found in 
the CWD larger diameter. In contrast, plot 9 showed 
an increase of 0.32 MgC, with most of this increase 
concentrated in CWD smaller diameter. Plots 7 and 
8 showed an increment of 0.29 MgC and 0.25 MgC, 
respectively, with the increment distributed over most 
of the CWD diameter centers class (Table 3).

The first two main components of PCA explained 
61.9% of the total variation in the data (Dim1=36.1% 
and Dim2=25.8%). The most representative variables 

Fig. 5   A) Volume (m3 ha−1), B) necromass (Mg ha−1), and C) 
carbon stock (MgC ha−1) before and after the storm, by decay 
class. Decay classes: (DC1) materials recently fallen to the for-
est floor, with leaves and bark intact; (DC2) materials similar 
to those in class “DC1,” but exhibiting signs of bark decay or 

peeling; (DC3) materials in an advanced state of decomposi-
tion, displaying some resistance to breakage; (DC4) materials 
that are highly decayed and friable, lacking resistance to break-
age
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of the first component (Dim1) were the number of 
standing dead trees, elevation of the plots, and the 
percentage of trees with defective trunks. For the sec-
ond component (Dim2), the variables slope angle, 
declivity, and basal area were the most representative. 
The analysis of the principal components indicated 
that the percentage of trees with defective trunks and 
the elevation had greater weight in the carbon incre-
ment in plot 5. These variables, added to the decliv-
ity, had greater importance in the carbon increase in 

plot 9. The number of standing dead trees had a great 
weight in the increment of plot 8, while the basal area 
and slope angle were the variables that most impacted 
the increment in carbon of plot 7 (Fig. 7).

Discussion

Severe storms modify the structure of the tropical 
forest and impact growth dynamics (Chambers et al., 

Fig. 6   A) Increase in carbon (MgC ha−1) after the storm, by 
CWD decay classes; B) increase in carbon (MgC ha−1) after 
the storm, by CWD diameter classes. Decay classes: (DC1) 
materials recently fallen to the forest floor, with leaves and 
bark intact; (DC2) materials similar to those in class “DC1,” 

but exhibiting signs of bark decay or peeling; (DC3) materials 
in an advanced state of decomposition, displaying some resist-
ance to breakage; (DC4) materials that are highly decayed and 
friable, lacking resistance to breakage

Table 3   CWD carbon 
increment after the storm, 
by plot and diameter center 
class. Plots size: 20 m × 50 
m (0.1 ha)

Plots Diameter class (cm) Total

7.5 12.5 17.5 22.5 27.5 42.5

1 0.05 0.04 0.08 – 0.07 – 0.24
2 0.05 0.08 0.03 0.03 – – 0.19
3 0.04 0.03 0.01 – – – 0.08
4 0.07 0.03 0.02 – – – 0.12
5 0.02 0.01 – – – 0.32 0.35
6 0.02 0.03 – – – – 0.05
7 0.06 0.03 0.03 0.08 0.05 – 0.25
8 0.03 0.04 0.05 0.17 – – 0.29
9 0.13 0.07 0.12 – – – 0.32
10 0.06 0.05 0.00 – – – 0.11
Total 0.52 0.43 0.35 0.28 0.12 0.32 2.01
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2013; Chao et al., 2022; Schwartz et al., 2017; Silvé-
rio et al., 2019; Trumbore et al., 2015), causing sud-
den losses of living biomass (Negrón-Juárez et  al., 
2010) and altering forest carbon stocks and fluxes 
(Espírito-Santo et  al., 2014a, b; Vanderwel et  al., 
2013). However, the effects of these storms on the 
CWD carbon increment are still poorly understood, 
especially in the Atlantic Forest. This study attempted 
to elucidate this scientific gap by conducting CWD 
forest inventories both before and after a severe storm. 
Through this approach, we aim to improve our under-
standing of the factors that influence the estimates of 
this parameter, contributing to a more comprehensive 
view of the process.

The CWD volume, necromass, and carbon stock 
exhibited a significant increase due to the occur-
rence of a severe storm (Fig. 5). The carbon increase 
reached 2.01 MgC ha−1, representing about 25% of 
the carbon stock already existing in the forest before 
the storm. This increase was concentrated in the 
CWD less decomposed (decay classes 1 and 2) and 
with smaller diameter centers classes (7.5 to 17.5 
cm), indicating that small and healthy trees had high 
mortality during the extreme climatic event (Fig. 6). 
The trees’ mortality with these characteristics occurs 
mainly due to the fall of trunks or branches with high 
diameters that, when falling on the forest floor, can 
kill or damage neighboring trees. In addition, the 
decrease in tree density can still indirectly affect the 
survival probability of the remaining trees due to 
their increased exposure to the storm (Canham et al., 
2001; Rifai et al., 2016; Vanderwel et al., 2013).

The carbon increase showed great variation 
between the inventoried plots after the extreme cli-
matic event (Table  3). These differences can be 
explained by the trunk and branch falls with different 
diameters (Rifai et  al., 2016) and by spatial, struc-
tural, and qualitative factors intrinsic to each plot (de 

Toledo et al., 2013; Schwartz et al., 2017). The impact 
of these factors on the plots carbon increment, mainly 
in the ones with highest increments (plots 5, 7, 8, 
and 9), was elucidated through the PCA (Fig. 7). The 
PCA indicated that the percentage of trees with defec-
tive trunks and the elevation had major importance 
in the carbon increment of plot 5. In fact, defective 
trees with hollow trunks or that show apparent cracks 
or rot are more likely to be broken during a storm 
(Heineman et  al., 2015; McDowell et  al., 2018). In 
addition, areas at higher altitudes and close to hilltops 
are subject to greater exposure to wind, characterized 
by higher speeds, which may cause greater breakage 
or uprooting of trees (Marra et al., 2014; Ruel et al., 
2001). Elevation can also affect the plots’ floristic 
composition (Brown et al., 2013; Jucker et al., 2018; 
Toledo et  al., 2017), with species of varying physi-
cal strengths. The fast-growing species (pioneers), for 
example, have lower wood density and, consequently, 
are more fragile when compared to species from other 
ecological groups, being broken more easily (Ribeiro 
et al., 2016; Rifai et al., 2016; Silvério et al., 2019).

The variables Defect and Elevation, added to 
Declivity, had great weight in the plot 9 carbon 
increase. Trees located in more sloping areas show 
changes in the center of gravity of the crowns and 
constantly suffer from soil creep and landslides, 
which can be enhanced by the intensity of rainfall 
during the storm, contributing to an elevated rate of 
tree mortality (de Toledo et  al., 2011; Gale & Hall, 
2001; Sasaki et al., 2000; Young & Perkocha, 1994). 
However, additional research into the anchorage of 
trees to the ground and their resistance to uprooting 
needs to be carried out in the study area to determine 
potential variations between flat and sloped terrain 
(Nicoll et  al., 2005; Ribeiro et  al., 2016; Yan et  al., 
2016). The standing number of dead trees was the 
most important variable to explain the plot 8 carbon 
increment. Trees in this condition present great physi-
cal fragility because they have already been subjected 
to some type of stress (competition, suppression, 
water deficit, flooding, senescence, lightning, or path-
ogen attack), making the Snags a great carbon source 
to the forest floor through the winds’ action (Chao 
et al., 2009; de Toledo et al., 2013). The slope angle 
and the basal area were the variables that had the 
greatest weight for plot 7 carbon increase. In fact, top-
ographic variables, such as slope angle, and variables 
that express forest structure, such as basal area, are 

Fig. 7   A) Biplot generated by the analysis of the main com-
ponents (PCA) of spatial and intrinsic variables to the forest 
fragment; B) contribution of variables to the first component 
of the PCA (Dim1); C) contribution of variables to the second 
component of the PCA (Dim2). The points on the Biplot rep-
resent the plots and the colors represent the increase in carbon 
due to the occurrence of the storm. The black arrows are the 
variables used to build the PCA. Variables used: percentage 
of trees with defective trunks (Defects); number of standing 
dead trees (Snags); elevation (Elevation); slope angle (Slope_
Angle); declivity (Declivity); basal area (Basal_Area) and the 
percentage of trees with lianas (Lianas)

◂
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positively correlated with the amount of wind damage 
in a stand, affecting the carbon increment of the plots 
(McGroddy et  al., 2013; Negrón-Juárez et  al., 2014; 
Schwartz et al., 2017; Xi et al., 2008).

Severe storms, like the one observed in this study, 
are anticipated to increase in frequency and intensity 
as a result of climate change (Knutson et  al., 2010; 
Negrón-Juárez et  al., 2010; Taccoen et  al., 2021). 
This escalation is projected to lead to heightened 
tree mortality and a substantial accumulation of car-
bon in CWD within forest ecosystems. Consequently, 
understanding the susceptibility of forests to the 
intense rains action and strong winds becomes fun-
damental to model and monitor the future impacts of 
these extreme climatic events in the Atlantic Forest 
fragments.

Conclusions

Severe storms events induce substantial increments 
in coarse woody debris (CWD) carbon stocks within 
fragments of the Atlantic Forest. This surge is notably 
shaped by heightened mortality rates among smaller, 
previously healthy trees. Tree mortality and the con-
sequent CWD carbon accumulation occurs non-ran-
domly in the forest fragment, being influenced by spa-
tial (elevation, slope angle, and declivity), structural 
(basal area), and qualitative factors (trunk quality 
and tree health) intrinsic to the forest. This research 
underscores the significance of comprehending these 
complex connections to advance our broader under-
standing of forest carbon dynamics and their implica-
tions for ecosystem management and climate change 
mitigation strategies.
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