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Abstract Evaluation of land use and land cover 
(LULC) change is among vital tools used for track-
ing environmental health and proper resource man-
agement. Remote sensing data was used to determine 
LULC change in Bahi (Manyoni) Catchment (BMC) 
in central Tanzania. Landsat satellite images from 
Landsat 5 TM and Landsat 8 OLI/TIRS were used, 
and support vector machine (SVM) algorithm was 
applied to classify the features of BMC. The obtained 
kappa values were 0.74, 0.83 and 0.84 for LULC 
maps of 1985, 2005 and 2021, respectively, which 
indicates the degree of accuracy from produced being 
substantial to almost perfect. Classified maps along 
with geospatial, socio-economic and climatic drivers 
with sufficient explanatory power were incorporated 
into MLP-NN to produce transition potential maps. 
Transition maps were subsequently used in cellu-
lar automata (CA)-Markov chain model to predict 
future LULC for BMC in immediate-future (2035), 
mid-future (2055) and far-future (2085). The findings 
indicate BMC is expected to experience significant 

expansion of agricultural lands and built land from 
31.89 to 50.16% and 1.48 to 9.1% from 2021 to 2085 
at the expense of open woodland, shrubland and 
savanna grassland. Low-yield crop production, water 
scarcity and population growth were major driving 
forces for rapid expansion of agricultural lands and 
overall LULC in BMC. The findings are essential for 
understanding the impact of LULC on hydrological 
processes and offer insights for the internal drainage 
basin (IDB) board to make necessary measures to 
lessen the expected dramatic changes in LULC in the 
future while sustaining harmonious balance with live-
lihood activities.

Keywords CA-Markov chain model · LULC 
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Introduction

Land use and land cover (LULC) change begun since 
the dawn of civilization. It was primarily driven by 
human needs for survival. Human converted land-
scapes to derive their basic needs including food, 
water, shelter and medicinal products. Regions with 
favourable terrains, slope condition, soil type and 
climate were prone to LULC changes (Tewabe & 
Fentahun, 2020). Concern of spontaneous human 
expansion of agricultural and pastoral industry at 
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the expense of natural land cover was voiced out as 
early as the 1860s (Marsh, 1864). A gain of 4.8 bil-
lion ha of agricultural land (cropland and grazeland) 
has costed the world 2 billion ha of forest and nearly 
2.9 billion ha of wild grassland and shrubs (Ritchie 
& Roser, 2021). It was estimated by Intergovernmen-
tal Panel on Climate Change (IPCC)’s Special Report 
on land use, land use change and forestry that such 
loss particularly since 1750 to be responsible for one-
third of global warming (Watson et  al., 2000). Fur-
thermore, LULC is recognized to be a primary driver 
of land degradation, hydrological system alterations, 
decreased groundwater recharge, soil degradation and 
irreversible species extinction (Bogale, 2020; Meng-
istu et  al., 2022; Olorunfemi et  al., 2022). Africa is 
particularly vulnerable to these impacts of LULC 
changes. It was estimated nearly 65% of ecosys-
tem service value (ESV) in Sub-Saharan Africa is 
lost due to the degradation of forests and croplands 
(Fenta et  al., 2020) leaving over 1.3 billion people 
stranded on deteriorating agricultural land (UNCCD, 
2017). This poses a barrier to the continent’s efforts 
to achieve food security and improved lives.

Efforts to conserve the environment has been done 
through legally binding multinational agreements as 
early as 1910 (Mitchell, 2003). The Kyoto Protocol 
of 1997 and the Paris Agreement of 2015 are two of 
the most well-known international agreements. These 
agreements along with several environmental conser-
vation–related campaigns and projects have reduced 
deforestation and increased global growing stock 
levels (Nabuurs et al., 2022; Ritchie & Roser, 2021). 
However, still forest losses outstrip the gains (Hansen, 
2013; Ritchie & Roser, 2021). With current expo-
nential population growth, closing the gap between 
the losses and gains and overall rejuvenation of the 
landscapes could be challenging especially in regions 
where considerable population growth is anticipated 
such as growing cities. It is even far more challenging 
in regions with unfavourable climate conditions such 
as areas of aridity with limited rainfall amounts and 
high erosion (Yildiz et  al., 2018). Therefore, under-
standing the future pace of LULC under these areas is 
of paramount importance.

There are a wide range of approaches for LULC 
prediction being developed and applied across many 
regions (Mishra et  al., 2020; Wang et  al., 2021). 
However, numerous LULC prediction studies have 
used the hybrid cellular automata (CA)-Markov 

chain model for future prediction of LULC patterns 
(Sang et  al., 2011; Harris et  al., 2014; Gidey et  al., 
2017; Hamad et al., 2018; Chanapathi & Thatikonda, 
2020; Aburas et al., 2021; Gemitzi, 2021; Getachew 
et al., 2021; Wang et al., 2021; Ghalehteimouri et al., 
2022). The CA-Markov chain model has recently 
gained popularity because of its simplicity and abil-
ity to predict a complex LULC system (Gidey et al., 
2017; Wang et  al., 2021; Girma et  al., 2022). CA 
works under the principle that changes in any par-
ticular grid cell is explained by its current state and 
state of the neighbouring cells (Gidey et  al., 2017), 
whereas Markov model is a random stochastic model 
that operates on the basis that the future cell state 
depends on its current state (Ghalehteimouri et  al., 
2022). Therefore, the hybrid CA-Markov chain model 
performs under the influence of proximity that state 
of LULC class is influenced by the dynamic changes 
of the adjacent classes (Ghalehteimouri et  al., 2022; 
Gidey et  al., 2017). Nevertheless, dynamic changes 
in LULC often exhibit nonlinearity (Ghalehteimouri 
et  al., 2022; Lamchin et  al., 2022). Therefore, it 
becomes imperative to account for the influence of 
drivers such as socioeconomic, geospatial and cli-
matic variables (Alqadhi et  al., 2021; Girma et  al., 
2022; Siddik et  al., 2022). Methods like the multi-
layer perceptron neural network (MLP-NN) offer an 
effective approach to enhancing our understanding 
of the LULC process (Eastman, 2020a; Girma et al., 
2022). The MLP-NN utilizes a backpropagation algo-
rithm that generalizes transition probabilities while 
considering drivers that impact LULC transitions 
(Alqadhi et  al., 2021; Girma et  al., 2022; Lamchin 
et al., 2022). This consideration of applying MLP-NN 
contributes to improving the predictive capabilities 
of the CA–Markov model. Accuracy and reliability 
of integrated MLP-NN and CA-Markov chain model 
have been endorsed by numerous scholars (Alqadhi 
et al., 2021; Ghalehteimouri et al., 2022; Girma et al., 
2022; Rahaman et  al., 2023). This influences stud-
ies pertaining to future LULC change detection to 
employ integrated MLP-NN and CA-Markov owing 
to its performance.

Therefore, this study aims to predict future LULC 
in Bahi (Manyoni) Catchment (BMC) using CA-
Markov chain model for the immediate-future (2035), 
mid-future (2055) and far-future (2085). BMC 
became of significance since it covers 14% of the new 
Tanzania’s capital city (i.e. Dodoma) in the southeast 
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of BMC and other rapidly expanding areas, such as 
89% of Kondoa Town Council in the northeast, 53% 
of Singida District in the northwest, and 16% of Man-
yoni District in the central of BMC. Unprecedented 
immigration (URT, 2012, 2022) from other regions 
of the country including the former capital city (i.e. 
Dar es Salaam) is pressing BMC for a hasty expan-
sion of agricultural land and settlements (Kisamba & 
Li, 2022; Mubako et  al., 2022; Mussa et  al., 2021). 
Therefore, keeping close tabs on the LULC is vital 
before irreversible degradation occurs. Since no study 
has attempted to predict future LULC for the entire 
BMC, therefore, the findings from this study will aid 
the basin board and other decision-making bodies 
in planning and decision-making about land conser-
vation, sustainable LULC development and natural 
resource management.

Description of study area

The BMC is one of the nine catchments in IDB cov-
ering 24,770.2 km2 . The geographical location of 
the BMC falls within latitude 4◦07′

12
′′ and 6◦44′

10
′′ 

South and longitude 34◦39′

43
′′ and 36◦05′

50
′′ East. 

The catchment is located in the northeast to central 
part of Tanzania and covers 11 districts, including the 
Dodoma capital city, Babati, Bahi, Chemba, Kondoa 
rural, Kondoa urban, Singida rural, Ikungi, Manyoni, 
Hanang and Itigi (Fig. 1). The BMC has mean eleva-
tion of 1235 m above sea level (a.s.l) and is character-
ized by mostly gentle slopes, with some steep slopes 
in the northern part of the catchment. The catchment 
receives a unimodal rainfall pattern with an average 
rainfall amount of 620 mm/year usually from Decem-
ber to May and an average temperature ranging from 
16 to 27 ◦C . The major socio-economic activities in 
the catchment are rain-fed farming, with major crops 
including maize, sunflower, sorghum, millet, paddy 
and livestock keeping, mostly cattle and small stock 
of goats, sheep and pigs (Ghotbi et al., 2015).

Materials and methods

Methodological framework employed to guide 
this study is presented in Fig. 2. Detailed informa-
tion on image acquisition and processing, image 
classification, selection of driver variables, model 

training, validation and future of prediction of 
LULC change were further elaborated in the follow-
ing subsections.

Images acquisition and processing

There are several satellite images available online 
for LULC studies; however, for this study, images 
from Landsat program were used since it is the 
longest running program for Earth observation. 
Landsat satellite images considered in this study 
had spectral resolution of 30 m. The selected images 
were for years 1985, 2005 and 2021 obtained from 
the United States Geological Survey (USGS) web-
site https:// earth explo rer. usgs. gov/. Selection of the 
images was based on the availability from the old-
est to the latest year (i.e. when analysis of down-
loaded images was performed). The images were 
downloaded from Landsat 5 Thematic Mapper and 
Landsat 8 OLI/TIRS. Specifically, Landsat images 
from collection 2 level 2 were used because of 
improved usage of ground control points (GCPs) 
and radiometric calibration. Detailed descrip-
tion of Landsat collections and their products are 
well summarized in https:// www. usgs. gov/ media/ 
files/ lands at- colle ction-1- vs- colle ction-2- summa 
ry. Bands 1 to 5 of Landsat 5 and bands 2 to 6 of 
Landsat 8 were used to distinguish closely related 
vegetation based on vegetation health and density, 
and various land use categories, including roads, 
built-up areas, water bodies and bare soils. Dry sea-
sons, i.e. from July to October, were prioritized in 
order to differentiate closely related land use types 
such as agriculture vs grassland. During this time-
frame, the predominant crops in the region, includ-
ing maize, sunflower, paddy and sorghum, have 
undergone harvesting leaving the fields clear. This 
provides noticeable contrast, making it easier to dis-
tinguish agricultural land from grassland. Acquired 
imageries were processed by removing cloud cover 
using quality assessment (QA) and surface reflec-
tance sub-datasets. To minimize the effects of gap 
filling in the multi-temporal characteristics, images 
from adjacent month/year in the same season (July 
to October) were used to patch gaps created by the 
cloud removal process. Later, cloud-free imagery 
tiles were merged and the study area was extracted.
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Image classifications

Pixel-based supervised classification was done using 
support vector machine (SVM) algorithm. SVM 

algorithm has been widely used in multiple fields 
of application (Cervantes et  al., 2020). SVM is less 
susceptible to noise and unbalanced training sam-
ples and sizes (Boateng et al., 2020; Noi & Kappas, 

Fig. 1  Location of the BMC
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2017). LULC schema was based on type of LULC 
described in Mainland Tanzania (Mauya et al., 2019). 
Ten LULC types were used including water, forest, 
open woodland, shrubland, grassland, agricultural 
land, wetland, built land, bare land and cloud cover. 
Description of these LULCs is presented in Table 1. 
Since the study was conducted in a semi-arid region, 
the type of grassland referred to here is savanna 
grassland.

After several training iterations, accuracy assess-
ment was conducted with more than 500 stratified 
random points. Accuracy assessment for the classi-
fied map of 1985 in particular was performed using 

toposheet maps, while classified map of 2005 used 
Google Earth Engine platform per se, and classi-
fied map of 2021 used a combination of Google 
Earth Engine Platform and ground-truthing points. 
The existing toposheet maps for the study area were 
prepared from year 1958 to 1984 with fewer details. 
Being able to use toposheets, classes like open wood-
land, shrubland, grassland and bare land were merged 
and classified as shrubland for the purpose of accu-
racy testing only. Additionally, most of the toposheet 
maps used did not have built land class; therefore, the 
class was not evaluated for its accuracy. The sample 
sizes for the stratified random points per class were 

Fig. 2  Methodologi-
cal framework for LULC 
change prediction
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determined by the proportionality of each class on 
the map, with the most dominating class receiving a 
larger sample size. Classified LULC maps were then 

validated using kappa coefficient in Eqs.  1 and 2 to 
determine whether there is a statistical significance 
similarity between classified and observed LULC.

(1)
Kappa coeff icient =

Overall Agreement − Probability of Chance Agreement

1 − Probability of Chance Agreement

where i is the class number, n is the total number of clas-
sified pixels that are being compared to actual class, ni 
is the number of pixels belonging to the actual class i 
that were classified with a class i , Cu is the total num-
ber of classified user pixels belonging to class i and Cp 
is the total number of producer pixels belonging to class 
i . Kappa coefficient indicates strength of agreement: 
i.e. < 0.01 considered as no agreement, 0.01–0.20 as 
slight agreement, 0.20–0.40 as fair agreement, 0.41–0.60 
as moderate agreement, 0.61–0.80 as substantial agree-
ment and 0.81–1.00 as almost perfect agreement 
(Cohen, 1960). Therefore, in this study, LULC maps 
with kappa coefficient above 0.61 were considered; oth-
erwise, classification was repeated. Post-classification, 
effect of salt and pepper was reduced by applying major-
ity filter of 3 × 3 to produce clean classified image.

(2)Kappa coeff icient =

∑k

i=1
ni −

∑k

i=1
ni(CuCp)

n2 −
∑k

i=1
ni(CuCp)

Selection of driver variables

Geospatial, socio-economic and climatic driver vari-
ables were identifies and tested for their predictive 
ability. The geospatial variables included were alti-
tude (Elevation) and slope (Slope); socio-economic 
variables were distance from previous agricultural 
activities (Dist_Pre_Farming), distance from previous 
built area (Dist_Pre_Builtland), distance from roads 
(Dist_Roads), distance from streams (Dist_Stream) 
and distance from urban centres (Dist_Urban); and 
climatic variables were annual rainfall, average 
annual minimum temperature (Tmin) and maximum 
temperature (Tmax). The last included variable was 
evidence likelihood of land cover (EC_Likelihood_
LC) which is the relative frequency of different land 
use categories in the area of a given transition period 
(Eastman, 2020a). Protected areas in BMC, like for-
ests and game reserves, were identified, and con-
straints were imposed to help the model to maintain 

Table 1  LULC types classification in BMC

*Mauya et al., (2019) and ** ESRI website: https:// www. esri. com/ en- us/ arcgis- marke tplace/ listi ng/ produ cts/ 43c1d 2612d 134cc 19b7f 
95dee f5469 db

Class code LULC class Primary category * Description

C_1 Water Inland water **Areas with predominant water throughout the year; with little to no sparse 
vegetation, no rock outcrop and no built-up features

C_2 Forest Forest **Any significant clustering of tall (~ 15 m or higher) dense vegetation, typi-
cally with a closed or dense canopy, i.e. > 40%

C_3 Open woodland Forest *Clustering of tall with a canopy coverage between 10 and 40%
C_4 Shrubland Forest **Mix of small clusters of vegetation dispersed on a landscape that shows 

exposed soil or rock with emergent trees
C_5 Grassland Non-forest **Open areas covered in homogeneous grasses with little to no taller vegetation 

with no obvious human plotting
C_6 Agricultural land Non-forest **Human-planted cereals, grasses and crops not at tree height
C_7 Wetland Swamp *Area often partially or intermittently covered with water
C_8 Built land Non-forest **Human-made structures; major roads, rail networks and large impervious 

surfaces such as parking plots, office and residential buildings
C_9 Bare land Non-forest **Areas of rock or soil with very sparse to no vegetation for the entire year
C_10 Cloud cover Clouds Cloud cover and cloud shades
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the current reserved LULC. Detailed description 
of the driver variables and constraints is listed in 
Table 2.

Drivers’ variable explanatory power were tested 
using Cramer’s V and their variable’s worth with p 
value. High Cramer’s V indicate high explanatory 
power despite that it does not guarantee the strong 
performance (Eastman, 2020a). A cut-off point ≥ 0.15 
was considered for this study; the rest of the vari-
ables below cut-off were discarded. Higher p values 
indicate low variable’s worth suggesting its rejection. 
Therefore, the driver variables with p values < 0.05 
were selected. Qualified variables were used to train 
the multilayer perceptron neural network (MLP-NN) 
model.

Model training and transition potential

Transition sub-models were considered for training 
based on LULC classes that experienced signifi-
cant changes from year 1985 to year 2005. Transi-
tioned and persisted pixels from the sub-models 
were trained with the selected driver variables 
using MLP-NN. Training parameters including start 
and end learning rates, momentum factor, sigmoid 
constant and hidden layer nodes were altered until 
accuracy rate of ≥ 75% and root mean square (RMS) 
error of < 0.5 was attained (Eastman, 2020b; Mori-
asi et al., 2007). However, during training, stopping 
criteria were not confined to the aforementioned 
criteria to give the model a chance to be performed 

better. Therefore, the stopping criteria accuracy rate 
was set as high as 100%, and RMS was set as low as 
0.01. Once a desirable performance was achieved, 
transition potential maps for each sub-model were 
then generated.

Validation and future prediction

CA-Markov chain model validation was performed 
by comparing simulated and classified maps for the 
year 2021. During simulation of LULC map of 2021, 
Markov chain analysis uses transition potential maps 
to simulate the probability of a pixel transitioning (i.e. 
transition probability matrix) from one land use class 
to another in different time periods. Transition prob-
ability matrix was manually edited until the desired 
simulated map was obtained. The produced validation 
map indicates pixels that model managed to capture 
transition as hits (revealed by green colour), pixels 
that model predicted transition but persisted as misses 
(revealed by red colour) and pixels model predicted 
persistence but transitioned as false alarms (revealed 
by yellow colour). Once green colour dominated the 
validation map, accuracy assessment was performed 
using kappa coefficient (Eqs.  1 and 2) to determine 
whether there is a statistically significant similarity 
between simulated and classified LULC. The verified 
model with kappa coefficient ≥ 0.61 was then applied 
to predict the LULC for BMC in immediate-future 
(2035), mid-future (2055) and far future (2085).

Table 2  Description of driver variables data used in prediction of LULC

CMIP6 Coupled Model Intercomparison Project Phase 6; IDBWB internal drainage basin water board; TMA Tanzania Meteorologi-
cal Agency; USGS United States Geological Survey

Data Details Description Source

Geospatial STRM-DEM 30-m resolution Terrain elevation USGS website
Slope Percentage rise Terrain slope Generated DEM

Socio-economic Dist-Pre_Farming Previous agricultural activities Euclidean-Distance Classified map—1985
Dist-Pre_Builtland Previous built land
Dist-Roads Main, secondary, primary and tracks IDBWB
Dist-Stream Ephemeral streams
Dist-Urban Centres

Climatic Rainfall, Tmax and Tmin 1985–2005 Observed data TMA
GCMs CMIP6 websites

Other Components Constraints Forests and game reserves Protected areas IDBWB
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Results

Accuracy of classified LULC maps

The results of the classified LULC maps for the 
years 1985, 2005 and 2021 are presented in Fig. 3, 
whereas their corresponding accuracies are pre-
sented in confusion matrices in Tables  3, 4, and 
5. The obtained accuracy for the 1985 classified 
map was considered to have substantial agreement 
with the toposheet maps. Assessment point distri-
bution method used was stratified random, where 
classes with larger coverage received more points 
and smaller coverage received fewer points. As 
shown in Table  3, the assessment points located 

in C_2, for instance, only accounted for 9 points 
(i.e. < 1.8% of the total assessment points), while 
those in C_3 accounted for 414 points (i.e. > 81.6% 
of the total assessment points). Misclassification of 
four assessment points in C_2, the user accuracy 
became 56%, whereas misclassification of nine 
assessment points in C_3, the user accuracy is as 
high as 98%. This implies that accuracy assessment 
of maps with substantial differences in coverage 
may result to higher sensitivity in the accuracy of 
classes with fewer assessment points compared to 
classes with more points when misclassified. Con-
versely, the producer accuracy of the same classes 
with lower user accuracy demonstrated values 
within the same map contributing to an overall the 

Fig. 3  Classified LULC 
maps for years 1985, 2005 
and 2021

a) 1985 b) 2005 c) 2021

Table 3  Confusion matrix 
for the year 1985

Class Code C_1 C_2 C_3 C_6 C_7 Total User accuracy Kappa

C_1 7 0 2 0 0 9 0.78 0
C_2 0 5 4 0 0 9 0.56 0
C_3 1 1 405 3 4 414 0.98 0
C_6 0 0 15 36 0 51 0.71 0
C_7 0 0 8 0 16 24 0.67 0
Total 8 6 434 39 20 507 0.00 0
Producer
Accuracy

0.88 0.83 0.93 0.92 0.80 0.00 0.93 0

Kappa 0 0 0 0 0 0 0 0.74
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kappa coefficient of 74% (Table  3). According to 
Cohen (1960), the obtained coefficient signifies 
substantial agreement between the produced map 
and observed LULC.

Similarly, for the classified maps of the year 
2005 and 2021, both their user and producer accu-
racies were high leading to their kappa coefficients 
to reach 83% and 84%, respectively (Tables 4 and 
5). This indicates almost perfect agreement with 
the actual LULC of the area (Cohen, 1960). This 
concludes that all three classified maps met the 
expectations of the map producers.

Analysis of 1985, 2005 and 2021 LULC maps

Findings of LULC classification from the year 1985 
to 2021 are presented on Table  6. In 1985, open 
woodland was the most dominant LULC covering 
from the northern part to west and southern parts 
of the catchment whereas shrubland was the second 
dominant available nearly throughout the catchment 
with high concentration on the eastern part (Fig. 3a). 
Considering BMC is a semi-arid region, the weather 
favours open woodland and shrubland covers mak-
ing them dominant. The two classes covered > 73% of 

Table 4  Confusion matrix for the year 2005

Class code C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 Total User accuracy Kappa

C_1 9 0 0 0 0 0 0 0 0 9 1.00 0
C_2 0 9 2 0 0 0 0 0 0 11 0.82 0
C_3 0 1 106 8 0 3 0 0 0 118 0.90 0
C_4 0 0 6 140 3 6 0 0 0 155 0.90 0
C_5 0 0 2 6 41 3 0 0 0 52 0.79 0
C_6 0 0 5 10 3 111 2 0 0 131 0.85 0
C_7 1 0 0 0 0 2 20 0 0 23 0.87 0
C_8 0 0 0 0 0 1 1 9 0 11 0.82 0
C_9 0 0 0 0 1 0 1 1 9 12 0.75 0
Total 10 10 121 164 48 126 24 10 9 522 0.00 0
Producer
Accuracy

0.90 0.90 0.88 0.85 0.85 0.88 0.83 0.90 1.00 0 0.87 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.8332

Table 5  Confusion matrix for the year 2021

Class code C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 Total User accuracy Kappa

C_1 9 1 0 0 0 0 0 0 0 10 0.90 0
C_2 0 9 0 0 0 1 0 0 0 10 0.90 0
C_3 0 1 95 4 0 18 0 0 0 118 0.81 0
C_4 0 0 6 147 5 0 0 0 0 158 0.93 0
C_5 0 0 0 3 22 1 0 0 0 26 0.85 0
C_6 0 0 3 8 2 141 1 2 1 158 0.89 0
C_7 0 0 3 0 0 0 15 0 1 19 0.79 0
C_8 0 0 0 0 0 0 0 13 0 13 1.00 0
C_9 0 0 0 1 0 0 1 0 9 11 0.82 0
Total 9 11 107 163 29 161 17 15 11 523 0.00 0
Producer
Accuracy

1.00 0.82 0.89 0.90 0.76 0.88 0.88 0.87 0.82 0 0.88 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.8417
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the LULC in 1985. Grassland on the other hand with 
a coverage of only around 7% was predominantly 
located on relatively lower elevations where runoff 
and sediments from the steep altitudes are deposited 
(Fig.  1). Agricultural land was the third dominant 
land cover with an area about 9.37%, found mostly on 
the northern part and southeast of the catchment.

Figure  4 presents all LULC transitions caused 
by anthropogenic activities from 1985 to 2005 and 
from 1985 to 2021. The anthropogenic disturbances 
transformed natural vegetative covers including 
open woodland, shrubland and grassland to agricul-
tural lands and built lands. By the year 2021, agri-
cultural land has gained a total of 22.52% becoming 
the most dominant LULC followed by shrubland 
and open woodland whereas built land only gained 

about 1.33%. The expansion of agricultural land 
was detected throughout the catchment except in 
water bodies and some parts at the north, east and 
west of the catchment (Fig. 3c).

During the period from 1985 to 2021, signifi-
cant transitions were observed from open wood-
land, shrubland and grassland to agricultural land, 
in contrast with the gradual transitions to built 
land shown in Fig. 5. Figure 6 presents the losses, 
gains and persistence of these highly transitioned 
LULC classes. After the identification of the classes 
that experienced significant changes as a result of 
anthropogenic disturbances, the transitions were 
therefore grouped under a single sub-model. The 
sub-model along with suitable drivers were then 
used to train the MLP-NN model.

Table 6  Coverage of land 
covers in 1985, 2005 and 
2021 for BMC

Class code Class name Area in km2 Area in %

1985 2005 2021 1985 2005 2021

C_1 Water 164.4 60.5 67.4 0.66 0.24 0.27
C_2 Forest 493.4 325.9 157.6 1.99 1.32 0.64
C_3 Open Woodland 10,051.3 6234.0 6387.9 40.58 25.17 25.79
C_4 Shrubland 8205.5 7652.1 7420.0 33.13 30.89 29.96
C_5 Grassland 1766.4 2398.6 872.7 7.13 9.68 3.52
C_6 Agricultural land 2319.8 6368.6 7898.7 9.37 25.71 31.89
C_7 Wetland 1619.0 1225.5 1104.6 6.54 4.95 4.46
C_8 Built land 36.4 149.8 365.8 0.15 0.60 1.48
C_9 Bare land 105.3 355.3 495.5 0.42 1.43 2.00
C_10 Cloud cover 8.7 0.0 0.0 0.03 0.00 0.00

Fig. 4  LULC transitions 
caused by anthropogenic 
activities a from 1985 to 
2005 and b from 1985 to 
2021

a) 1985 - 2005 b) 1985 - 2021 
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Suitable drivers and model training for future 
prediction

The MPL-NN model was trained using driver vari-
ables that has adequate explanatory power. Table  7 
presents explanatory power of all tested drivers. 
Based on the set criteria for the selection of suitable 
drivers on the “Selection of driver variables” sec-
tion, only six driver variables had adequate explana-
tory power, which were Elevation, Rainfall, Dist-
Pre_Builtland, Dist-Pre_Farming, Dist_Roads and 
EC_Likelihood_LC.

Figure  7a, b, and c presents the influence of the 
driver variables in the MLP-NN model performance. 

Figure 7a indicates model performance when one var-
iable was kept constant. Variable 6 (EC_Likelihood_
LC) had the most influence on the model perfor-
mance, followed by variables 4 and 5 (distance from 
previous anthropogenic disturbances, i.e. farming and 
built land), whereas variable 2 (Rainfall) had the least 
influence. This implies that variables 4, 5 and 6 have 
higher ability to anticipate the transition and/or per-
sistence of most modelled classes far more than the 
remaining variables. Figure 7b demonstrates variation 
of model performance when all variables are con-
stant except one. It implies that, independently, each 
variable performance is quite low even for variable 6 
despite of its displayed influence on Fig. 7a. Figure 7c 

c) 

a) 

d) 

e) 

b) 

f) 

Fig. 5  Overall gain and losses from 1985 to 2021 in  km2 a in all LULC classes, b in agricultural land, c in built land, d in open 
woodland, e in shrubland, and f in grassland
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is backward stepwise forcing, where one by one vari-
able is held constant until only one variable is left. 
The figure demonstrated the impact on model perfor-
mance becomes significant when variable 5 and then 
variable 4 were held constant along with other least 
influencing variables. This implies that the overall 
analysis revealed that these variables depend on one 
another to achieve optimum model performance.

The parameters and performance of the trained 
model are presented in Table  8. The performance 
in Table  8 indicates the successful model training 
since the RMS (root mean square) error is < 0.50 and 
accuracy rate > 75% (Eastman, 2020b; Moriasi et al., 
2007).

After successful model training, results of the 
transition and persistence of the selected LULC 
are presented in Table 9. It was observed from the 

Table  9 that transitions performed better than per-
sistence. This is because of the driver variables 4 
to 6 were based on land use categories of the area 
of 1985 inclusive of previous anthropogenic activi-
ties which was farming and built land. Persistence 
of grassland was very high compared to the other 
LULC types, likely due to its smaller coverage mak-
ing its training more efficient. However, the persis-
tence of shrubland and open woodland on the other 
hand was the lowest. This suggests that variables 
indicated a higher likelihood of some pixels from 
open woodland and shrubland transitioning to either 
agricultural land and built land, while they persisted 
in the 2005 LULC map. The model was aided by 
the adjusting transition probability grid matrix for 
correction. Otherwise, the model is considered to be 
generally successful.

Fig. 6  Losses, persistence and gains from 1985 to 2021 in a open woodland, b shrubland, c grassland, d agricultural land, and e 
built land

Table 7  Results on the 
explanatory power of the 
tested drivers

Driver variables Cramer’s value P value Suitability Input on MPL-NN

Elevation 0.2772  < 0.001 Suitable Variable 1
Rainfall 0.1876  < 0.001 Suitable Variable 2
Dist_Roads 0.1936  < 0.001 Suitable Variable 3
Dist-Pre_Farming 0.2400  < 0.001 Suitable Variable 4
Dist-Pre_Builtland 0.2301  < 0.001 Suitable Variable 5
EC_Likelihood_LC 0.3801  < 0.001 Suitable Variable 6
Dist_Urban 0.1244  < 0.001 Not suitable Not used
Slope 0.1224  < 0.001 Not suitable Not used
Tmin 0.1222  < 0.001 Not suitable Not used
Tmax 0.1047  < 0.001 Not suitable Not used
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Prediction of future LULC maps

Prior to prediction, the performed accuracy assess-
ment between the generated and classified 2021 

LULC map produced a kappa coefficient of > 0.89 
(Table  10). Moreover, their error map with nearly 
74% hits (captured transitions), 23% misses (pre-
dicted transition but persisted), 3% false alarms (pre-
dicted persistence but transitioned) and persistence 
(areas that persisted from 1985 to 2021). Based on 
Table 10 and Fig. 8, these results demonstrate nearly 

Fig. 7  Sensitivity of driver 
variables on MLP-NN 
Model

0.000 0.081 0.162 0.243 0.323 0.404 0.485 0.566 0.647 0.728 0.808

Var. 6 constant
Var. 5 constant
Var. 4 constant
Var. 3 constant
Var. 2 constant
Var. 1 constant

With all variables

Variation in model skill forcing a single independent variable to be constant

0.000 0.081 0.162 0.243 0.323 0.404 0.485 0.566 0.647 0.728 0.808

All constant but Var. 6
All constant but Var. 5
All constant but Var. 4
All constant but Var. 3
All constant but Var. 2
All constant but Var. 1

With all variables

Variation in model skill forcing all independent variable except one to be constant

0.000 0.081 0.162 0.243 0.323 0.404 0.485 0.566 0.647 0.728 0.808

Step 5: var. (2,3,1,5,4) constant
Step 4: var. (2,3,1,5) constant

Step 3: var. (2,3,1) constant
Step 2: var. (2,3) constant

Step 1: var. (2) constant
With all variables

Variation in model skill using backwards stepwise constant forcing

a)

b)

c)

Table 8  Parameters and performance

Parameters
  Input layer neurons 6
  Hidden layer neurons 9
  Output layer neurons 11
  Requested samples per class 10,000
  Final leaning rate 0.0000
  Momentum factor 0.5
  Sigmoid constant 1
  Iterations 10,000

Performance
  Training RMS 0.1703
  Testing RMS 0.1707
  Accuracy rate 82.58%
  Skill measure 0.8084

Table 9  Model skill breakdown by transition and persistence

Class Skill measure

Transition: open woodland to agricultural land 0.8823
Transition: open woodland to built land 0.8505
Transition: shrubland to agricultural land 0.8811
Transition: shrubland to built land 0.7549
Transition: grassland to agricultural land 0.7628
Transition: grassland to built land 0.8131
Persistence: open woodland 0.6513
Persistence: shrubland 0.6638
Persistence: grassland 0.8627
Persistence: agricultural land 0.9303
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perfect agreement between the generated and classi-
fied LULC maps of 2021 (Cohen, 1960), indicating 
the CA-Markov chain model was ready to generate 
future LULC maps for the year 2035, 2055 and 2085.

Coverage of predicted future LULC maps by CA-
Markov chain for the years 2035, 2055 and 2085 
are presented in Table 11. It is evident that the main 
change was predicted to be from open woodland, 
shrubland and grassland to agricultural land and built 
land. The results demonstrated agricultural land and 
built land are expected to increase from 2021 to 2085 
agricultural land becoming the most dominant LULC 
whereas built land becoming the fourth dominant 
LULC after shrubland and open woodland (Tables 6 
and 11).

Discussion

This study has classified and analysed spatio-tem-
poral changes in LULC maps for the years 1985, 
2005 and 2021 and subsequently employed a cellular 
automata Markov chain model to project LULC maps 
for the years 2035 (immediate-future), 2055 (mid-
future) and 2085 (far-future) within the Bahi (Man-
yoni) Catchment (BMC), Tanzania. The accuracy 
results of the classified LULC maps of the year 2005 
and 2021 (Tables  4 and 5) indicated almost perfect 
agreement with the observed LULC in the study area 
(Cohen, 1960). However, the accuracy of the classi-
fied LULC map of year 1985 ranked slightly lower 
than the remaining LULC maps (Table 3). This could 
be attributed by lack of available reference ground-
truth data, paper quality of a toposheet map which 
brought difficulties during georeferencing as well as 
use of outdated toposheet maps (Daba & You, 2022; 

Table 10  Confusion matrix between classified and generated LULC map of year 2021

Class code C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 Total User accuracy Kappa

C_1 6 2 0 0 0 0 1 0 0 9 0.67 0
C_2 0 8 2 0 0 0 0 0 0 10 0.80 0
C_3 0 0 122 2 2 0 0 1 0 127 0.96 0
C_4 0 0 6 143 1 2 0 0 0 152 0.94 0
C_5 0 0 0 0 21 5 0 0 0 26 0.81 0
C_6 0 2 2 1 0 148 0 0 1 154 0.96 0
C_7 1 1 0 0 0 1 20 0 0 23 0.87 0
C_8 0 0 0 0 1 2 0 7 0 10 0.70 0
C_9 0 0 0 0 0 0 5 0 5 10 0.50 0
Total 7 13 132 146 25 158 26 8 6 521 0.00 0
Producer accuracy 0.86 0.62 0.92 0.98 0.84 0.94 0.77 0.88 0.83 0.00 0.92 0
Kappa 0 0 0 0 0 0 0 0 0 0 0 0.8966

Fig. 8  Error map between classified and generated LULC map 
of year 2021
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Nath et al., 2023; Piškinaitė and Veteikis 2023). It is 
worth noting that some of these toposheets date back 
to 1958, which is more than 20 years before the clas-
sification year of 1985. Based on Cohen (1960) cri-
teria of agreements concludes that all three produced 
LULC maps represent the spatio-temporal situation 
of BMC and that the classified maps could be used 
for further analysis and predictions.

The findings of the classified LULC maps from the 
years 1985 to 2021 revealed that in 1985, BMC was 
predominantly covered by natural vegetation, which 
subsequently transitioned to agricultural lands across 
most of the catchment (Figs. 3 and 4).

The transition was primarily driven by population 
growth and low crop yield due to water scarcity and/
or poor soil quality which brings strong incentive to 
expand agriculture to increase production and meet 
food demand (Dolan et al., 2021; Rosa et al., 2020). 
Furthermore, clearing of natural vegetation could 
also be attributed by logging for timber and rotational 
grazing for livestock keeping. It is a common practice 
in Tanzania for livestock keepers to burn shrubland to 
stimulate new out-sprout of vegetations for grazing 
their cattle herds (Tanzania Forest Services 2013). 
Studies conducted by Valone et al. (2002) and Mora 
et al. (2022) on the effects of fire and grazing on an 
arid regions found out fire has a temporary effect on 
the vegetation species that could be reversed. How-
ever, continuous large and high-severity burning 
could cause permanent transition from shrubland to 
grassland (Orr et  al., 2022). Since this was beyond 
the scope of this study to analyse the tolerance of veg-
etation species subjected to fire, this calls for further 
studies. The segments of the catchment that remained 
unaltered were mostly protected areas. For instance, 

in the northern part of the catchment has Hanang for-
est reserve and Swagaswaga game reserve as well 
as on the east there is Mbuga ya Goima reserve and 
southeast is Kigongkwe/Chigongkwe reserve. There 
are also other forest reserves at the edges of the catch-
ment, which extends beyond the northern part includ-
ing Nou, Salanga and Isabe and on the east there is 
Chenene west forest reserves. These protected areas 
are under either the state management (Tanzania 
Forest Services Agency) or Joint Forest Manage-
ment (JFM) constituting of miombo woodland, Itigi-
thickets, savanna-grassland and shrublands except for 
Mbuga ya Goima and Kigongkwe/Chigongkwe, which 
constitutes of mostly savanna-grassland and shrub-
land (USAID, 2019).

Interestingly, the western part of the catchment 
(Makuru and Saranda wards in Manyoni district 
and Sanzawa ward in Chemba district) and north-
west (Mughunga ward in Singida rural district) were 
not subjected to anthropogenic activities despite not 
being under protection. These areas are distant from 
the town centres such as Manyoni and Singida urban 
centres, respectively. This could be further explained 
by Von Thunen’s model of agricultural land use 
established in 1826, which relates the use of suitable 
agricultural lands close to the commercial centres 
being triggered by the lower transportation costs (Peet 
et al., 1967). Hence, the more distant the agricultural 
areas are from the centres, the less likely for them to 
be utilized. As for built land, it is sparsely located 
throughout the catchment (Figs.  4 and 6e). Table  6 
indicates continuous growth of built land from 1985 
to 2021, with relatively higher growth from 2005 to 
2021 compared to 1985 to 2005. The higher growth 
from 2005 to 2021 was associated with population 

Table 11  Coverage of the 
predicted future land covers 
in 2035, 2055 and 2085 in 
BMC

Class code Class name Area in km2 Area in %

2035 2055 2085 2035 2055 2085

C_1 Water 60.3 60.1 59.6 0.24 0.24 0.24
C_2 Forest 324.2 324.1 317.1 1.31 1.31 1.28
C_3 Open woodland 4606.1 3893.8 3335.4 18.60 15.72 13.47
C_4 Shrubland 5288.7 4308.1 3730.8 21.35 17.39 15.06
C_5 Grassland 1233.6 1172.8 1082.0 4.98 4.73 4.37
C_6 Agricultural land 11,046.6 12,044.8 12,424.1 44.60 48.63 50.16
C_7 Wetland 1229.2 1227.7 1226.2 4.96 4.96 4.95
C_8 Built land 633.2 1390.5 2257.0 2.56 5.61 9.11
C_9 Bare land 348.2 348.3 338.1 1.41 1.41 1.37
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growth and/or active relocation of government offices 
to capital city from 2015 (Mnyampanda & Chindeng-
wike, 2021), which attracted movement from various 
parts of the country seeking opportunities. However, 
the overall expansion of built land from 1985 to 2021 
is still small, as indicated in Table 6. This could be 
attributed to some of the town centres being located 
a few kilometres outside the catchment area, such as 
Dodoma city centre and Singida town centre.

The CA-Markov chain model successfully gen-
erated a LULC map for the year 2021 with no sig-
nificant differences compared to the classified 
LULC map of 2021 (Table  10). However, despite 
of CA–Markov model success, the model failed 
to mimic the state of Bahi swamp of the year 2021 
(Fig.  8). The dried-out part of the swamp, which 
exposed the bottom soils, was detected and classi-
fied as bare land on the classified LULC map of year 
2021. However, since the CA-Markov chain model 
was trained using previously classified LULC maps 
from 1985 and 2005, which had full coverage of the 
Bahi swamp, it was unable to detect the dried part of 
the swamp in 2021, resulting in errors. This means 
that the CA–Markov model predicted the persistence 
of water in the swamp instead of bare land. This is 
one of the limitations of using the CA-Markov chain 
model, which could not be resolved in this study, even 
with the inclusion of climatic drivers such as rainfall. 
Aguejdad (2021) and Gemitzi, (2021) were also con-
cerned with ability of CA-Markov chain model per-
formance accuracy when subjected to abrupt changes 
as a result from natural disasters, climate variabilities 
and/or geopolitical uncertainties. This is a cross-
cutting drawback for most LULC change prediction 
models. Major limitation of LULC prediction models 
is not being able to predict non-linear transforma-
tions, which is usually the case for areas undergoing 
rapid changes (Hao et al., 2018; Aburas et al., 2019; 
Aguejdad, 2021; Antwi-Agyakwa et al., 2023).

Normally, the drying out of water bodies is asso-
ciated with reduced rainfall amounts and higher tem-
peratures in the surrounding areas (Mir et al., 2021). 
However, it was not the case for Bahi swamp. Based 
on the yearly statement on the status of Tanzania cli-
mate of 2021, it was recorded to have an increased 
rainfall amounts of 276.6 mm and with the tempera-
ture increase between 1  and 2 ◦C compared to a long-
term average (TMA, 2022). The Clausius-Clapeyron 
relation, a 1 °C increase in temperature can increase 

the rate of evaporation approximately about 7% (Kim 
et al., 2022). However, the actual evaporation depends 
on multiple factors including initial temperature, rela-
tive humidity, wind speed, availability of water and 
surface area of water bodies, and plant cover can 
affect the total amount of water available for evapora-
tion (Penman, 1956). Since this study did not estab-
lish the rate of evaporation, therefore the influence of 
future changes in rainfall and temperature on water 
bodies within the catchment remains unknown.

The findings highlight a significant shift in the 
LULC composition towards increased agricultural 
and built land at the expense of natural vegetation 
(Tables  6 and 11). It seems that the historical pat-
tern of growth of agricultural land and built land at 
the expense of natural vegetative land covers since 
1985 will prevail. The pattern’s perseverance from 
historical to future predicted LULC was based on 
model training that relied on sub-model used, which 
dealt with only major changes caused by anthropo-
genic disturbances (see the “Analysis of 1985, 2005 
and 2021 LULC maps” section). It is acknowledged 
that there are other LULC caused by human activities 
during the period between 1985 and 2005. However, 
because the sub-model used in the study accounted 
for over 80.5% of all anthropogenic changes during 
that time, it is reasonable to assume that any remain-
ing changes would have minimal impact on future 
predictions.

It was also noted that despite a predicted substan-
tial increase of built land from 2021 to 2035, the 
growth of agricultural land gradually slowed from 
2035 to 2085. Several studies predicted similar results 
that the growth of agricultural land will either slow 
down or decrease in the future ( Belay & Mengistu, 
2021; Lu et al., 2019; Mahdian et al., 2023; Zhu et al., 
2022). This slowing growth is linked to the limited 
availability of land suitable for agricultural expan-
sion. The majority of the remaining unconverted 
lands with potential for agriculture are protected 
areas, especially on the north and northeast (Fig. 9). 
If the forest management becomes ineffective, there is 
a high possibility of encroachment as some farms are 
already positioned quite close to the borders of these 
protected areas since 2021. With the fast-growing 
population, promoting a revolution from extensive 
to intensive farming practices is necessary to mini-
mize the conversion of native lands to agricultural 
lands. This will increase productivity in small areas 
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and may lower the urge to encroach on the protected 
areas when management practices become ineffec-
tive. Predictions indicate that by 2085 that some parts 
of Makuru and Saranda wards in Manyoni district, as 
well as Sanzawa ward in Chemba district, are the only 
remaining areas of the catchment that have remained 
as non-agricultural land. This could be because of the 
farming extended from the northern and southeast 
towards the west of the catchment. Since the remain-
ing area is not under protection, it is anticipated that 
it is at risk of being converted to agriculture in the 
future. The findings obtained here are consistent with 
prior researches conducted in this and other water 
basin in Tanzania, which have identified farming as 
the fastest-growing LULC in the country (Berakhi 
et  al., 2015; Msofe et  al., 2019; Mussa et  al., 2021; 
Näschen et  al., 2019; Twisa & Buchroithner, 2019). 
Prolonged farming can lead to a reduction in infil-
tration and an increase in runoff due to agricultural 
activities, such as ploughing, tilling and harvesting, 
that disturb the soil structure and increase soil com-
paction (Nunes et  al., 2020; Voorhees et  al., 1978). 
Consequently, the soil’s ability to absorb water 
decreases, and more water runs off the surface, caus-
ing erosion. This raises concerns about the alteration 
of hydrological processes which may affect ground-
water recharge. Moreover, prolonged farming accom-
panied with excessive use of agrochemicals such as 
fertilizers and insecticides can lead to decreased soil 
fertility and eventually contributing to food insecu-
rity (Popp et al., 2013). Therefore, with the expected 
growing demand for agricultural land, this study 
provides necessary information for the basin board 

regarding the areas that are more susceptible to 
changes for proper LULC planning.

Conclusion

This study aimed to predict future land use and land 
cover change in Bahi (Manyoni) catchment, Tanzania 
for the immediate-future (2035), mid-future (2055) 
and far-future (2085) using integrated MLP-NN and 
CA-Markov chain model. The classified LULC maps 
of the years 1985, 2005 and 2021 were used to train 
the model. The accuracy assessment revealed remark-
able agreement with observed conditions, reaffirm-
ing reliability of the classified LULC maps for fur-
ther analysis and predictive applications. It should 
be noted that the land use for 2021 included abrupt 
changes associated drying of Bahi swamp. Despite 
limitations encountered by the integrated MLP-NN-
CA-Markov chain when predicting abrupt changes, 
such as the drying out of the Bahi swamp, neverthe-
less, the overall trained model managed to simulate 
almost perfectly the LULC map of 2021, thus indi-
cating its high predictive capability. The findings of 
LULC in BMC has indicated significant shifts in the 
landscape dynamics of the catchment. The transition 
from natural vegetation to agricultural lands emerged 
as a dominant pattern from 1985 to 2021, driven by 
factors such as water scarcity, low crop yields, popu-
lation growth and anthropogenic activities such as 
logging and grazing. The study demonstrated that 
most of these anthropogenic changes are expected to 
spread from the north and southeast to the west part 

Fig. 9  Generated maps by 
CA-Markov chain for the 
year 2021, 2035, 2055 and 
2085

2021 2035 2055 2085 
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covering nearly the entire catchment except for the 
protected areas and water bodies. It was noted that 
the patterns are likely to continue into the future, 
though the expansion of agricultural lands might 
gradually slow due to constraints of land availabil-
ity. To address the potential challenges arising from 
these changes, the study suggested promoting a tran-
sition from extensive to intensive farming practices. 
This approach could reduce conversion rate of native 
lands to agriculture. Furthermore, as agriculture con-
tinues to expand, concerns about altered hydrologi-
cal processes including groundwater recharge arise, 
underlining the need for strategic LULC planning and 
management. This research provides a valuable con-
tribution to understanding the complex interplay of 
anthropogenic activities and environmental changes 
within the Bahi (Manyoni) Catchment. The findings 
offer insights for sustainable land management strate-
gies, aiding policymakers and stakeholders in making 
informed decisions to balance development with con-
servation efforts in this vital catchment. As Tanzania 
and other regions globally face similar challenges of 
land use transformation, this study’s insights resonate 
beyond the Bahi (Manyoni) catchment, contributing 
to the broader discourse on effective land use plan-
ning and management.

Recommendations

This study offers valuable insights and directions for 
future research in the field of land use and land cover 
(LULC) dynamics. The following are some areas that 
may benefit from further investigation:

• Since the study revealed challenges in predicting 
non-linear transformations, particularly instance 
of abrupt changes like the drying out of the Bahi 
swamp, future research could investigate deeper 
into understanding and addressing this limita-
tion to improve the accuracy of LULC prediction 
model in abrupt changing environment.

• This study did not incorporate impact of future 
climate variables to the projected land use. Since 
it is known that climate affect LULC, hence future 
study may consider incorporating future climate 
variables into the LULC prediction model.

• The study projected LULC changes up to 2085, 
yet uncertainties increase with longer projection 
periods. Hence, future research could investigate 
the reliability and robustness of LULC predictions 
over extended timeframes, addressing potential 
uncertainties that arise in long-term modelling.
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