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Abstract  Heavy metal pollution in roadside soil 
may harm humans, animals, plants, and local eco-
systems. This study aimed to explore the sources and 
potential ecological risks of heavy metals in soils of 
roadside trees under different land uses, using soil 
samples collected from 136 roads across 16 admin-
istrative districts in Shanghai. The contents, pollution 
characteristics, potential ecological risks, and sources 
of seven heavy metals were analyzed, including Cr, 
Ni, Cd, Pb, As, Cu, and Zn. Results showed that (1) 
land use patterns affected the heavy metal contents, 
with industrial and construction areas showing higher 
contents while agricultural and forestry areas lower; 

(2) the ranking of heavy metal pollution levels was 
Cd > As > Pb > Cu > Ni > Cr > Zn. Cd exhibited 
the highest potential ecological risk, falling within 
the moderate to considerable potential ecological risk 
interval; (3) the sources of Cu, Zn, Cr, Ni, Cd, and 
Pb were associated with traffic emissions, whereas As 
had independent other sources and Pb in industrial 
and construction areas was also influenced by indus-
trial emissions. These results provide valuable refer-
ences on the control of heavy metal pollutants and the 
management of land uses in megacities.

Keywords  Land use types · Heavy metal content · 
Ecological risk · Source identification · Megacity

Introduction

Because of its non-degradability and long residual 
time, heavy metal pollution has the potential to 
harm humans, animals, plants, and local ecosystems 
(Mwesigye et  al., 2016; Viana et  al., 2008). With 
rapid urbanization, dusts generated from human activ-
ities, industrial production activities, and road traffic 
have become pollution sources in cities (Anahi et al., 
2021). These polluted dusts deposit on the surfaces 
of buildings, streets, and green spaces, ultimately 
contaminating the urban soil (Rahman et  al., 2019). 
Soils for roadside trees are the main channel connect-
ing the surface and underground of road spaces and 
are also the main reservoir of heavy metal pollutants 
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in cities. The heavy metal pollutants may infiltrate 
with rainwater, thereby affecting groundwater quality, 
soil microorganisms, and plant growth (Calace et al., 
2012). During dry weather, heavy metals in roadside 
soil may become inhalable particles and enter the 
human body through respiratory tracts, digestive sys-
tem, and skin, thus damaging human health (Li et al., 
2014; Roy & Mcdonald, 2015). Hence, it is important 
to explore the sources and potential ecological risks 
of heavy metals in urban soils of roadside trees.

Urbanization and different land uses in cities have 
a notable impact on heavy metal pollution. Different 
degrees of heavy metal pollution can be detected in 
soil, water, sediments, and road dusts under differ-
ent land uses (Mohiuddin et al., 2010). Studies have 
shown that the soil heavy metal contents were rela-
tively high in industrial and commercial areas in cit-
ies, while low in newly developed agricultural, for-
ested, commercial, and residential areas (Shi et  al., 
2010). Their sources also varied with the patterns 
of land use (Ghosh et al., 2018). A study in Bangla-
desh showed that heavy metals Ni, Pb, Mn, Cu, and 
Zn in soil mainly came from human activities (Islam 
et al., 2022). Another study in the northwest region of 
China showed that traffic emissions were the primary 
sources of Cu and Zn; industrial activities caused 
Pb, Hg, and As pollution; and Cr and Ni came from 
natural sources (Li, Yang, et al., 2022). However, the 
existing literature was mainly focused on the spati-
otemporal variations of heavy metal levels at large 
spatial scales, such as agricultural soil versus natu-
ral soil and urban versus suburban areas (Yan et al., 
2018). Limited research has been performed to study 
heavy metal contamination in soils under different 
land uses within a specific region.

Heavy metal pollution in soils has been a long-
term issue that is caused by industrial emissions, con-
struction waste, and human activities during urban 
development (Li, 2016). Compared with soils in 
green spaces, soils for street trees are within open and 
complex environments and thus are more influenced 
by urban development, land uses, and human activi-
ties (Konstantinova et  al., 2019). Therefore, it can 
be used to study the association between soil heavy 
metal pollution with different land uses. In highly 
urbanized areas, changes related to urbanization level 
and land uses may cause variations in heavy metal 
contents in soils of roadside trees, such as popula-
tion density, road age, number of vehicles, and road 

network density (Silva et al., 2016). Researchers have 
studied heavy metals in roadside soils in different 
countries, such as Germany (Björn & Gerd, 2012), 
Canada (Wiseman et al., 2013), Australia (Silva et al., 
2016). Most of these reports were about the pollu-
tion characteristics (including pollution levels, metal 
distribution, and migration), pollutants compari-
son with green space soils, or sources identification 
of heavy metals (Li et  al., 2012). Other studies also 
showed that different land uses could affect the accu-
mulation of heavy metals in urban soil (Wang et al., 
2012), river networks (Zeng et  al., 2020), and sedi-
ments (Li, Li, et al., 2022; Mohammadi et al., 2022). 
The sources of soil heavy metal pollution were also 
found to be related to land use types (Anaman et al., 
2022; Islam et al., 2019). However, it remains unclear 
what are the heavy metal pollution characteristics and 
potential ecological risks under common land use 
types in highly urbanized megacities. The source cor-
relation between various heavy metals also needs to 
be elucidated.

Understanding heavy metal pollution in roadside 
soils in megacities is indispensable for safeguarding 
public health, ensuring environmental sustainabil-
ity, and guiding effective urban planning (Shi et  al., 
2023). In this study, we selected Shanghai, a highly 
urbanized city, as the research area to link heavy 
metal pollution in soils of roadside trees with urbani-
zation. The main objective of this study was to exam-
ine how different types of land use affect the charac-
teristics and ecological risks of heavy metal pollution 
in the soils of roadside trees. As a second objective of 
this study, we also analyzed the source association of 
different heavy metals. The results will provide a sci-
entific basis for the control of heavy metal pollution, 
as well as urban planning and land use management 
in the context of rapid urbanization.

Materials and methods

Study area

Located in the eastern part of China’s Yangtze River 
Delta region, Shanghai (30° 40′~31° 53′ N, 120° 
52′~122° 12′ E) is characterized by a terrain that is 
higher in the southwest and lower in the northeast, 
with a flat landscape. The city has a humid sub-
tropical monsoon climate, with an average annual 
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temperature of 17.9 °C, and a rainfall of approxi-
mately 1178.2mm.

By 2020, the permanent population of Shanghai 
had reached nearly 25 million, and the total length of 
road mileage was approximately 13,000 km. As one 
of the most urbanized cities in China, the common 
land use types in the central area of Shanghai include 
residential, commercial, and industrial land, while 
other areas also include rural construction, agricul-
tural and forestry land.

Sampling method

The land use types in Shanghai were determined 
using Landsat TM/ETM satellite imageries com-
bined with field investigation, with a spatial reso-
lution of 30 m for the output land use layer. Based 
on the obtained data, sampling points covering 136 
roads of different land uses were selected from 16 
municipal districts in Shanghai. The replication in 
sampling was set by randomly selected three tree 
pools on each road. For each tree pool, the soil 

sample was generated by mixing up the soils col-
lected from 0 to 30 cm depth from four directions 
around the tree pool. A total of 408 mixed soil 
samples from 136 roads were air-dried to constant 
weight and stored after removing debris such as 
stones and plant roots. The average value of three 
replicates of each road was applied for further 
analysis.

After the laboratory analysis of the soil sam-
ples, the data was summarized to form POI (point 
of interest) data, which was then imported into the 
raster data of land use types in Shanghai. According 
to the national three-level classification standards 
for land uses and the construction intensity around 
sampling sites, the selected areas were further 
divided into five land use types. Among the 136 
study areas, 37 areas were urban residential land 
(L1), 30 areas were commercial and service land 
(L2), 32 areas were industrial and mining construc-
tion land (L3), 19 were rural residential land (L4), 
and 18 areas were agricultural and forestry land 
(L5) (Vrscaj et al., 2008; Yu et al., 2018) (Fig. 1).

Fig. 1   Location of sampling sites
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Laboratory analysis of heavy metal contents

Inductively coupled plasma atomic emission spec-
troscopy (ICP-AES) is a well-established analytical 
method to analyze trace elements in soil (Payá-pérez 
et  al., 1993). In this study, we used the ICP-AES 
method to measure the contents of heavy met-
als. Briefly, 0.20 g of freeze-dried soil samples was 
taken and placed in PTFE (Polytetrafluoroethylene) 
digestion flasks. Then, 2 ml of nitric acid and 6ml of 
hydrochloric acid were added sequentially and mixed 
thoroughly. After the reaction, the digestion flask was 
placed in a microwave digestion instrument to obtain 
the sample solution. The standard curve was obtained 
by measuring a series of standard solutions using an 
atomic emission spectrometer (BOVEI ICP-700T). 
Then, the contents of Cr, Cd, Cu, As, Pb, Zn, and Ni 
of each sample solution were quantitatively measured 
and analyzed.

Assessment of soil heavy metal pollution

This study used single pollution index (PI) and sin-
gle index of ecological risk factor (Er) as pollution 
indices to assess heavy metal contamination in soils 
(Kowalska et al., 2018; Weissmannová & Pavlovský, 
2017). According to the Hakanson risk evaluation 
method (Hakanson, 1980), PI is calculated from the 
content of each individual metal and the reference 
values. Er is calculated based on PI and the toxic 
response factor of individual metals Ti. The following 
equations were used:

where PI is the pollution index of heavy metal i. Ci 
is the measured content value of heavy metal i, and 
Cn is the background value of soil heavy metals in 
Shanghai. I ≤ 1 indicates that there is no heavy metal 
pollution, and I > 1 indicates that there is heavy metal 
pollution in the soil.

where Er is the single index of ecological risk factor 
of heavy metal i, with Er < 40 indicating low poten-
tial ecological risk caused by the heavy metal ele-
ment, 40 ≤ Er < 80 indicating moderate potential eco-
logical risk, 80 ≤ Er < 160 indicating considerable 

(1)PI = Ci∕Cn

(2)Er = PI × Ti

potential ecological risk, 160 ≤ Er < 320 indicating 
high potential ecological risk, and Er ≥ 320 indicat-
ing very high potential ecological risk; Ti represents 
the toxic response factor of heavy metal element i 
(Hakanson, 1980), with Zn as 1; Cr as 2; Cu, Pb, and 
Ni as 5; As as 10; and Cd as 30.

Data analysis

IBM SPSS Statistics 26 was used for multiple data 
analysis. ANOVA analysis was primarily conducted 
to determine the heavy metal contents and poten-
tial ecological risks under different land uses, while 
Pearson’s correlation was performed to identify the 
source association between different heavy metals. 
The KMO (Kaiser-Meyer-Olkin) and Bartlett tests 
of the samples showed a KMO measure of sam-
pling adequacy of 0.722 and Bartlett’s test value < 
0.001, indicating the adequacy of sampling and the 
fitness of applying principal component analysis 
(PCA). PCA and factor analysis were then applied 
to determine the potential sources of heavy metals 
under different land uses (Sungur, 2016). Specifi-
cally, RStudio (version R 4.0.6) was employed for 
data processing and visual analysis, with R-packages 
including tidyverse, readr, factoextra, ggplot2, scat-
terplot3d, and rgl. The codes are available in Supple-
mentary material.

Results

Heavy metal contents and pollution characteristics of 
soils of roadside trees in Shanghai

This study determined the contents of different heavy 
metals in the soils of roadside trees in Shanghai. As 
shown in Table 1 and Table S1, the average contents 
of Cr, Ni, Cu, Zn, As, Cd, and Pb were 80.82 mg/kg, 
35.14 mg/kg, 35.75 mg/kg, 131.78 mg/kg, 16.54 mg/
kg, 0.51 mg/kg, and 40.07 mg/kg, respectively, all of 
which were higher than those of the soil background. 
The coefficient of variation (CV) reflected the aver-
age degree of variation of different sampling points. 
The CVs of all heavy metals were greater than 30% 
except for Cr and Ni, suggesting a significant spatial 
differentiation of these heavy metals and a difference 
in their sources.
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The heavy metal pollution characteristics in soils 
of roadside trees were analyzed, using reference 
standards of “Background Values of Soil Elements 
in China (BVC),” “Standards for the Control of Soil 
Pollutant Risk for Agricultural Land Use (Trial),” and 
“Standards for the Control of Soil Pollutant Risk for 
Construction Land Use (Trial)”. As shown in Table 2, 
when BVC was used as the reference standard, more 
than 75% of the soils were polluted by Cr, Ni, Zn, Cd, 
Cu, and Pb; 100% of the soils were polluted by Cd. 
When “Standards for the Control of Soil Pollutant 
Risk for Agricultural Land Use (Trial)” was used as 
the reference standard, 46.3% of the soils were pol-
luted by Cd; 14% were polluted by As; Cu and Pb 
pollution were relatively low; and there were no Cr 
and Ni pollution. When taking “Standards for the 
Control of Soil Pollutant Risk for Construction Land 
Use (Trial)” as the reference standard, 100% had Cr 
pollution and 5.1% had As pollution, and there was 
no other heavy metal pollution. Varied protection 
focuses on different land uses resulted in the differ-
ences in soil background values and corresponding 
risk control reference values. This led to the variation 

in the pollution level and characteristics of heavy 
metals under different land uses.

Heavy metal content and potential ecological risk of 
soils of roadside trees under different land uses

The heavy metal contents and potential ecological 
risks of soils of roadside trees were assessed under 
different land uses. Except for Cu, the heavy metal 
content under industrial and mining construction 
land (L3) was higher compared with other types of 
land uses (Fig. 2). The heavy metal content in agri-
cultural and forestry land (L5) was the lowest. Cu 
content was the highest in commercial and service 
land (L2), with little difference in other land uses. 
Pb and Cd contents were ranked as follows: indus-
trial and mining construction land (L3) > rural res-
idential land (L4) > commercial and service land 
(L2) > urban residential land (L1) > agricultural 
and forestry land (L5). Under different land uses, 
the Zn and Ni contents varied little. The Cr con-
tents in industrial and mining construction land 
(L3) and rural residential land (L4) were slightly 

Table 1   Contents of heavy 
metal elements in soils of 
roadside trees (mg/kg)

Elements Soil background 
value in Shanghai

Average contents Standard error Range CV (%)

Cr 75 80.82 ± 17.87 1.53 50.53–159.47 22.11%
Ni 31.9 35.14 ± 6.92 0.59 23.03–79.42 19.69%
Cu 28.59 35.75 ± 22.05 1.89 16.64–247.84 61.68%
Zn 86.1 131.78 ± 55.42 4.75 61.55–464.39 42.05%
As 9.1 16.54 ± 21.04 1.80 3.04–129.43 127.2%
Cd 0.132 0.51 ± 0.25 0.22 0.16–1.82 49.02%
Pb 25.47 40.07 ± 31.75 2.72 16.77–331.63 79.24%

Table 2   Percentage of 
polluted areas by each 
heavy metal in the study 
areas using different 
reference standards

Elements BVC Standards for the Control 
of Soil Pollutant Risk for 
Agricultural Land Use 
(Trial)

Standards for the Control 
of Soil Pollutant Risk for 
Construction Land Use 
(Trial)

I ≤ 1 I > 1 I ≤ 1 I > 1 I ≤ 1 I > 1

Cr 13 (9.6%) 123 (90.4%) 136 (100%) / / 136 (100%)
Ni 8 (5.9%) 128 (94.1%) 136 (100%) / 136 (100%) /
Cu 17 (12.5%) 119 (87.5) 135 (99.3%) 1 (0.7%) 136 (100%) /
As 78 (57.4%) 58 (42.6%) 117 (86%) 19 (14%) 129 (94.9%) 7 (5.1%)
Cd / 136 (100%) 73 (53.7%) 63 (46.3%) 136 (100%) /
Pb 32 (23.5%) 104 (76.5%) 135 (99.3%) 1 (0.7%) 136 (100%) /
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higher than those of land uses. There was a large 
difference in As contents under different land uses, 
with the ranking order as follows: industrial and 
mining construction land (L3) > rural residential 
land (L4) > urban residential land (L1) > commer-
cial and service land (L2) > agricultural and for-
estry land (L5).

The potential ecological risk index considers 
both the content and the toxicity of heavy metals. 
As shown in Fig.  3, the potential ecological risks 
of different heavy metals were in the following 
order: Cd > As > Pb > Cu > Ni > Cr > Zn. Cr, Ni, 
Cu, Zn, As, and Pb all showed low potential eco-
logical risk under different land uses. However, in 
urban residential land (L1) and industrial and min-
ing construction land (L3), the potential ecological 
risks of As in multiple discrete samples fell in the 
range of moderate and severe risk (40 ≤ Er < 160). 
The potential ecological risk of Cd was no lower 
than moderate under all land uses, with both L3 
and L4 in the considerable risk interval (80 ≤ Er < 
160) and several discrete samples in the high and 
very high potential ecological risk interval. Cd in 
L5 was of moderate risk, with a few discrete sam-
ples in more serious intervals.

Analysis of the heavy metal sources in soils of 
roadside trees under different land uses

The PCA analysis (Fig. 4) of heavy metal contents in 
the soil samples indicated that principal components 
1 (PC1) accounted for 43.3% of the total variance. 
The factor loadings of Cr, Cd, and Ni on PC1 were 
all greater than 0.7, suggesting their similar sources. 
PC2, PC3, and PC4 had variance contribution rates 
greater than 10%, with PC2 accounting for 17.4% and 
being mainly related to Cu and Zn (factor loadings 
were 0.691 and 0.614, respectively). This indicated 
similar sources of Cu and Zn. PC3 was related to As 
(0.827), and PC4 was related to Pb (0.818), both of 
which may have other sources. All seven heavy metal 
elements were positively correlated with PC1; Cu and 
Zn were positively correlated with PC2; Cr, Ni, and 
Cd were negatively correlated with PC2 (Fig.  4a). 
The performances of heavy metals in PC1 and PC2 
under L3 and L4 were similar, with largely over-
lapped confidence intervals. Some elements could 
also be fully explained by different principal compo-
nents as shown by their factor loadings. Therefore, 
the sources of these heavy metals under the five land 
uses were similar to a certain extent.

Fig. 2   Heavy metal con-
tents in soils of roadside 
trees under different land 
uses. Different lower-case 
letters indicate significant 
differences under different 
land uses (p < 0.05)
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The source analysis results of heavy metals in soils 
of roadside trees under different land uses are shown 
in Table  3. In L1, all seven heavy metals could be 
well explained by PC1. The factor loadings of Cu and 
Zn were greater than 0.5 on both PC1 and PC2, indi-
cating their similar sources in L1. In commercial and 
service land (L2), the factor loadings of Cr, Ni, and 
Cd were all greater than 0.8 on PC1, while Cu, Zn, 
and Pb were well explained by PC2, suggesting that 
the sources of these two groups may be alike in L2. 
As was well explained only by PC3, indicating that 
the sources of As were different from other heavy 
metals. In L3, As and Pb were fully explained by PC2 
and PC3, respectively, which were significantly dif-
ferent from other heavy metals. In L4, all heavy metal 
elements except for As were fully explained on PC1, 
while the factor loadings of As on PC1 and PC2 were 

both greater than 0.5, which suggested the different 
sources of As. In L5, As and Cd could be sufficiently 
explained on PC2, yet the factor loading of Cd on 
PC1 was also greater than 0.5, indicating that there 
may be other sources of Cd in L5.

Pearson’s correlations were performed to fur-
ther explore the sources of heavy metals (Table 4). 
In L1, a highly significant positive correlation 
was observed between Cu and Zn (p < 0.001, r = 
0.621); Cr showed positive correlations with Ni, As, 
Cd, and Pb; As was significantly correlated with Cd 
and Zn; Pb was also associated with Cu and Cd. In 
L2, Cu and Zn exhibited a significantly positive cor-
relation; As had a correlation with Cd, which was 
the same as in L1; Cr was only significantly cor-
related with Ni and Cd; Pb had a correlation with 
Zn. In L3, Cr, Ni, Cu, Zn, and Cd were significantly 

Fig. 3   Potential ecological risks of heavy metals in soils of roadside trees under different land uses
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related and only As was correlated with Zn; Pb did 
not show significant correlations with other heavy 
metals, indicating its independent sources. In L4, 
there was a significant positive correlation between 
all heavy metals except Cr and Zn; Cu, Zn, and Ni 
were still significantly associated; Cd was positively 
correlated with all heavy metals except Pb; Pb was 
significantly positively correlated with Cr, Ni, and 
Cu, which was different from L1 and L2. In L5, As 
was not significantly correlated with other elements; 
Cu was also found to be significantly positively 
associated with Zn. The correlation of Cu with Zn 
in all five land use types suggested their relevance 
to traffic emissions.

Discussion

The pollution level and pollution characteristics of 
heavy metal in soils of roadside trees varied among 
different land uses

With the rapid expansion of the city, a large propor-
tion of the land in Shanghai has been converted into 
residential, commercial, and industrial land (Zhao 
et  al., 2006). Soils of roadside trees are generally 
more affected by human activities than soils in green 
spaces and thus are more prone to heavy metal pol-
lution (Morel et al., 2015; Rezayani et al., 2022; Roy 
et al., 2017). The average heavy metal content in soils 

Fig. 4   Principal component analysis (PCA) plot of heavy metal content in soils of roadside trees
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of roadside trees was higher than that of the back-
ground in Shanghai. Consistent with Teng’s study 
(Teng, 2021), a notable spatial difference in the heavy 
metal contents was observed, as shown by the large 
coefficients of variation of most elements. The dif-
ferentiation was largely attributed to the surrounding 
traffic conditions and local constructions, which were 
closely related to the land use types where the soils 
of roadside trees were located (Bakht et al., 2022; Lu 
et al., 2022).

When using different reference standards to evalu-
ate the pollution level of soil heavy metals, there can 
be different results due to the variation in the stand-
ards’ emphasis (Gao et al., 2015). In this study, when 
using “Standards for the Control of Soil Pollutant 
Risk for Construction Land Use (Trial)” as the refer-
ence standard, there was a significant risk of Cr pol-
lution in soils of roadside trees. However, when tak-
ing “Standards for the Control of Soil Pollutant Risk 
for Agricultural Land Use (Trial)” as the reference 
standard, there was no Cr pollution risk. The differ-
ence may result from the varied focus and suitability 
of different reference standards. For example, agricul-
tural land focuses on pollutants that may pose risks to 
the soil ecological environment, the growth of crops, 
and the quality and safety of agricultural products, 
while construction land is dedicated to soil pollutants 
that may harm human health through migration and 
exposure (Chen et al., 2021; Liu et al., 2016).

The potential ecological risks of heavy metals in soils 
of roadside trees varied among different land uses

Soil heavy metal pollution exhibited unique and 
complex spatial distribution characteristics. The 
soil heavy metal contents in urban areas were gen-
erally higher than those of suburban areas, with 
significant differences in different functional areas 
and the existence of heavy metal “islands” (Keydo-
szius et  al., 2007). Land use conditions, frequency 
of human interference, and distances from pollution 
sources will all cause notable spatial differences in 
heavy metal contents of urban soil (Cannon & Hor-
ton, 2009). This study displayed that the heavy metal 
contents and potential ecological risk of soils of road-
side trees varied among different land use types. Most 

Table 3   Factor loadings for source analysis of different heavy 
metals in soils of roadside trees under different land uses, 
emerging from principal component analysis (PCA) (values > 
0.5 are marked in bold, indicating  the adequacy in explaining 
their sources with the corresponding PC)

Land use types Elements PC1 PC2 PC3

L1 Cr 0.800 −0.450 0.173
Ni 0.556 −0.326 0.706
Cu 0.604 0.605 0.267
Zn 0.509 0.767 0.034
As 0.701 0.024 −0.275
Cd 0.750 −0.276 −0.421
Pb 0.676 −0.036 −0.296

% of variance explained 44.056 19.162 13.449
L2 Cr 0.849 −0.297 −0.289

Ni 0.811 −0.288 −0.439
Cu 0.313 0.826 0.249
Zn 0.289 0.899 −0.009
As 0.432 −0.118 0.86
Cd 0.818 −0.253 0.366
Pb 0.389 0.58 −0.373

% of variance explained 36.673 29.647 19.300
L3 Cr 0.781 −0.276 −0.014

Ni 0.866 −0.169 −0.128
Cu 0.88 −0.085 −0.029
Zn 0.744 0.311 −0.257
As 0.264 0.893 −0.168
Cd 0.784 −0.123 0.176
Pb 0.268 0.244 0.916

% of variance explained 49.209 15.445 14.012
L4 Cr 0.876 −0.042 −0.433

Ni 0.831 −0.271 −0.328
Cu 0.844 −0.238 0.37
Zn 0.772 0.079 0.603
As 0.586 0.73 −0.089
Cd 0.824 0.346 −0.057
Pb 0.676 −0.46 −0.04

% of variance explained 60.646 14.335 11.554
L5 Cr 0.574 0.177 −0.67

Ni 0.774 0.42 0.011
Cu 0.888 −0.32 0.188
Zn 0.721 −0.588 0.264
As −0.091 0.756 0.548
Cd 0.644 0.505 −0.179
Pb 0.902 0.028 0.204

% of variance explained 49.629 21.186 13.246
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heavy metal contents were higher in L3 and lower 
in L5 than other land use types, which suggested 
traffic and human activities had made roadside soil 
more complex. Heavy metals in the soils of roadside 
trees mainly came from urban construction and traf-
fic emissions, and the accumulation of heavy metals 
was more severe in L3. This is probably due to the 
busier traffic and more intense industrial activities, 
especially coal combustion in industrial and mining 
construction areas (Kang et al., 2022). In agricultural 

and forestry land, there is less traffic, but the utiliza-
tion of fertilizers and pesticides could result in heavy 
metal accumulation (Rahman, 2022).

According to the potential ecological risk assess-
ment result, the risks of heavy metal pollution in soils 
of roadside trees were ranked as Cd > As > Pb > Cu 
> Ni > Cr > Zn. Cd had significant ecological haz-
ard as its potential ecological risk index was in the 
moderate to high interval in all five land use types. 
Mainly, in acid-soluble and oxidizable forms, Cd has 

Table 4   Correlation 
coefficients and significance 
levels of soil different heavy 
metals in soils of roadside 
trees under different land 
uses

*p < 0.05, **p < 0.01, 
***p < 0.001

Land use types Elements Cr Ni Cu Zn As Cd Pb

L1 Cr 1
Ni 0.619*** 1
Cu 0.3 0.24 1
Zn 0.045 0.121 0.621*** 1
As 0.533*** 0.19 0.274 0.387* 1
Cd 0.598*** 0.245 0.182 0.198 0.516** 1
Pb 0.44** 0.206 0.356* 0.241 0.266 0.556*** 1

L2 Cr 1
Ni 0.898*** 1
Cu 0.039 −0.058 1
Zn −0.002 0.004 0.806*** 1
As 0.133 0.019 0.217 −0.012 1
Cd 0.592*** 0.521** 0.056 0.003 0.659*** 1
Pb 0.129 0.234 0.341 0.519** −0.143 0.141 1

L3 Cr 1
Ni 0.639*** 1
Cu 0.64*** 0.709*** 1
Zn 0.422* 0.564*** 0.656*** 1
As 0.049 0.12 0.121 0.353* 1
Cd 0.552** 0.664*** 0.589*** 0.387* 0.138 1
Pb 0.131 0.088 0.202 0.102 0.097 0.25 1

L4 Cr 1
Ni 0.885*** 1
Cu 0.625** 0.674** 1
Zn 0.412 0.46* 0.828*** 1
As 0.483* 0.328 0.271 0.457* 1
Cd 0.739*** 0.517* 0.565* 0.603** 0.624** 1
Pb 0.549* 0.56* 0.544* 0.441 0.165 0.426 1

L5 Cr 1
Ni 0.521* 1
Cu 0.338 0.634** 1
Zn 0.222 0.277 0.856*** 1
As −0.135 0.246 −0.21 −0.291 1
Cd 0.393 0.543* 0.316 0.072 0.093 1
Pb 0.321 0.582* 0.745*** 0.678** −0.002 0.693** 1
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high bioavailability and is the most hazardous heavy 
metal to the environment (Wiseman et al., 2013). The 
Cd content in L3 was significantly higher than that 
of other land use types, illustrating that besides traf-
fic activities, industrial activities were also important 
sources of Cd (Shi et al., 2010). Compared with other 
heavy metals, Cd has stronger toxicity and higher 
carcinogenic risk (Lin et  al., 2021; Rezapour et  al., 
2022). It may enter the human body through skin con-
tact, inhalation, and so forth. A small amount of Cd in 
the soil may cause serious damage to human health. 
Therefore, it is crucial to monitor and control Cd con-
tents in soils of roadside trees to reduce the risk of Cd 
migration (Mi et al., 2023).

The sources of different heavy metals were correlated 
in soils of roadside trees

Apart from natural sources, heavy metals in the soils 
of roadside trees are mostly from atmospheric dust 
deposition, vehicle abrasion, gasoline combustion, 
and road paint (Alsanad & Alolayan, 2020). The 
sources of Cu and Zn in all five land use types were 
extremely similar and were both attributed to traffic 
emissions (Shi et  al., 2010). Specifically, the main 
source of Cu was the abrasion of the vehicle braking 
system, while Zn mostly came from tire wear (Padoan 
et al., 2017). Traffic emissions were also the sources 
of Cr, Cd, and Ni (Viana et al., 2008). Although traffic 
emissions are important sources of most heavy met-
als (Rodriguez et al., 2009), there exist other sources 
(Yin et al., 2013). The sources of As and Cd differed 
among different land use types. In L2, As may come 
from the extensive application of metal work, wood 
preservation facilities, and semiconductor materials; 
in L3, As may be from the diffusion of industrial pro-
duction leakage; in L4, As may come from agricul-
tural supplies such as pesticides, herbicides, and fer-
tilizers (Swab et al., 2019; Wang & Mulligan, 2006). 
Unlike other land uses, the use of agricultural fertiliz-
ers and sewage irrigation may be the main sources of 
Cd in L5 (Amir et al., 2020; Zhao et al., 2014).

Soil Pb pollution is highly correlated with traf-
fic emissions and can be considered an indicator of 
vehicular pollution. However, in L3, Pb was not sig-
nificantly correlated with other heavy metals, which 
indicated that factories were also important sources of 
Pb in soils of roadside trees as Pb is an important raw 
material for industrial production (Cong et al., 2022). 

Cr and As in urban soil displayed characteristics of 
combined pollution. In this study, as the Cr content 
increased, the content of other heavy metals also 
increased significantly, which may result from the fact 
that heavy metal pollution in soils of street trees is 
also influenced by soil parent material. Cd may come 
from the large amount of yellow paint used for road 
markings in Shanghai, which was reported to contain 
much higher Cd content than other heavy metals (Lee 
et  al., 2018). The high correlation between Pb and 
Cd in L1 and L2 might arise from the colored paint 
which contains heavy metals such as Cd, Cu, and Pb.

Conclusions

This study conducted an analysis of heavy metal 
pollution in soils of roadside trees under five differ-
ent land uses, focusing on Cr, Ni, Cu, Zn, As, Cd, 
and Pb. The results indicated that the average heavy 
metal content in roadside soils was higher than that 
of the soil background. The highest heavy metal con-
tent was observed in industrial and construction land 
(L3), while the lowest was in agricultural and for-
estry land (L5). Among the seven heavy metals, Cd 
had the highest potential ecological risk across all 
five land use types. Furthermore, L3 exhibited sig-
nificantly higher concentrations of Cr, Ni, As, Cd, 
and Pb than other land types, while commercial and 
service land (L2) displayed notably higher Cu con-
tent. Within residential land, rural residential land 
(L4) showed higher heavy metal content compared to 
urban residential land (L1). The study also identified 
correlations in the sources of heavy metals in soils of 
roadside trees under different land uses. Similar to 
Cu and Zn, heavy metals of Cr, Ni, and Cd also dis-
played similar sources, which were all linked to traffic 
emissions. As exhibited characteristics of combined 
pollution with multiple sources. Pb in L3 originated 
from both traffic and industrial emissions, whereas 
Cd contamination in L5 could be attributed to the use 
of fertilizer and wastewater irrigation. These find-
ings establish a relationship between land uses and 
the characteristics of heavy metal pollution in soils 
of roadside trees. It also identified the potential eco-
logical risks and sources of heavy metals under dif-
ferent land uses in large cities. The results will pro-
vide valuable references for the guiding of urban land 
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planning, as well as for the monitoring of heavy metal 
pollution to ensure human health and environmental 
sustainability.
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