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Abstract Climate change affects ecosystems in 
different ways. These effects are particularly worry-
ing in the Neotropical region, where species are most 
vulnerable to these changes because they live closer 
to their thermal safety limits. Thus, establishing con-
servation priorities, particularly for the definition of 
protected areas (PAs), is a priority. However, some 
PA systems within the Neotropics are ineffective even 
under the present environmental conditions. Here, we 
test the effectiveness of a PA system, within an eco-
tone in northern Brazil, in protecting 24 endangered 
bird species under current and future (RCP8.5) cli-
matic scenarios. We used species distribution mod-
eling and dispersal corridor modeling to describe the 
priority areas for conservation of these species. Our 
results indicate that several threatened bird taxa are 
and will potentially be protected (i.e., occur within 

PAs). Nonetheless, the amount of protected area is 
insufficient to maintain the species in the ecotone. 
Moreover, most taxa will probably present drastic 
declines in their range sizes; some are even predicted 
to go globally extinct soon. Thus, we highlight the 
location of a potentially effective system of disper-
sal corridors that connects PAs in the ecotone. We 
reinforce the need to implement public policies and 
raise public awareness to maintain PAs and mitigate 
anthropogenic effects within them, corridors, and 
adjacent areas, aiming to conserve the richness and 
diversity of these already threatened species.
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Introduction

Climate controls wild species distributions and eco-
system processes (Townsend et  al., 2003). Current 
climate change is induced mainly by anthropogenic 
actions resulting in increasing levels of greenhouse 
gases in the atmosphere (Siegenthaler et  al., 2005; 
IPCC, 2007), and ecosystems are affected differently. 
Entire biomes are subject to rapid modifications due 
to regime disturbances, colonization of new species, 
local extinction of populations, or even extinction 
of whole species, among others (Parmesan & Yohe, 
2003; Thomas et al., 2004; Parmesan, 2006; Lemes & 
Loyola, 2013).

These effects are particularly worrisome in the 
Neotropical region (Williams et  al., 2007). Neotrop-
ics hold several hotspots of biodiversity (Myers et al., 
2000), where species are exceptionally vulnerable to 
climate changes (Khaliq et al., 2014; McCain, 2009; 
Williams et al., 2007) because they already live closer 
to their limit of thermal safety margins (Dillon et al., 
2010; Huey et  al., 2012; Sinervo et  al., 2010). This 
fact prevents their fit development to even higher tem-
peratures, which will likely be reached sooner than 
previously thought (Tewksbury et al., 2008), and will 
probably exceed the thermal tolerance of species very 
rapidly (Araújo et al., 2013).

Therefore, ongoing climate change is undoubt-
edly recognized as a primary concern for the estab-
lishment of conservation priorities (Thomas et  al., 
2004; Thuiller et al., 2005a, b), and so the definition 
of protected areas (PAs) (Dudley et  al., 2010; Vale 
et al., 2018). Protected areas (PAs) play a prominent 
role in conservation under climate-changing scenar-
ios, sustaining different microclimatic conditions in 
heterogeneous habitats and preventing species from 
facing extreme climatic conditions (Sunday et  al., 
2014). However, the establishment of most PAs in the 
Neotropical region was not designed under objective 
criteria and planning methods, resulting in an insular 
system of PAs (Rylands & Pinto, 1998). Such systems 
are only suitable for temporary insular ecosystems 
and are more likely to turn populations even more 
vulnerable and isolated, increasing the risk of local 
extinction (Hansen & DeFries, 2007). The creation of 
dispersal/ecological corridors has been recommended 
and successfully tested to overcome this limitation 
and connect isolated PAs (Crooks & Sanjayan, 2006; 
Haddad et al., 2003).

Dispersal corridors are habitat portions that allow 
movement of species between habitat patches (Beier 
et al., 2008). Corridors are a vital conservation man-
agement tool to increase connectivity in heterogene-
ous landscapes, constituted by patches of suitable and 
unsuitable habitats (Crooks & Sanjayan, 2006), which 
may promote gene flow between more or less isolated 
populations and mitigate other habitat fragmentation 
effects (Brudvig et  al., 2009; Gilbert-Norton et  al., 
2010), such as reducing the chances of inbreeding 
depression (Brown et al., 2004) and decreasing rates 
of stochastic extinction (Fahrig & Merriam, 1994). 
Nonetheless, identifying corridors requires a thor-
ough mapping of landscape permeability to the move-
ment of target species and modeling of possible paths 
of organisms through that landscape (Koen et  al., 
2010). Connectivity models need to be developed 
to predict the least costly way to estimate multiple 
movement paths (Beier et al., 2008; Cushman et al., 
2009; Pinto & Keitt, 2009), considering not only the 
resistance of the landscape, i.e., suitability of each 
habitat composing the landscape to the species move-
ment, but also the species movement behavior and 
movement risk (McRae & Beier, 2007; McRae et al., 
2008, 2016).

Neotropical birds constitute a group of interest for 
wildlife conservation, since several studies predict 
significant declines in their future geographic dis-
tributions (Anciães & Peterson, 2006; Foden et  al., 
2013; Loiselle et  al., 2010; Marini et  al., 2009a, b), 
which thus seriously threatens the world biodiversity 
(Lawler et al., 2009). Most bird species are found in 
the Neotropics, surpassing other vertebrate species. 
This is also one of the most threatened group of ver-
tebrates worldwide, also with new species being dis-
covered routinely (reviewed by Jenkins et al., 2013).

In northern Brazil, eastern Amazon is an ecotone 
region comprising the Amazon Forest and Cerrado, 
a tropical savanna. This region is excellent for a case 
study to understand the vulnerability of bird species 
to climate change. This region is among the most het-
erogeneous within the Amazon basin, presenting var-
ious landscapes (Ab’Saber, 1977; Mello et al., 2000; 
IBGE, 2013). In this ecotone, biodiversity is threat-
ened by intensive anthropic pressure and high defor-
estation rates, primarily due to the massive expansion 
of agribusiness (Nepstad et al., 1999; Wood & Porro, 
2002). It is noteworthy that 61% of the threatened 
bird species from the Brazilian Amazon mainly or 
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exclusively occur in this portion of the Amazon Basin 
(IBAMA, 2014).

In contrast, the Cerrado is the second biome with 
the most threatened bird species in Brazil (Marini 
& Garcia, 2005). Protected areas within the eastern 
Amazon constitute an insular system of PAs, although 
an ecological corridor was recently proposed to con-
nect some of the biggest PAs (Celentano et al., 2018). 
Nonetheless, Celentano et al. (2018) did not evaluate 
the utility of the corridor under a scenario of future 
climate change, and this corridor is still likely to be 
insufficient to protect bird species within the Cer-
rado portion of the ecotone, where PAs are currently 
misallocated (Carvalho et al., 2017). Moreover, eco-
tones provide opportunities to mitigate the impact of 
climate change on biodiversity, as populations close 
to these regions may have distinct genetic characteris-
tics, pre-adapted to the physiological stress of climate 
change due to micro-environmental constraints in an 
area where climate stress is the main macro-environ-
mental characteristic (Killeen & Solórzano, 2008; 
Sunday et al., 2014).

Herein, we evaluate the potential impacts of future 
climate change on the distribution and conservation 
status of 24 bird taxa currently threatened in an eco-
tone region within northern Brazil. First, we compare 
the future potential distributions of the target taxa 
with the current PA system to detect possible bird 
protection gaps under a climate change scenario. We 
also calculate the potential changes in the taxa distri-
bution ranges and species richness estimates for the 
future. Finally, we identify possible dispersal corri-
dors to enhance the conservation of these threatened 
taxa under ongoing climate change.

Methods

Study area

This study was performed in northern Brazil in a total 
area of 331,983.29  km2, corresponding to the Brazil-
ian federal state of Maranhão. This area comprises 
great patches of Amazon rain forest, a large propor-
tion of native vegetation of Cerrado, and includes 
small patches of Caatinga vegetation enclaves within 
Cerrado (Fig. 1) (INPE, 2015). Unflooded terra firme 
and flooded varzea rain forests, open vegetation areas 
named campinas, wooded savanna, mangroves, xeric 

shrubland, and other less represented habitats are 
intermixed along our study area, making this a very 
heterogenic region, and composing a biologically rel-
evant ecotone area (Carvalho et al., 2017; de Oliveira 
et al., 2007; MMA, 2011; Olímpio et al., 2016; Serra 
et al., 2016). Extensive cattle ranching, logging, min-
eral and metallurgical extraction, agriculture, and 
energy production are some of the most active anthro-
pogenic actions in the study region (FIEMA, 2009; 
Nepstad et al., 1999; Wood & Porro, 2002), adding to 
the complexity of natural habitats within the ecotone.

This study follows Carvalho et  al. (2017), who 
delimited priority areas for conserving bird species 
within the study region under current climatic con-
ditions. Therefore, we considered the same 39 PAs 
previously assessed (Carvalho et  al., 2017), which 
comprise eight federal conservation units of sustain-
able use, four of full protection, six state conservation 
units of sustainable use, two of full protection areas, 
and 18 indigenous lands delimited and homologated 
by the Brazilian federal government (Fig. 1; Table 1 
from Carvalho et al., 2017). Considering the perspec-
tives in a future scenario, we added two indigenous 
lands under delimitation to our PA data set, Vila Real 
and Kanela (https:// www. funai. gov. br).

Sampling

Within the ecotone study area, 41 taxa (species and 
subspecies) are considered threatened by the Brazil-
ian government (IBAMA, 2014; MMA, 2008). This 
national list ranks regional biodiversity, such as 
endemic subspecies (e.g., Celeus torquatus pieteroy-
ensi and Pteroglossus bitorquatus bitorquatus). Of 
these 41 taxa, 11 are marine, coastal, or migratory 
birds; three represent large-sized birds of prey with 
relatively more extensive home ranges, and three taxa 
have less than five independent occurrence records 
(IBAMA, 2014; MMA, 2008). Thus, our total data 
set includes 24 terrestrial, non-migratory, threatened 
bird species and subspecies in our ecotone study 
area, with more than five independent occurrences 
available (Table  1). Fifteen taxa are known to have 
distributions restricted to the Amazon biome. Four 
are restricted to Cerrado and Caatinga biomes (here 
we include Spinus yarrellii, the yellow-faced siskin, 
which was recently (2007–2017) observed within 
the Atlantic forest, on the eastern coast of Brazil; 
Fig.  S1; WikiAves), and the other five species have 
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widespread distributions, occurring in all biomes rep-
resented in the ecotone study area (Da Silva, 1995, 
1997; Silva & Bates, 2002; IBAMA, 2014; MMA, 
2008; IUCN 2018.1). All target taxa are classified as 
threatened on the Brazilian official list of threatened 
species (IBAMA, 2014; MMA, 2008), and 14 are 
considered globally threatened (IUCN 2018.1).

We collected occurrence records for each taxon from 
the literature, online databases (VertNet (http:// vertn et. 
org/), Species Link (http:// splink. cria. org. br), Global 
Biodiversity Information Facility (http:// www. gbif. 
org), Wikiaves (http:// www. wikia ves. com. br), xeno-
canto (http:// www. xeno- canto. org)), and museum col-
lections (Louisiana Museum of Natural History, Museu 

Paraense Emílio Goeldi, and Museu Nacional do Rio de 
Janeiro) (Fig. S1). Records outside the known distribu-
tion for the species were excluded based on the known 
distribution of the taxa (IBAMA, 2014; MMA, 2008; 
IUCN 2018.1). We used the geographical coordinates 
directly from sources or the Ornithological Gazetteer of 
Brazil (Paynter & Traylor, 1991). We controlled sam-
pling bias on georeferenced data by removing duplicate 
records and leaving a single randomly selected record 
per pixel. We used a thinning technique, implemented 
in the package spThin (Aiello-Lammens et  al., 2015), 
to reduce autocorrelation in the occurrence data. After-
ward, we used Moran’s I and variograms that minimize 
spatial autocorrelation to define the thinning distance 

Fig. 1  Map of the study 
area with protected areas 
(striped polygons) located 
within the Amazon and 
Cerrado biomes
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(de Andrade et  al., 2020). We excluded records from 
years before 1970 (Fick & Hijmans, 2017; Karger et al., 
2017). Bird nomenclature followed the Brazilian Orni-
thological Records Committee (CBRO, 2015).

Species distribution modeling procedures

For all 24 target bird taxa, first, we overlaid each 
data set of occurrence records on the grid of cells of 
2.5 arc-min (~ 4.5 × 4.5  km), delimiting a buffer of 
200 km, accounting the average mobility of the spe-
cies assessed, and set around all records to define the 
total extent area (Fig. 2a–b). We used this same grid 
considering all 19 bioclimatic variables from World-
Clim for the current climatic scenario and the Rep-
resentative Concentration Pathway 8.5 (RCP8.5) for 

the future scenario (https:// www. world clim. org). To 
remove highly correlated variables and reduce their 
collinearity under each scenario, we performed pair-
wise Pearson correlation tests and estimated the vari-
ation inflation factor (VIF), so a subset of uncorre-
lated variables (r <|0.8|; VIF < 10) was used. For both 
scenarios, the same eight predictor variables were 
selected as our environmental variables annual mean 
temperature  (BIO1), mean diurnal range  (BIO2), iso-
thermality  (BIO3, annual precipitation  (BIO12), pre-
cipitation of driest month  (BIO14), precipitation sea-
sonality  (BIO15), precipitation of warmest quarter 
 (BIO18), and precipitation of coldest quarter  (BIO19) 
(Fig.  2c).We used a single future climatic scenario 
(Fig.  2d) because climate projections influence less 
future putative distributions than species distribution 

Fig. 2  A general summary of the methods used in our study
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modeling methods (Sales et  al., 2017). We chose 
RCP8.5, since this is the most pessimistic of the four 
RCPs available, representing the most severe future 
global climate change. It predicts continuous green-
house emissions from anthropogenic actions until 
2100 (Moss et al., 2008). Furthermore, RCP8.5 offers 
a focused and simplified representation of a “business-
as-usual” approach to emissions, serving as a critical 
reference point for assessing the maximum potential 
impacts on species distributions, while the Shared 
Socioeconomic Pathways (SSPs) encompass a wider 
range of socio-economic development narratives 
coupled with climate change scenarios (IPCC, 2014, 
2021). We modeled taxa distributions for the period of 
2070 (average for 2061–2080) using seventeen differ-
ent Atmosphere–Ocean General Circulation Models 
(AOGCMs): ACCESS1-0 (AC), BCC-CSM1-1 (BC), 
CCSM4 (CC), CNMR-CM5 (CN), GFDL-CM3 (GF), 
GISS-E2-R (GS), HadGEM2-AO (HD), HadGEM2-
CC (HG), HadGEM2-ES (HE), INMCM4 (IN), IPSL-
CM5A-LR (IP), MIROC-ESM-CHEM (MI), MIROC-
ESM (MR), MIROC5 (MC), MPI-ESM-LR (MP), 
MRI-CGMM3 (MG), and NorESM1-M (NO) down-
loaded from WorldClim (https:// www. world clim. org) 
with the same resolution of 2.5 arc-min (Fig. 2e).

We used two methods to predict the potential dis-
tributions accounting for the number of occurrence 
records for each focal taxon (Fig.  2f) for SDMs for 
both current and future scenarios. The Jackknife 
approach (also known as the leave-one-out method) 
was used for five taxa with limited occurrence data 
(≤ 10 records) (Pearson et  al., 2007). According to 
the literature, the minimum number of occurrence 
records should be three to five to perform such an 
approach (De Almeida et  al., 2010; Lima-Ribeiro & 
Diniz-Filho, 2012). The lowest number of occur-
rence records was seven for our target species. Thus, 
we jackknifed the observations to produce occurrence 
subsets with n-1 occurrences for our data input. We 
then used these subsets to predict the distribution of 
the species. The occurrence record that was left out 
was used to evaluate the goodness-of-fit of the models. 
For distribution predictions to be considered reliable, 
p-values must be lower than 0.05, indicating that sam-
pling bias is negligeble. Conversely, p-values greater 
than 0.05 indicate an unreliable outcome. For the 
other 20 taxa (n > 10 records), we analyzed 10 subsets 
of records obtained by randomly dividing the occur-
rences in training (70%) and testing (30%) records.

We trained all models using three SDM algorithms 
of machine-learning methods under both current and 
future climatic scenarios, respectively: maximum 
entropy (MaxEnt) (Phillips & Dudík, 2008; Phillips 
et al., 2006), was fitted using the inhomogeneous Pois-
son process procedure, with the linear, quadratic, prod-
uct, and hinge features, default regularization values 
support vector machine (SVM) (Scholkopf et al., 2001), 
was performed with a radial basis kernel, with a con-
stant cost value equal to one, and based on probabilities 
classes and random forest (RF), was tuned automatically 
using the ‘tuneRF’ function of the randomForest pack-
age with default values of the step factor, 500 trees, and 
the improvement in out-of-bag error parameter (Brei-
man, 2001; Prasad et al., 2006). Machine-learning algo-
rithms were preferred because general linear models 
behaved poorly in representing the species distribution 
area (data not shown). All SDM algorithms were param-
eterized in R 3.4.2 (https:// www.r- proje ct. org) (Fig. 2g). 
MaxEnt was run using the R package maxent v.0.1.2, 
and the algorithm was fitted using the inhomogeneous 
Poisson process procedure, with the linear, quadratic, 
product, and hinge features and default regularization 
values (Phillips et al., 2017). SVM was performed using 
kernlab package v.0.9-25. with a radial basis kernel, 
a constant cost value equal to one and based on prob-
ability classes (Karatzoglou et al., 2004). Last, RF was 
tuned automatically using the “tuneRF” function of the 
randomForest R package v.4.6-12 under default val-
ues of the step factor, 500 trees, and the improvement 
in out-of-bag error parameters (Liaw & Wiener, 2002). 
These presence-absence algorithms confront true occur-
rence points (presence points) with points allocated in 
areas where the species is known not to occur (absence 
points). Due to the lack of absence points, we used the 
environmental constraint method, which randomly 
places samples in areas of low climatic suitability cre-
ated by climate models using Bioclim (Engler et  al., 
2004). In this way, pseudo-absences are generated with a 
ratio of 1 pseudo-absence point for each presence point.

We considered the threshold that maximizes both 
omission and commission errors while modeling the 
species distributions to cut the suitability matrices of 
the modeled species in the modeling algorithm into 
presence-absence maps (ROC threshold) for all taxa. 
We used true skill statistics (TSS) to evaluate the met-
rics of our models (Allouche et  al., 2006). TSS val-
ues vary from − 1 to + 1, where negative values indi-
cate that distributions are no better than random, and 
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values equal to + 1 represent perfect fitting between 
the observed and the modeled distribution. Models 
with TSS values reaching 0.5 or more than 0.7 were 
considered acceptable and excellent, respectively 
(Allouche et al., 2006) (Fig. 2h). This metric was cal-
culated using 10,000 random pseudo-absences.

Two final distribution maps for each taxon were 
obtained with a mean ensemble of the three SDM algo-
rithms for current and future scenarios. Future SDMs 
considered a mean consensual distribution map obtained 
from all AOGCMs. All consensus distribution maps 
were obtained using only reliable models (p < 0.05 after 
Jackknife approach) and that achieved a TSS value > 0.5, 
following the bootstrap method (Fig. 2h).

Estimated protected range and species richness

According to Carvalho et al. (2017) results, Cerrado PAs 
are particularly misallocated. Moreover, predominantly 
forest-dependent taxa are more likely to be found in Ama-
zon biome PAs, while Cerrado endemics are restricted to 
this biome (see also Carvalho et  al., 2017 predictions). 
Therefore, we divided our total data set into a group 
from the Amazon biome (Amazon taxa data set; n = 20), 
another grouping of taxa with occurrence in Cerrado and 
Caatinga (Cerrado taxa data set; n = 9), and a third data 
set including taxa occurring in both the Amazon, Cer-
rado and Caatinga (both data sets; n = 5). We predicted the 
proportion of PAs, estimated species richness, performed 
gap analysis by statistical analysis, and assessed the effec-
tiveness of PAs in our study area for present and future 
scenarios for these three different data sets. We also per-
formed statistical analysis to estimate the effectiveness 
of PAs, considering all study areas for taxon with gain or 
loss in the predicted future distribution. The modeled spe-
cies richness was obtained by the sum of the final distri-
bution estimated for each taxon (Fig. 2i) and overlaid with 
both the shape file of the world ecoregions (https:// www. 
world wildl ife. org) and the shapefile of PAs within the 
study area (as detailed in Carvalho et al., 2017).

The effectiveness of protected areas was first analyzed 
using linear regressions contrasting the total distribution 
size predicted (independent variable) against the size pre-
dicted to be within a PA (dependent variable) for each 
taxon. We also used paired t-tests, suitable for dependent 
samples, to assess possible changes in both the estimated 
range and the amount of protected distribution area 
between present and future scenarios. For all analyses, 
we used a 95% confidence interval for the slope.

Identification of dispersal corridors

We evaluated the connectivity between PAs for the 24 
threatened bird species using Linkage Mapper, which 
integrates least-cost path approaches with circuit the-
ory (McRae & Kavanagh, 2011). The least cost path is 
the single path related to the minimum cost-weighted 
distance between two core areas (Adriaensen et  al., 
2003). This tool uses the core areas to connect as input 
data and a resistance surface associated with habitat 
variables for the target species. We used the PAs from 
the Cerrado biome, Amazon, or all the sets as core 
areas for each studied species, depending on their hab-
itat requirements. After merging PAs that presented 
overlapping regions, we obtained seven core areas for 
the Amazon taxa (20 taxa), 14 for Cerrado’s (five spe-
cies), and 16 for the whole state (four species). Reduc-
ing the number of PAs to be considered also reduces 
computational time and avoids software errors.

We tested two habitat variables regarding resistance 
surfaces: land use and climate data. For land usage, we 
downloaded the raster information from TerraClass 
Amazon (Almeida et  al., 2014) and TerraClass Cer-
rado (INPE, 2013), both at a resolution of 2.5 arc-min 
(~ 4.5 × 4.5 km). Next, we assigned resistance values to 
each type of land use per taxa, according to our expert 
opinion (DLC and MPD), to quantify how much each 
type could act as a barrier to dispersal and quantify its 
degree of interference. The values applied to each land 
use class ranged from 1 = no resistance to 100 = barrier 
(Tables S1 and S2). The climate data used were previ-
ously obtained from ensembles for each species through 
SDM. However, the values of the ensembles ranged 
between 0 and 1, representing conductance. Thus, it was 
necessary to standardize and invert the raster values to 
obtain values ranging between 1 and 100, represent-
ing resistance. To do that, we applied the formula 100 
– “ensemble” * 100 to each ensemble of climate rasters.

After mapping the corridors between PAs for each 
species, we ran the Pinchpoint Mapper tool (McRae, 
2012). This tool uses circuit theory to identify pinch 
points within the least-cost corridors (McRae & 
Shah, 2009). Thus, the flow of electricity depends 
on the resistance value of each cell within each least-
cost corridor (McRae & Shah, 2009; McRae, 2012). 
The least-cost corridors were clipped according to the 
user-specified corridor width (Dutta et al., 2016). We 
applied three different cutoff values depending on the 
ability of each species to move through a suboptimal 
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habitat: 150 for Amazon species, characterized as 
rapidly accumulating cost moving through suboptimal 
habitat, while for Cerrado species and for more gen-
eralist species (both biomes data set) that can move 
easily, the cutoff values were 75 and 50, respectively.

Pinchpoint Mapper identifies sites (called “pinch 
points”) with the highest current densities within the 
least-cost corridors (McRae & Shah, 2009; Dutta et al., 
2016). These locations act as bottlenecks to movement, 
indicating where the flow is more intensive due to the 
unavailability of alternative pathways. Bottlenecks may 
denote cover types or constraints caused by physical 
features adjacent to high resistance (Dutta et al., 2016). 
We used this analysis to find pinch points between the 
entire core areas and corridors network. This provides 
a current flow centrality measure to evaluate the impor-
tance of linkages and pinch points in maintaining con-
nectivity in the whole landscape (Carroll et al., 2012).

Results

Species distribution models

We used 576 occurrence records for the 24 threatened 
bird taxa in the ecotone area studied (with 7–48 inde-
pendent occurrence records). We produced poten-
tial global distribution maps for current and future 
scenarios for each target taxa (Figs. S2 and S3). We 
summarized them regarding the gain and loss area 
for 2070 within the study area (Fig.  S4). Overall, 
the accuracy of the SDMs estimated for the present 
and future climatic scenarios was acceptable, despite 
some minor omission errors in three of the 24 taxa 
analyzed (Tables 1 and S3).

Distribution extent, protected range, and species 
richness

Considering the scenario for 2070, the predicted 
range size of suitable areas varied considerably for 
all target taxa, either globally or within the study area 
(Table  1; Figs.  S3 and S4). However, these changes 
in size were not statistically significant while analyz-
ing the three data sets previously described (t = 0.906, 
df = 19, p = 0.376 for Amazon taxa, t =  − 0.622, 
df = 7, p = 0.553 for Cerrado taxa, and t = 0.599, 
df = 4, p = 0.581 for taxa occurring in both biomes). 
Specifically, six (out of 15 Amazon taxa), one (out 

of four Cerrado taxa), and two taxa (out of five taxa 
from both biomes) will likely increase their distribu-
tion range in the future within the ecotone area stud-
ied (Table  1). However, considering groups of taxa 
predicted to gain (n = 9, t = 4.959, df = 15, p = 0.0002) 
or lose (n = 15, t =  − 3.769, df = 14, p = 0.000) a suit-
able area within the study area resulted in statistically 
significant changes in taxa distributions.

Notably, five Amazon taxa will probably go globally 
extinct (Psophia obscura, Celeus t. pieteroyensi, Picu-
lus paraensis, Dendrexetastes r. paraensis, and Piprites 
c. grisescens), with 0–5% of its global area of distribu-
tion remaining in the future climatic scenario tested 
(Fig. S3). Three taxa were predicted to lose about 50% 
of their putative distribution within the ecotone (Table 1 
and Fig. S4). For the Cerrado taxa, Cercomacra ferdi-
nandi was predicted to go globally extinct (Fig.  S3), 
Spinus yarrellii was predicted to disappear from the 
study area, and Penelope jacucaca will probably lose 
more than 70% of its predicted distribution (Table 1 and 
Fig. S4). Considering the taxa occurring in both biomes, 
Tinamus tao tao will lose all suitable areas within the 
study area, and Neomorphus geoffroyii will lose about 
70% of its current range (Table 1 and Fig. S4).

The estimated protected range in the current sce-
nario varied between 22 and 100% for the Amazon 
taxa, 7 and 51% for the Cerrado taxa, and 8 and 51% 
for the taxa occurring in both biomes. In the future 
scenario, the estimated protected range will likely 
decrease, varying between 0 and 54% for the Amazon 
taxa, 0 and 73% for the Cerrado taxa, and 0 and 67% 
for taxa distributed within both biomes (Table 2).

Our linear regressions indicated a significant 
positive correlation between protected range and 
distribution size both for Amazon (Fig.  3a, b) 
and Cerrado (Fig.  3c, d) threatened taxa in cur-
rent and future scenarios. For the Amazon taxa, in 
both scenarios, for every 202.5  km2 of distribution 
range (10 grid cells), there was a gain of protec-
tion of 81  km2 (four grid cells; Fig.  3a). On aver-
age, 50% ± 16% of the estimated range for the 
Amazon taxa is currently protected in this biome, 
but only 32% ± 22% will be protected in the future 
(Figs.  3b and 4). For the Cerrado data set, we 
obtained the same result for the current and future 
scenario. For every 202.5  km2 (10 grid cells of dis-
tribution range), there was a gain of protection of 
only 20.25  km2 (one cell; Fig.  3c–d). On average, 
18% ± 14% and 29% ± 21% of the estimated range 
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for the Cerrado species is and will be protected 
in this biome, respectively (Fig.  4). Considering 
widespread species in both biomes, no statistically 
significant relationship was observed between the 

size of PAs and the estimated distribution of the 
taxa, both under current (R2 = 0.098, p = 0.608, 
y = 708.5546 + 0.1357*x) and future scenarios 
(R2 = 0.508, p = 0.176, y = 335.6479 + 0.206*x).

Table 2  Estimated range 
in number of cells in the 
study area by biome for 
current and future scenarios 
(ER/B), estimated range 
in number of cells in the 
study area by biome under 
current and future scenarios 
(ER/UC), and percentage 
of occurrence in protected 
areas under current and 
future scenarios (%PA) for 
each taxon (data set)

Data set Taxon Current scenarios RCP8.5 scenarios

ER/B ER/AP %PA ER/B ER/AP %PA

Amazon taxa Psophia obscura 1481 902 61 0 0 0
Guaruba guarouba 3591 1569 44 1162 624 54
Pyrrhura coerulescens 2066 2066 100 5832 2253 39
Pyrilia vulturina 1409 586 42 1526 670 44
Pteroglossus b. bitorquatus 3831 1620 42 4399 2108 48
Celeus t. pieteroyensi 1578 969 61 1 0 0
Piculus paraensis 2649 1472 56 0 0 0
Phlegopsis n. paraensis 3995 2010 50 2974 1582 53
Hylopezus paraensis 4945 969 20 5013 2109 42
Dendrocincla m. badia 3020 1116 37 5406 2160 40
Dendrexetastes r. paraensis 530 393 74 0 0 0
Dendrocolaptes medius 2794 1099 39 1884 919 49
Lepidothrix i. iris 1493 654 44 836 399 48
Piprites c. grisescens 456 265 58 0 0 0
Tunchiornis ochraceiceps 2163 1098 51 3220 1608 50
Tinamus t. tao 1126 548 49 0 0 0
Penelope pileata 4586 1615 35 1819 882 48
Neomorphus geoffroyi 3861 1859 48 1621 858 53
Celeus obrieni 294 66 22 604 157 26
Lophornis gouldii 2615 1012 39 5039 1945 39
Mean 2424 1094 49 2067 914 32
SD 1393 578 18 2066 864 22

Both Tinamus tao tao 1218 535 44 0 0 0
Penelope pileata 5409 1790 33 1830 869 47
Neomorphus geoffroyi 4914 2487 51 2132 1422 67
Celeus obrieni 6292 525 8 6356 578 9
Lophornis gouldii 4852 1284 26 8537 2694 32
Mean 4537 1324 32 3771 1113 31
SD 1943 841 16 3538 1022 27

Cerrado taxa Tinamus tao tao 84 6 7 0 0 0
Penelope jacucaca 1456 396 27 71 52 73
Penelope pileata 1158 332 29 1830 22 1
Neomorphus geoffroyi 1620 831 51 1077 782 73
Celeus obrieni 5950 487 8 5725 447 8
Xiphocolaptes falcirostris 7383 801 11 9780 1511 15
Lophornis gouldii 2356 307 13 4067 1003 25
Cercomacra ferdinandi 254 43 17 0 0 0
Spinus yarrellii 345 29 8 0 0 0
Mean 2290 359 19 2506 424 22
SD 2611 311 14 3409 557 30
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The highest values of estimated species richness 
for the current scenario (> 50%) were located in the 
northern and northwestern part of the Amazon area 

within the ecotone for the Amazon taxa (between 10 
and 19 taxa) and for the species that occur in both 
biomes (maximum four species). For the Cerrado 
taxa, the highest species richness values (maximum 
of six species) were observed in the central, eastern, 
northeastern, and southern regions (Fig. 5).

In the future scenario, there was a decrease in the 
values of estimated species richness for the Amazon 
taxa (between 10 and 13 species) and those species that 
occur in both biomes (a maximum of three species). 
The highest estimated richness values were observed 
in the exact location of the current scenario. For the 
Cerrado biome, the highest values of potential rich-
ness (maximum of four species) were located in the 
northwestern, northeastern, and central regions of the 
study area. Considering the three groups, we observed 
decreased predicted species richness between the cur-
rent and future scenarios. There was a loss of 19.744 
 km2 in the Amazon, 13.507  km2 in the Cerrado, and 
48.398  km2 for the species from both biomes.

Fig. 3  Distribution of protected range concerning range size within the study area for Amazon (a, b) and Cerrado (c, d) taxa data 
sets (see “Methods” section for details), under current (a, c) and future (b, d) climatic conditions

Fig. 4  Percentage of occurrence in protected areas under cur-
rent and future scenarios per data set
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Fig. 5  Estimated species richness and protected areas within Amazon, Cerrado, and both study areas
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However, the paired t-test indicated no statistical 
support for the difference between the size of the esti-
mated distribution of species richness under current 
and future scenarios for all data sets (Amazon taxa 
t =  − 0.023, df = 19, p = 0.981, Cerrado taxa t = 0.000, 
df = 6, p = 0.999, and for the data set including those 
species that occur in both biomes and considering all 
the ecotone study area t = 0.599, df = 4, p = 0.581).

The paired t-test supported statistically significant 
differences between the current and future scenarios 
for the taxa group with loss and gain of distribution. 
For the taxa group with loss of distribution (t = 5.713, 
df = 14, p < 0.001), on average, 1586 cells were lost. 
On average, there was a gain of 1938 cells for the taxa 
group, with an increase in distribution (t =  − 3.769, 
df = 8, p = 0.005).

Regarding estimated species richness in the pro-
tected areas, the highest values (> 50%) of protected 
richness in the current scenario were only 22% for 
the Amazon taxa, 2% for the Cerrado taxa, and 6% 
for the species with occurrence in both biomes. In the 
future scenario, the values decreased to 13% in the 
Amazon portion, 0% for the Cerrado taxa, and 1% for 
the third group (Fig. 4). There was a loss of protected 
distribution range of 11.198  km2 for the Amazon data 
set, 1.053  km2 for the Cerrado taxa, and 17.780  km2 
for the species occurring in both biomes. The paired 
t-test supported the statistically significant differences 
between the current and future distribution of species 
richness for the Amazon and Cerrado data sets (Ama-
zon taxa t = 3.152, df = 18, p = 0.005, losing three 
taxa on average; and Cerrado taxa t = 2.270, df = 21, 
p = 0.034, losing just one taxon on average). For the 
third group, the observed difference was no better 
than random (t = 1.598, df = 37, p = 0.118).

Identification of dispersal corridors

On a broader scale, corridors predicted from both 
models of surface resistance (land use and climate) 
are similar. They have more than one possible cor-
ridor between various pairs of core groups of PAs 
(Figs. 6 and S5). Pinch points are observed between 
the central and northwest regions in the Amazon 
region, connecting Araribóia, Awa, and Caru indig-
enous lands with Gurupi Biological Reserve and APA 
das Reentrâncias Maranhenses. Within the Cerrado, 
pinch values were observed in a center-southwest 
direction between the central block of indigenous 

lands (Kanela, Porquinhos, Cana Brava/Guajajara, 
Lagoa Comprida, and Urucu Juruá) toward Araribóia 
and Krikati, and in a center-northeast direction, with 
high values between the same central block toward 
the Environmental Protection Area of Morro dos 
Garapenses.

Discussion

Species distribution models, protected range, and 
species richness

Here, we modeled the current potential distribution 
of all data-sufficient terrestrial, non-migratory, threat-
ened bird species and subspecies from an ecotone 
area in northern Brazil, comprising Amazon and Cer-
rado biomes, with Caatinga enclaves. We also com-
pared these current putative distributions with those 
projected into the future, in 2070, under the most pes-
simistic climate prediction model (https:// www. world 
clim. org).

In the current scenario, although we have com-
bined different species distribution modeling algo-
rithms, we observed the same patterns Carvalho 
et al. (2017) obtained for the 14 common target taxa. 
Thus, despite some minor omission errors, overall, 
our SDMs accurately represented the known distribu-
tions of the target taxa (IBAMA, 2014; MMA, 2008; 
IUCN 2018.1). This uncertainty is also inherent in 
using SDMs to evaluate the effects of climate change 
on the geographic distribution of species (Anderson, 
2013; Diniz-Filho et al., 2009; Stoklosa et al., 2015; 
Tessarolo et al., 2014). Nonetheless, contrary to cur-
rent SDMs, there is no such simple way to validate 
future models, and different databases or modeling 
approaches can produce different results (Wiens et al., 
2009). Moreover, we found different distribution pat-
terns for species sharing ecological requirements 
within our study area (discussed below). However, we 
obtained consistent results independently across all 
algorithms used for each taxon. Therefore, we support 
the idea that using our SDMs supplies essential bio-
logical and ecological considerations and is adequate 
to direct practical conservation actions (Hannah et al., 
2007, Heller & Zavaleta, 2009, Guisan et al., 2006).

According to our predictions, most of the bird taxa 
analyzed will probably have drastic declines in their 
range sizes within the ecotone area and in their global 
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distributions. Some taxa are predicted to go globally 
extinct soon, widely impacting species richness lev-
els across the ecotone. We used the future scenario 
that predicted a significant increase in greenhouse gas 
emissions (https:// www. world clim. org). Therefore, 
dramatic changes are expected. Several other studies 
using different predictive models have observed similar 
alarming decreases in the species distributions due to 
climate change, not only for birds in tropical regions 
worldwide (Marini et al., 2009a, b; Sekercioglu et al., 
2012) but also for other vertebrate groups (Mesquita 
et al., 2013; Vasconcelos, 2014; Bozinovic et al., 2011; 
Sheth & Angert, 2014; Ribeiro et al., 2016). Therefore, 
predicting species extinctions in the tropics is unsur-
prising (Anciães & Peterson, 2006; Sekercioglu et al., 
2008; Sinervo et al., 2010).

However, although we used the most pessimistic 
future scenario, some threatened bird taxa were also 
predicted to significantly increase their distributions 
in the ecotone area evaluated (and globally). The sur-
vival of species depends on them keeping pace with 
climate changes through rapid adaptation to the new 
climatic conditions or colonizing new areas of suit-
able habitat (Sinervo et  al., 2010). As our models 
are based only on abiotic conditions, and no test of 
future biological adaptation was performed, a puta-
tive increase in suitable area availability may bet-
ter explain the dispersal variation observed for Pyr-
rhura coerulescens, Pyrilia vulturina, Pteroglossus b. 
bitorquatus, Hylopezus paraensis, Dendrocincla m. 
badia, and Tunchiornis ochraceiceps (Amazon taxa), 
Xiphocolaptes falcirostris (Cerrado), Celeus obrieni, 

Fig. 6  Summary map 
showing the possible 
dispersal corridors within 
the study area for all target 
taxa. Colors represent 
higher (warm colors) or 
lower (cold colors) least 
cost corridors value
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and Lophornis goldii (occurrence in both biomes), 
which showed a dispersal pattern with distribution 
gain higher than loss.

Notwithstanding, this trend toward increasing 
their distribution ranges in the future might not 
be reassuring for these currently threatened birds. 
Amazon forest taxa usually have high specificity 
for forested habitats (Jolly et  al., 2015), and tropi-
cal forests are more vulnerable and likely to dis-
appear than savannas or grasslands due to climate 
change (Anjos & Toledo, 2018). These forests have 
a narrow thermal tolerance (Perez et al., 2016), are 
less resistant to climate stress, and have signifi-
cant exposure to new climatic conditions (Anjos & 
Toledo, 2018; Holmgren et al., 2013; Seddon et al., 
2016). Within the eastern Amazon, due to the ongo-
ing precipitation decrease and increasing tempera-
ture indices, a replacement of the rain forest with 
more open savanna-like vegetation is expected 
(Hilker et  al., 2014; Malhi et  al., 2008; Oyama & 
Nobre, 2003; Seidl et  al., 2017). However, despite 
the resemblance of this vegetation to a Cerrado 
vegetation type, most Cerrado tree species are pre-
dicted to lose at least 50% of their current distri-
bution by 2055 due to climate change (Siqueira & 
Peterson, 2003). Furthermore, past climate changes 
in the eastern Amazon likely transformed the com-
position of the forest rather than the vegetation 
physiognomy (Cheng et al., 2013).

Regarding the amount of protected range for each 
taxon within the ecotone, our linear regressions indi-
cate that for both Amazon and Cerrado bird taxa, a 
more comprehensive range corresponds to a higher 
amount of PA, and this trend will be maintained in 
the future. Nonetheless, to evaluate the effective-
ness of PAs, species representativeness in those areas 
should be considered to vary with the extent of their 
occurrence. For instance, narrowly distributed species 
(< 1000  km2) should have their whole ranges fully 
protected (100%), widespread species (< 250,000 
 km2) must have at least 10% of their ranges within 
PAs, and species with ranges of intermediate size 
should have intermediate protection (Rodrigues et al., 
2004a). The majority of our threatened taxa have cur-
rent potential distributions within the ecotone greater 
than 5000  km2 (5.204–196.243  km2), thus needing 
a protection range of about 80 to 10%, respectively 
(Rodrigues et  al., 2004a), but have between 70 and 
8% of protected potential ranges. Thus, we confirm 

that current PA systems within the study area are 
ineffective in protecting threatened bird species (Car-
valho et al., 2017).

Under the future climatic model, the predicted 
ranges vary dramatically, significantly increasing or 
decreasing. No trend was detected for gain or loss 
in the predicted future distribution of the target taxa 
related to their current distributions being restricted 
(or not) to either of the biomes within the ecotone. 
Some species will disappear from the ecotone, while 
others will reach between 2.025 and 69.032  km2 
for those predicted to lose area, corresponding to a 
percentage of the recommended protected area of 
10–100% (Rodrigues et  al., 2004a). Between 3.1367 
and 254.138  km2 should be considered for species 
that will increase their distributions by 10–20% of 
the recommended area within PAs (Rodrigues et al., 
2004a). Protected potential ranges will likely reach 
45% and 34% of distribution included in PAs for taxa, 
whose ranges will decrease and increase, respectively. 
Thus, in both time frames, the percentage of the 
potential protected area estimated is often lower than 
the recommended level (Rodrigues et  al., 2004b), 
suggesting that bird taxa are not and will not be effec-
tively protected within the ecotone.

Identification of dispersal corridors and conservation 
planning concerns

Corridors in this study indicate areas with low values 
of anthropogenic disturbance that can provide eco-
logical connectivity between sizable protected core 
areas (PCAs). The maintenance or further decrease 
of human impact along corridors should be part of 
a conservation strategy plan for the ecotone. This is 
because a well-connected network of PAs can ensure 
the opportunity for the movement of wild fauna 
(Belote et al., 2016; Gaston et al., 2008) and, conse-
quently, enable the long-term persistence of species 
(Christie & Knowles, 2015, Watson et al., 2017).

The location of most of our corridors coincides 
with our SDM results, Celentano et al. (2018) Gurupi 
corridor, and with the priority areas previously indi-
cated for endemic and threatened bird taxa (Carvalho 
et al., 2017). However, our corridor models highlight 
several common pinch points for the analyzed spe-
cies, showing numerous common bottleneck locations 
(Dutta et  al., 2016). These locations of unavailable 
alternative pathways make perfect sense, considering 
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all threats the ecotone faces. Within the Brazilian 
Amazon, the eastern portion has the highest defor-
estation rates, leading to a rapid fragmentation of for-
est cover (Lees et  al., 2006, Michalski et  al., 2008, 
Aldrich et  al., 2012). The Amazon region studied 
here is included in a broader region popularly known 
as the “Arc of Deforestation,” one of the regions most 
impacted by human pressures, and is expected to lose 
40% of its natural habitat for logging and cattle-rais-
ing by the year 2050 (Fearnside, 2001; Malhi et  al., 
2008; Soares-Filho et al., 2006). Within the northern 
Cerrado, the loss of natural vegetation has been pres-
sured by agribusiness, with an increase of 86% for the 
planted area between 2005 and 2014 (a national aver-
age of 29%) (Lahsen et al., 2016).

The eastern portion of the Brazilian Amazon pre-
sents only around 1.7% of its PA (Da Silva et  al., 
2005). Among these, 1.7% of Important Bird Areas 
(IBAs) shelter threatened and near-threated spe-
cies populations (MMA, 2003, Lees et al., 2012, De 
Lucca et  al., 2009). However, these PAs also have 
been suffering illegal occupations for deforestation, 
selective logging, and burning by squatters and other 
landowners (Rylands & Pinto, 1998, Couto, 2004, 
De Lucca et  al., 2009, Oren & Roma, 2011). These 
anthropic pressures are accounted for, creating drier 
and warmer microhabitats that are more susceptible 
to fire, inducing local and regional climate instabil-
ity, and changing water regimes (Malhi et  al., 2008; 
Nepstad et al., 2008). The interaction of deforestation 
and climate change may be more catastrophic here 
than each of these isolated impacts (Mantyka-Pringle 
et  al., 2012), making the taxa inhabiting this region 
extremely vulnerable to extinction (Ribeiro et  al., 
2016). Thus, more effective control of human occupa-
tions and activities is crucial.

The Cerrado biome is one of the 35 biodiversity 
hotspots of the world (Myers et al., 2000) and is one 
of the most impacted by anthropogenic disturbance 
(Azevedo et  al., 2016; Salazar et  al., 2015). Con-
sidering the entire biome, the Cerrado has already 
lost 50% of its native vegetation for agricultural 
and cattle-rise industries (MMA, 2015). In a future 
scenario of climate change, as mentioned above, 
the Cerrado is considered more resilient due to the 
already substantial seasonal variations in moisture 
and temperature, which characterize the biome 
(Anjos & Toledo, 2018). However, in the future 
scenario, the dry season would occupy most of the 

year, probably favoring fires and reducing tree cov-
erage, a critical temperature, and soil humidity reg-
ulator (Bustamante et al., 2012; Cochrane & Barber, 
2009). Additionally, the PA system in the Cerrado is 
highly inefficient (Carvalho et al., 2017). Only 2.2% 
of Cerrado extent is protected (well below the 10% 
established by the Convention on Biological Diver-
sity, 1992), and most PAs are misallocated (Ratter 
et al., 1997; Klink & Machado, 2005; MMA, 2011). 
In this portion of the ecotone, establishing new PAs 
and dispersal corridors are the more immediate con-
servation actions we recommend.

Thus, due to the significant number of threats, 
and their synergetic impact on species richness and 
diversity, we emphasized the creation of a corridor 
system for maintenance of the already threatened 
bird diversity of this ecotonal area (Lima & Gas-
con, 1999, Peres, 2005, Hawes et  al., 2008, Lees 
& Peres, 2006; Barlow et al., 2010). We also high-
light the establishment of effective policy actions, 
as the maintenance and recovery of natural or low-
anthropized areas guarantee connectivity between 
the protected area system and the conservation of 
richness and diversity in this region.
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