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Abstract The soil’s physical and mechanical (SPM) 
properties have significant impacts on soil pro-
cesses, such as water flow, nutrient movement, aera-
tion, microbial activity, erosion, and root growth. To 
digitally map some SPM properties at four global 
standard depths, three machine learning algorithms 
(MLA), namely, random forest, Cubist, and k-nearest 
neighbor, were employed. A total of 200-point obser-
vation was designed with the aim of a field survey 
across the Marvdasht Plain in Fars Province, Iran. 
After sampling from topsoil (0 to 30 cm) and subsoil 
depths (30 to 60 cm), the samples were transferred to 

the laboratory to determine the mean weight diam-
eter (MWD) and geometric mean diameter (GMD) 
of aggregates in the laboratory. In addition, shear 
strength (SS) and penetration resistance (PR) were 
measured directly during the field survey. In parallel, 
79 environmental factors were prepared from topo-
graphic and remote sensing data. Four soil variables 
were also included in the modeling process, as they 
were co-located with SPM properties based on expert 
opinion. For selecting the most influential covariates, 
the variance inflation factor (VIF) and Boruta meth-
ods were employed. Two covariate dataset scenarios 
were used to assess the impact of soil and environ-
mental factors on the modeling of SPM properties 
including SPM and environmental covariates (sce-
nario 1) and SPM, environmental covariates, and soil 
variables (scenario 2). From all covariates, nine soil 
and environmental factors were selected for modeling 
the SPM properties, of which four of them were the 
soil variables, three were related to remote sensing, 
and two factors had topographic sources. The results 
indicated that scenario 2 outperformed in all standard 
depths. The findings suggested that clay and SOM 
are key factors in predicting SPM, highlighting the 
importance of considering soil variables in addition 
to environmental covariates for enhancing the accu-
racy of machine learning prediction. The k-nearest 
neighbor algorithm was found to be highly effective 
in predicting SPM, while the random forest algo-
rithm yielded the highest R2 value (0.92) for penetra-
tion resistance properties at 15–30 depth. Overall, the 
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approach used in this research has the potential to be 
extended beyond the Marvdasht Plain of Fars Prov-
ince, Iran, as well as to other regions worldwide with 
comparable soil-forming factors. Moreover, this study 
provides a valuable framework for the digital map-
ping of SPM properties, serving as a guide for future 
studies seeking to predict SPM properties. Globally, 
the output of this research has important significance 
for soil management and conservation efforts and can 
facilitate the development of sustainable agricultural 
practices.

Keywords Cubist · Environmental covariate · 
k-nearest neighbor · Machine learning algorithms · 
Random forest · Spline function

Introduction

Soil physical and mechanical (SPM) properties 
are crucial parameters to evaluate soil quality and 
health, as well as to determine soil aggregate stabil-
ity. They play a significant role in land degradation 
and land management in the surrounding environ-
ment across the world, especially the areas similar to 
Iran’s climate condition (Rezaee et al., 2020a, 2020b; 
Mozaffari et  al., 2021, b, 2022, Mozaffari et  al., 
2022; Zahedifar, 2023a, b). These properties also 
provide valuable information on the water infiltra-
tion and nutrients cycle and play crucial role in soil 
ventilation, microbial activity, and tillage perfor-
mance (Mustafa et  al., 2020). Therefore, knowing 
the variability of SPM in the landscape is necessary 
for determining the fertilizer requirement of agricul-
tural crops, water, and cultivation management such 
as tillage toward sustainable production (Moosavi and 
Sepaskhah, 2012; Brevik et al., 2015).

Traditional mapping of SPM methods is labor inten-
sive, timely, and costly, as they require highly dense soil 
observation, high field survey, and laboratory activates 
(Shahabi et  al., 2017, Kazemi Garajeh et  al., 2022). 
Moreover, they rely on expert interpretation (expert 
opinion) of environmental covariates involving the 
key soil-forming factors (Gorji et  al., 2015). Further-
more, conventional soil mapping methods are unable 
to provide quantitative result of spatial soil maps in the 
term of accuracy and uncertainty analysis about varia-
tion of soil properties in soil survey projects (Zahedi 
et al., 2017). To prevail the limitations of conventional 

approach, novel methods like the digital soil mapping 
(DSM) approach have been more applied by research-
ers in recent decades. DSM employs mathematical and 
statistical methods for establishing the correlation soil 
properties and environmental factors that are representa-
tive of soil formation factors (McBratney et al., 2003). 
The output of DSM consists of the spatial prediction 
maps along with their quantitative validation that can 
help reduce the cost and time for soil science surveys 
(Esfandiarpour-Boroujeni et al., 2020).

In current DSM studies, pedometricians typically 
derive topographic attributes from digital elevation 
model (DEM) (Wang et al., 2018) and remote sensing 
(RS) data (Xiao et  al., 2019) which are easily acces-
sible information sources of environmental covariate. 
The use of grid proxy of topographic attributes and 
RS indices has been confirmed in different studies in 
the field of SPM prediction (Mashalaba et  al., 2020; 
Camera et al.; 2017; Ugbaje and Reuter, 2013). In this 
regard, Mashalaba et al. (2020) reported that topogra-
phy feature had the most important effect in soil prop-
erty prediction in central Chile, while environmental 
covariates have been widely applied worldwide, where 
they may not be sufficient for predicting soil proper-
ties. In two different studies, Mousavi et al. (2022) and 
Khosravani et  al. (2023) investigate the estimation of 
SOC and soil properties in two scenarios which con-
siders both soil and environmental covariates and 
only considers environmental covariates. Their results 
showed that including soil variables along with envi-
ronmental covariates improved the accuracy of MLAs 
compared to the scenario without soil variables. Simi-
larly, Zeraatpisheh et al. (2021) demonstrated that soil 
and RS variables were recognized as the most impor-
tant driving of soil aggregate stability. In this regard, 
Mozaffari et al. (2022) believed that using the primary 
soil properties for modeling particles size distribution 
could lead to acceptable accuracy.

Recently, applied ML algorithms for modeling soil 
properties by the aid of environmental factors in the 
DSM have attracted more attention by pedometri-
cians. Selection of the appropriate ML algorithms 
can have a significant impact on the accuracy of the 
produced maps (Khaledian and Miller, 2020). In a 
comprehensive review of research conducted over 
the last 10 years, Khaledian and Miller (2020) assess 
the capability of six ML algorithms in soil map-
ping, namely, multivariate linear regression (MLR), 
k-nearest neighbor (k-NN), support vector machine 
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regression (SVR), Cubist (CB), random forest (RF), 
and artificial neural network (ANN). According to 
their review, the RF algorithm was known to outper-
form in modeling of aggregate stability (Bouslihim 
et al., 2021). Also, Yamaç et al., (2020) confirm that 
the k-NN algorithm had the high R2 value (0.8) for 
predicting permanent wilting point (PWP) among 
other ML algorithms in calcareous soils.

In recent years, most DSM studies have focused 
on applying MLA to predict soil properties in top 
soil (Zeraatpisheh et  al., 2019; Parsaie et  al., 2021), 
whereas the potential of applied ML algorithms to 
predict SPM along with depth has not been deeply 
explored (Hengl et al., 2017). Some case studies have 
mostly focused on SOC prediction at top soil and 
subsoil simultaneously (Taghizadeh-Mehrjardi et al., 
2014; Mousavi et al., 2022). According to the litera-
ture until writing this paper, few research has been 
conducted on the on the vertical variation of SPM 
using soil depth functions such as spline, ML algo-
rithms, environmental covariates, and soil variables.

Therefore, limited studies have mapped spatial 
variation of SPM at the surface and subsurface (verti-
cal and horizontal dimensions) by considering envi-
ronmental covariates along with soil variables. Thus, 
the current research was conducted with the main aim 
of modeling SPM attributes including GMD, mean 
weight diameter of aggregates (MWD), shear strength 
(SS), and penetration resistance (PR) certainly using 
environmental covariates as a first scenario (S1) and 
accounting basic soil variables and environmental 
covariates as a second scenario (S2) in the southwest 
of Iran. Furthermore, we evaluated the capability of 
three ML algorithms of RF, CB, and k-NN in pre-
paring spatial estimation maps of GMD, MWD, SS, 
and PR at increment four depths of 0–5, 5–15, 15–30, 
and 30–60 cm, to provide more accurate and detailed 
maps of SPM which can be used in land and water 
management strategies, soil erosion control, and 
improving soil stability.

Materials and methods

Research workflow

The general framework of this study is designed in 
six main steps and presented in Fig. 1. The main steps 
are presented in the following order: (1) designing 

sampling point locations using the “clhs” package in 
R statistical software, collection of soil samples from 
0 to 30 and 30 to 60 cm, and standardizing soil depth 
by spline depth function, (2) preparing/collecting all 
possible environmental covariates from RS indices 
and DEM as representative soil forming factors, (3) 
selecting the most appropriate environmental covari-
ates for predicting SPM properties, (4) evaluating 
three ML algorithms (RF, k-NN, and CB) at the four 
standard soil depths (spatial modeling of soil proper-
ties) based on two scenarios (S1: environmental fac-
tors, S2: environmental factors + soil variables), (5) 
determining the relative importance (RI) of covari-
ates; and (6) preparing prediction maps of SPM.

Description of study area

Here, the interest area is limited to longitude of 52° 
41′ 35.82″ to 52° 57′ 1.07″ E and latitude 30° 2′ 
14.72″ to 29° 48′ 35.02″ N, covering about 48,963 
ha in Marvdasht, which is located in Northern part of 
Shiraz (Fig. 2). The slope gradient is varying from 0 
to 12% with mean altitude of 1605 msl. Most of this 
area has low physiographic intensity, and over 85% 
of the land has a slope of less than 5%. The mean 
annual precipitation and temperature are 287 mm and 
17.5 °C, and according to the closest climatic station, 
July and January are the hottest and coldest months, 
respectively. Also, the xeric and thermic are soil 
moisture and temperature regimes of the study area, 
respectively. Marvdasht Plain is a main agricultural 
region for crops like irrigated winter wheat, barley, 
alfalfa, and canola. Therefore, preparing digital maps 
of the key soil properties in this region offers valu-
able insights into the soil condition, and the maps can 
serve as a useful tool for evaluating and adjusting 
land management practices.

Field survey and laboratory activity

For the field survey, the location of 200 sampling points 
was determined by Conditional Latin Hypercube Sam-
pling (CLHS), a random stratified method that selects 
sampling points based on initial information pertaining 
to a suite of environmental factors in an interest area 
(Minasny & McBratney, 2006), using the open-source 
R statistical software (4.0.3 version). The location is 
shown in Fig. 2c. After fixing the sampling locations, 
soil shear strength (SS) and penetration resistance (PR) 
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were directly determined by Vane shear resistance 
meter and pocket cone penetrometer (ELE algorithm), 
respectively, during field survey (Fig.  3a, b). The SS 
was measured using a Torvin resistance tester with 
three replications around each sampling point. Further-
more, PR was measured using a hand-held penetrom-
eter on intact soils with three replications around each 
point in the study area. The instrument had a narrow 
cylindrical rod of 6 mm diameter and 5.7 cm length. 
The penetrometer was pushed into the soil up to the 
marked part (about 6 mm), and the required pressure 

(kPa) was recorded. It should be noted that the average 
values of three measurements (replications) were used 
to determine the soil shear strength (SS) and penetra-
tion resistance (PR) at each sampling point. The meas-
urements were taken at points at equal distances on the 
side of a circle with a radius of about 0.5 m (Fig. 3c). 
After sampling, soil samples were transferred to the 
laboratory for measuring the aggregate stability using 
wet sieving method (Kemper and Rosenau, 1986). 
In other words, stability of the soil aggregates against 
water were measured using the standard sieving method 

Fig. 1  Flowchart of the research in the study area at soil 
standard depth (0–5, 5–15, 15–30, and 30–60 cm). Geometric 
mean diameter of aggregates (GMD), mean weight diameter of 

aggregates (MWD), shear strength (SS), penetration resistance 
(PR), conditioned Latin hypercube sampling (clhs), machine 
learning model (ML)
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with seven group sizes of sieves including > 2, 2, 1, 0.5, 
0.25, 0.125, 0.053, and < 0.053 mm opening diameter 
(Kemper and Rosenau, 1986; Le Bissonnais, 2016). 
Then, for quantifying the structural stability of the soil 
aggregates, the geometric mean diameter (GMD) and 
mean weight diameter (MWD) values were calculated 
based on the results of the wet sieving method using the 
following equations:

(1)GMD = exp

[

n
∑

i=1

w
i
Log

(

d
i

)

]

(2)MWD =

n
∑

i=1

w
i
d
i

where di is the mean diameter of two consecutive 
sieves (mm) and Wi is the weight of particles in that 
size range as a percentage of the total sample.

Moreover, auxiliary soil properties including 
soil organic matter (SOM) and soil textural compo-
nents (i.e., sand, silt, and clay contents) were meas-
ured using the wet oxidation (Nelson and Sommers, 
1996) and hydrometer (Gee and Bauder, 1986) meth-
ods, respectively. Furthermore, in order to prepare 
continuous maps of the mentioned soil attributes for 
use in further steps, the interpolation geostatistical 
approach of Ordinary Kriging was used to estimate 
the values of the aforementioned soil attributes at 
unknown points using their corresponding measured 
values along with their modeled spatial structure. 

Fig. 2  a Location of Fars 
province in Iran, b location 
of Marvdasht plain in Fars 
province, and c location of 
the soil samples (red circle) 
in the study area
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The detailed descriptions on the estimation procedure 
using the mentioned geostatistical approach can be 
seen in the literature (Moosavi and Sepaskhah, 2012; 
Moradi et al., 2016; Azizi et al., 2022).

Standardization of soil depth

The spline method was used to extract soil properties at 
standard depths along vertical profiles continuously using 
the R package “GSIF.” The values for GMD, MWD, 
SS, and PR were standardized at four depths 0–5, 5–15, 
15–30, and 30–60 cm. For more details about splines, see 
Bishop et al. (1999) and Malone et al. (2009).

Feature selection

A total of 79 driving factors were prepared from soil 
variable RS data and topographic attributes. Here, 
four soil covariates such as clay, silt, sand, and soil 
organic matter (SOM) were selected based on the 
expert opinion and related literature in this field 
(Celik, 2005; Ayoubi et al., 2012; Zeraatpisheh et al., 
2021); 36 remote sensing covariates and individual 

band were prepared from Landsat 8 with 30-m spatial 
resolution after the necessary corrections (radiom-
etry) using ENVI software version 5.3. In addition, 
39 topographic attributes were extracted from DEM 
(ALOS PALSAR satellite) using the topographic 
analysis method (Wilson, 2018) in SAGA GIS version 
7.9.1 software. As mentioned, we prepared the maps 
of soil variables by the results of Ordinary Kriging 
interpolation method (Azizi et al., 2022). Finally, the 
spatial resolution of all covariates was fixed to 30-m 
in Arc GIS software. The details of the covariates are 
described in Table 1.

After preparing soil and environmental factors 
for avoiding the increase of time and model fitting 
process, the environmental factors were chosen 
using the variance inflation factor (VIF) method 
(Akinwande et  al., 2015), using the “VIF” package 
in R software. The VIF is a step way method and 
eliminates the covariates that have the highest 
correlation with each other. After applying VIF 
method, 36 environmental covariates remained. To 
further select the most appropriate covariates, the 
Boruta method was applied.

Fig. 3  a Shear strength (SS), b penetration resistance (PR), c field sampling point, and d wet sieving tool
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Table 1  Soil and 
environmental covariates 
used in this study to 
predict soil physical 
and mechanical (SPM) 
attributes

SCORPAN 
factors

Parameter Abbreviation Source

S Clay content (%) Clay LAB
S Soil Organic Matter SOM LAB
S Silt content (%) Silt LAB
S Sand content (%) Sand LAB
O Normalized different vegetation index NDVI RS
O Renormalized difference vegetation index RDVI RS
O Band 2 of Landsat 8 Blue RS
O Band 3 of Landsat 8 Green RS
O Band 4 of Landsat 8 Red RS
O Band 5 of Landsat 8 Near infrared RS
O Band 6 of Landsat 8 Short-wave infrared-1 RS
O Band 7 of Landsat 8 Short-wave infrared-2 RS
O Wetness brightness difference index WBDI RS
O Normalized difference salinity index NDSI RS
O Normalized difference moisture index NDMI RS
O Brightness Index BI RS
O Gypsum Index GI RS
O Clay Index CI RS
O Carbonate Index CI RS
O Ratio Vegetation Index RVI RS
O Enhanced Vegetation Index EVI RS
O Green-Red Vegetation Index GVI RS
O Differenced Vegetation Index DVI RS
O Infrared Percentage Vegetation Index IPVI RS
O Iron Oxide Ratio IOR RS
O Soil Adjusted Vegetation Index SVI RS
O Modified Soil Adjusted Vegetation Index MSAVI RS
O Perpendicular Vegetation Index PVI RS
O Structure Insensitive Pigment Index SIPI RS
O Modified Normalized Difference Water Index MNDVI RS
O Enhanced Vegetation Index EVI RS
O Soil Adjusted Vegetation Index SAVI RS
O Bare Soil Index BSI RS
O Index-Based built-up Index IBI RS
O Enhanced Vegetation Index 2 EVI 2 RS
O Visible Atmospherically Resistance Index Green VARIgreen RS
O Green Normalized Difference Vegetation Index GNDVI RS
O Tasseled cap wetness TCW RS
O Tasseled cap greenness TCG RS
O Normalized Ratio Vegetation Index NRVI RS
R Wind Effect WE DEM
R Analytical Hillshading AH DEM
R Aspect Aspect DEM
R Catchment Area CA DEM
R Catchment Slope CS DEM
R Channel Direction CD DEM
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The Boruta algorithm for selecting environmen-
tal covariates was proposed by Kursa and Rudnicki 
(2010). This approach is one of the semi-automated 
supervised methods for feature selection, based on 
the random forest (RF) algorithm, which selects the 
most important environmental covariates using the 
repeatable backward and forward system. Finally, the 
output of the covariate’s selection was done based on 

the value of the Z factor, which is determined in four 
general categories. The covariate is unrelated, slightly 
related, moderately related, or completely related 
when the Z factor is lower than 5, 5 to 10, 10 to 15, 
and more than 15, respectively (Keskin et al., 2019). 
Additionally, soil variables were included in the mod-
eling process by the expert opinion.

S soil properties, O organism, R relief, LAB laboratory analysis, DEM digital elevation model, RS 
remote sensing

Table 1  (continued) SCORPAN 
factors

Parameter Abbreviation Source

R Channel Network Base Level CNBL DEM
R Channel Network Distance CND DEM
R Channel Network CN DEM
R Closed Depressions CD DEM
R Convergence Index CI DEM
R Diffuse Insolation Diffuse DEM
R Direct Insolation DI DEM
R Flow Directions FD DEM
R Geomorphons Geomorphons DEM
R Landforms Landforms DEM
R LS Factor LS Factor DEM
R Mass Balance Index MBI DEM
R Modified Catchment Area MCA DEM
R MRRTF MRRTF DEM
R Plan Curvature PC DEM
R Relative Slope Position RSP DEM
R Slope Height SH DEM
R Slope Slope DEM
R Standardized Height SH DEM
R Stream Power Index SPI DEM
R Surface Area SA DEM
R Watershed Basins WB DEM
R Wind Exposition WE DEM
R Valley depth (m) VD DEM
R Multiresolution index of valley bottom flatness MRVBF DEM
R Normalized Height NH DEM
R Midslope position MS DEM
R Texture Texture DEM
R Slope gradient SG DEM
R Vertical Distance to Channel Network VDCN DEM
R Solar radiation or insolation SROI DEM
R Convexity Convexity DEM
R Topographic Wetness Index TWI DEM
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Machine learning (ML) algorithms

In this study, we evaluated three ML algorithms, 
RF, k-NN, and CB, to predict SPM by using soil and 
environmental factors and employing two scenarios 
including S1 (using just environmental factors, i.e., 
topographic and RS covariates) and S2 (using both 
the mentioned environmental covariates and soil vari-
ables), at four standard depths.

Random forest (RF)

Random forest (RF) is one of the non-linear ML algo-
rithms that is widely used in DSM of soil properties. 
The RF algorithm is easy to implement and requires few 
parameters to tune (Rahmani et al., 2022). Here, the RF 
algorithm was applied to predict the surface and depth 
of the soil’s physical and mechanical properties. The RF 
algorithm was tuned according to two hyper-parameters: 
the number of trees (ntree), which was between 100 and 
1000 trees with the distance of 100 trees interval, and 
mtry, which represents the number of environmental 
covariates that can be used to grow at each tree accord-
ing to the minimum error (Breiman, 2001).

k‑nearest neighbor (k‑NN)

The k-nearest neighborhood (k-NN) algorithm is one 
of the non-linear methods. This operates based on cal-
culating the Euclidean distance between the desired 
soil sample and other observation points. The k-NN 
method then weighs k numbers of adjacent obser-
vation samples based on their distance to the desire 
sample. In addition, based on the weight of each sam-
ple in a set of k number of samples, an estimate of the 
desired data is made according to the minimum error 
in that set (Nemes et al., 2006).

Cubist (CB)

The Cubist algorithm is a regression tree algorithm 
that generates various algorithms using training data. 
Each algorithm comprises multiple rules, which are 
summarized by one or more conditions (Holmes 
et  al., 1999). When all the conditions of a rule are 
met, the corresponding linear relationship is utilized 
to forecast the SPM. The algorithm’s rules are ranked 
through the Cubist algorithm’s decreasing importance 
process. This implies that the first rule has the highest 

contribution to the algorithm’s accuracy, while the 
last rule has the least. The algorithm predicts the tar-
get variable’s value based on influential variables, and 
the number of rules is adjusted using the best-fitting 
regression algorithm. To optimize the algorithm, it 
was fine-tuned by adjusting two hyper-parameters: 
the number of committees and the number of neigh-
bors (Ma et al., 2017).

Assessment of prediction performance

For assessment of the ML algorithms (RF, k-NN, and 
CB), all data was split to the training and testing subset 
which consisted of 80 and 20%, respectively. Four sta-
tistical indices included the coefficient of determination 
(R2), normalized root means square error (nRMSE), 
and Nash-Sutcliffe coefficient (NS) that is a statisti-
cal measure commonly applied to assessment of the 
performance of ML algorithm predictions. Also, the 
mean standardized squared prediction error (MSSPE) 
was applied for assessment of the uncertainty of ML 
algorithms. It is defined as the mean squared prediction 
error (MSSPE) of an algorithm divided by the average 
MSSPE of a set of benchmark algorithms (Rossel and 
McBratney, 2008). The mentioned statistical measures 
were calculated using the following equations:

where Oi and Pi are the observed and predicted val-
ues, respectively; n is the amount of data; and S2 is 
the variance of the observed values. As SPM varies 
on different scales, the nRMSE is a suitable statistical 
index for quantifying the algorithm accuracies in this 
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study. The nRMSE values range from 0 to 100, where 
values close to zero showed excellent performance, 
and values above 0.3 show poor algorithm validation 
(Bannayan and Hoogenboom, 2009).

Results and discussion

Summary statistic

The results of statistical indices of SPM for 200 soil 
samples at the four standards of Lapuee plain are 
presented in Table  2. The results showed that both 
GMD and MWD decreased by increasing the depth, 
while SS and PR have irregular trends with depth. 
According to the coefficient of variation, CVs, all 
four soil properties at four standard depths showed 
high variability according to the classification by 
Wilding (1985). One of the reasons for the high 
CV values of SPM may be attributed to the agricul-
tural activities and land management (Heydari et al., 
2020). According to the findings, the average SPM 
at a standard depth decreased from top- to sub-soils 
(Table  2). Higher amount of SOM was observed 
at upper layers which is same with Mousavi et  al. 
(2023) findings. Based on the pedological theories, 

the SOM increases the porosity and ventilation and 
reduces soil compaction (Soane, 1990; Elbasiouny 
et al., 2014). Therefore, it seems that SOM has a sig-
nificant effect on SPM.

Selected features

When dealing with a large pool of data, using all of 
it can be time-consuming and can increase algorithm 
complexity. Feature selection is a useful method for 
choosing the appropriate types of covariates which are 
using for the modeling process (Neyestani et al., 2021).

Based on our aims for selecting the most relevant 
environmental factors, through the VIF method, the num-
ber of environmental factors was reduced from 75 to 36. 
The Boruta algorithm was also fitted, and five covari-
ates were ultimately selected from the 36 environmen-
tal covariates (Fig. 4), in addition to four soil variables, 
resulting in a total of nine variables used for predicting 
the SPM properties (Table 3). Among the selected envi-
ronmental covariates, three of them (SIPI, MNDWI, and 
IRON) were related to RS indices, while two of them 
(Watershed Basins (WB) and Channel Network Base 
Level (CNBL)) were extracted from DEM (Fig. 5). Also, 
as mentioned in the section of 2.5.1, soil variables of 
SOM, clay, silt, and sand contents were selected based on 

Table 2  Descriptive 
statistics of soil physical 
and mechanical properties 
at the four standard soil 
depths for the soil samples 
(n = 200(

CV coefficient of variation, GMD geometric mean diameter of aggregates, MWD mean weight 
diameter of aggregates, SS shear strength, PR penetration resistance

Soil properties Depth (cm) Minimum Maximum Mean Median CV (%)

GMD (mm) 0–5 0.24 2.76 1.51 1.50 38.4
5–15 0.21 2.14 1.48 1.49 37.8
15–30 0.23 2.09 1.37 1.39 36.4
30–60 0.20 2.01 1.13 1.17 38.0

MWD (mm) 0–5 0.32 2.43 2.06 2.09 38.8
5–15 0.32 2.35 2.02 2.03 38.6
15–30 0.33 2.03 1.87 1.93 37.9
30–60 0.28 2.31 1.53 1.49 40.5

SS (kPa) 0–5 0.14 2.63 2.43 2.60 49.7
5–15 0.15 2.57 2.43 2.57 48.1
15–30 0.10 2.39 2.43 2.59 42.3
30–60 0.11 1.99 2.44 2.61 42.6

PR (kPa) 0–5 0.15 4.45 0.95 0.76 98.9
5–15 0.17 4.28 0.94 0.75 100
15–30 0.18 3.79 0.94 0.79 91.4
30–60 0.10 4.19 0.98 0.75 94.8
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expert opinion (Fig. 6). The most important soil and envi-
ronmental covariates based on the best scenarios and ML 
algorithms (Table 4) were applied to predict each SPM.

Algorithm performance

The accuracy of the algorithm prediction was evaluated 
using statistical indices such as R2, nRMSE, and NS for 
GMD, MWD, SS, and PR at four standard depths. The 
comparison between scenarios S1 and S2, as measured 

by R2 and NS, showed that S2 had the highest predic-
tion accuracy for the SPM at the four standard depths. 
According to the finding, including the soil variable 
and environmental factors improves the performance 
of ML algorithms (Mousavi et al., 2022). Tables 5 and 
6 list the quantitative results of the scenarios compar-
ison for S1 and S2, respectively, using the ML algo-
rithms. Overall, the validation results for the two sce-
narios indicate that S2 had higher accuracy, and the 
subsequent sections will focus on its results.

Fig. 4  Important variables selection with Boruta algorithm

Table 3  Select soil and environmental covariates for four properties obtained with Boruta at the four standard depths

O organism, R relief, S soil data, RS remote sensing, DEM digital elevation model, SIPI Structure Insensitive Pigment Index, 
MNDWI Modified Normalized Difference Water Index, IRON Iron Oxide Ratio, WB Watershed Basins, CNBL Channel Network 
Base Level

SCORPAN factors Parameter Abbreviation Source

O Structure Insensitive Pigment Index SIPI RS
O Modified Normalized Difference Water Index MNDWI RS
O Iron Oxide Ratio IRON RS
R Watershed Basins WB DEM
R Channel Network Base Level CNBL DEM
S Soil Organic matter SOM Soil
S Clay Clay Soil
S Silt Silt Soil
S Sand Sand Soil
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Validation results of GMD

According to Table 6, the RF algorithm showed the 
best prediction performance in mapping GMD with 
(R2 = 0.70 and 0.68, nRMSE = 18.21 and 10.21, and 
NS = 0.67, and 0.60) in 0–5 and 15–30 cm depths, 
respectively. The k-NN algorithm also performed the 
best for predicting GMD with R2 of 0.45, nRMSE 
of 10.17, and NS of 0.48 at the depth of 5–15 cm. 
Finally, CB showed the best predictions of GMD 
with R2 of 0.59, nRMSE of 6.19, and NS of 0.58 at 
a depth of 30–60 cm. Furthermore, based on Rossel 
and McBratney (2008) report, all applied ML algo-
rithms in GMD prediction at four standard depths 
showed intermediate prediction performance; how-
ever, at 0 to 5 cm and 15 to 30 cm depth, the RF out-
performed best. Chen et al. (2015) examined surface 

and subsurface soil salinity variation and reported 
that the RF had high capability in prediction verses 
other ML algorithms. Similarly, Mousavi et al. (2022) 
and Rahmani et al. (2022) confirm that the RF algo-
rithm has high accuracy and low error for predicting 
topsoil thickness.

Validation results of MWD

The k-NN displayed the well performance in predict-
ing MWD (Table 6). As shown in Table 6, for three 
depths of 0 to 5, 15 to 30, and 30 to 60 cm, the k-NN 
algorithm was the best one (R2 of 0.57, 0.56, and 0.45 
and nRMSE of 14.12, 8.21, and 10.23, respectively), 
while CB showed the best prediction with R2 of 0.61 
and nRMSE of 8.13 in 5 to 15 cm depth. In general, 
the modeling results showed a similar performance of 

Fig. 5  Five environmental 
covariates were obtained 
from RS: Structure Insensi-
tive Pigment Index (SIPI), 
Modified Normalized 
Difference Water Index 
(MNDWI), Iron Oxide 
Ratio (IRON), Watershed 
Basins (WB), and Chan-
nel Network Base Level 
(CNBL)
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prediction for GMD compared to MWD at all depths. 
Overall, the validation results of the algorithms were 
intermediate at standard depths; however, the k-NN 
showed better performance compared to other algo-
rithms for MWD; in all standard depths except 5–15 
cm depth, CB algorithm showed the best prediction 
than the k-NN algorithm.

Validation results of SS

Validation results of the predictive algorithms for 
SS showed that the best algorithm at all depths was 
the k-NN algorithm with R2 of 0.65, 0.54, 0.57, and 
0.59; nRMSE of 11.14, 12.15, 13.23, and 11.16; and 
NS of 0.55, 0.53, 0.54, and 0.51 at depths of 0–5, 
5–15, 15–30, and 30–60 cm, respectively (Table 6). 
Furthermore, results showed that all ML algorithms 

used in this research had similar performances in pre-
dicting SS at surface soils. The highest R2 value (R2 
= 0.65) was obtained for SS prediction in depth of 
5–15 cm compared to the other studied depths. Over-
all, the k-NN was the best predictive algorithm for SS 
in all of the studied depths. In this regard, research 
conducted by Hengl et  al. (2021) on modeling soil 
fertility properties showed that the RF and CB algo-
rithms had the best accuracy compared to that of the 
k-NN and SVR algorithms. Furthermore, Khosravani 
et  al. (2023) reported that the CB algorithm which 
followed by RF had the best prediction capability 
for soil fertility attributes. As regards SPM, similar 
results were reported by Bouslihim et  al. (2021), 
while Yamaç et al. (2020) stated that the k-NN algo-
rithm was the best predictive algorithm for perma-
nent wilting point (PWP) in calcareous soils.

Fig. 6  Four variables were 
obtained from soil analysis: 
clay, sand, silt, and SOM
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Validation results of PR

The validation results indicated that CB was the best 
algorithm (R2 = 0.67) for predicting PR in the depth 
of 0–5 cm, while k-NN was the best algorithm (R2 = 
0.68) in the depth of 5–15 cm. Also, RF algorithm 
(R2 = 0.92 and 0.86) was the best for predicting PR at 
the depth 15–30 cm and 30–60 cm (Table 6).

Based on the results obtained from the algorithms’ 
validation for predicting PR, the RF algorithm 
showed the best performance (R2 = 0.92) compared 
to other ML algorithms at the depth of 15–30 cm. 
But the k-NN algorithm performed well compared 
to the other ML algorithms to predict GMD, MWD, 
SS, and PR properties at different depths. Totally, the 
best predictive algorithms were RF for GMD and PR 
properties, and k-NN for MWD and SS properties. 
Zeraatpisheh et al. (2021) reported that the k-NN and 
support vector machine algorithms were performed 
well in prediction of SOC in different aggregate size. 
Furthermore, it is shown that the RF algorithm in 
comparison to the ANN algorithm was better in pre-
diction of soil surface erosion rate (Khosravi Aqdam 
et al., 2022).

The importance ranking of factors

The comparison between algorithms’ scenarios showed 
that scenario S2 had the higher accuracy in predicting 
SPM compared to scenario S1. Therefore, the relative 
importance was described based on scenario S2. The 
results indicated that clay and SOM were two impor-
tant variables in the prediction of SPM at four standard 
depths. Increasing SOM can improve soil aggregate 
stability, which may explain the high GMD and MWD 
values in cultivation land (Lacoste et al., 2014). Also, 
Mozaffari et al. (2021, b) observed strong relationship 
among SOM and MWD and GMD in all of their data-
sets. They believe that the SOM had important role by 
protecting SAS and decreasing the effect of wind and 
water erosion. Additionally, Celik (2005) and Ayoubi 
et al. (2012) reported that SOM directly contributed to 
soil aggregate formations and stabilities, and also, the 
level of SOM can define and explain the type of soil 
aggregates (macro, meso, and micro aggregates). Cor-
relation analysis between MWD, soil properties, and 
covariates revealed that organic carbon had the high-
est influence (27.9%) on MWD. Similar result was 
reported by Tang et al. (2016) and Wang et al. (2019).

Table 4  The most important soil and environmental covariates for prediction of soil physical and mechanical properties based on 
the best model at each four-standard depth

WB Watershed Basins, CNBL Channel Network Base Level, MNDWI Modified Normalized Difference Water Index, IRON Iron 
Oxide Ratio, GMD geometric mean diameter of aggregates, MWD mean weight diameter of aggregates, SS shear strength, PR pen-
etration resistance

Soil properties Depth (cm) The most important covariates

GMD (mm) 0–5 Clay (43.4%) OM (23%) Silt (18.6%)
5–15 Clay (44.2%) OM (20.1%) Silt (17.3%)
15–30 Clay (41.5%) OM (25.3%) Silt (18.9%)
30–60 Clay (46.7 %) OM (22.8%) Silt (16.2%)

MWD (mm) 0–5 Clay (41.3%) OM (24.8%) Silt (20.1%)
5–15 Clay (40.6%) OM (19.8%) Silt (18.2%)
15–30 Clay (49.2%) OM (21.3%) CNBL (15.1%)
30–60 Clay (48.5%) OM (20.5%) CNBL (13.8%)

SS (kPa) 0–5 Clay (38.9%) OM (30.2%) Silt (23.2%)
5–15 Clay (39.1%) OM (28.7%) Silt (20.9%)
15–30 Clay (40.2%) OM (25.6%) Silt (22.4%)
30–60 Clay (40.5%) OM (28.7%) CNBL (13.4%)

PR (kPa) 0–5 Clay (39.7%) OM (29.6%) Silt (21.8%)
5–15 Clay (41.2%) OM (27.6%) Silt (20.45%)
15–30 Clay (45.5%) OM (23.7%) CNBL (12.2%)
30–60 Clay (44.8%) OM (26.3%) CNBL (13.4%)
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Out of soil variables among environmental covari-
ates, only CNBL as a proxy of topographic attributes 
was important in the predicting MWD and PR at the 
depths of 15–30 cm and 30–60 cm and SS only at a 
depth of 30–60 cm, the soil properties by influencing 
on the soil climate and hydrology (Wang et al., 2018; 
Tu et  al., 2018; Nsabimana et  al., 2020). Forghani 
et al. (2020) confirmed that topographic features such 
as CNBL and valley depth are the most influential 
factors on physical parameters. Also, topographic 

attributes, organic matter, and geology data were the 
most important parameters in the spatial prediction of 
SAS (Bouslihim et al., 2021). In contrast to soil vari-
ables and topographic attributes, the RS indices had a 
weak effect on SPM prediction.

Spatial prediction

In this study, GMD, MWD, SS, and PR maps were 
prepared based on the best ML algorithm in all four 

Fig. 7  Spatial prediction 
maps of GMD for four 
standard depths in the Mar-
vdasht area. Map prepared 
based on the best predictive 
model. a RF for depth of 
0–5 cm, b k-NN for depth 
of 5–15 cm, c RF for depth 
of 15–30 cm, and d CB for 
depth of 30–60 cm

Fig. 8  Spatial prediction 
maps of MWD for four 
standard depths in the Mar-
vdasht area. Map prepared 
based on the best predictive 
model. a k-NN for depth of 
0–5 cm, b CB for depth of 
5–15 cm, c k-NN for depth 
of 15–30 cm, and d k-NN 
for depth of 30–60 cm
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standard depths (Figs. 7, 8, 9, and 10). It was shown 
that high GMD values were observed in the South-
west, South, and Southeast section of the region. In 
these regions, the value of GMD decreased from 2.27 
to 1.25 mm at depths of 0–5 to 30–60 cm, possibly 
due to the high SOM in the topsoil compared to the 
subsurface layers and improved soil structure result-
ing from agricultural activities (Fig.  7). For GMD, 
MWD, SS, and PR, a decreasing trend was observed 
from the surface to the subsoil, particularly in the 
northern zone of the region. Spatial prediction maps 

showed that the higher GMD content were concen-
trated in the Southwest, South, and Southeast parts 
of regions. The trend of MWD was similar to GMD, 
and its value decreased from the surface to the deeper 
layers (Figs. 7 and 8). According to the result of Le 
Bissonnais (2016), the soils with MWD > 2.0 mm 
have very stable aggregate, so there is no surface 
crusting available. The minimum values of GMD 
and MWD were observed at the Northern bounda-
ries (Fig. 7), where the pastures with low vegetation 
cover mainly increase erosion rates and thus caused 

Fig. 9  Spatial prediction 
maps of SS for four stand-
ard depths in the Marvdasht 
area. Map prepared based 
on the best predictive model 
(k-NN). a For depth of 0–5 
cm, b for depth of 5–15 cm, 
c for depth of 15–30 cm, 
and d for depth of 30–60 
cm

Fig. 10  Spatial prediction 
maps of PR for four stand-
ard depths in the Marvdasht 
area. Map prepared based 
on the best predictive 
model. a CB for depth of 
0–5 cm, b k-NN for depth 
of 5–15 cm, c map RF for 
depth of 15–30 cm, and d k-
NN for depth of 30–60 cm
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a weak structure in the top soil. These results can be 
related to the mountainous conditions (stone frag-
ments). Furthermore, the maximum values of GMD 
and MWD were obtained in the southwest, south, 
and southeast, which could be due to the high SOM 
and clay and good soil structure (Fig. 6). Increasing 
SOM can help soil aggregate stability to improve, 
so adding SOM could justify the high GMD and 
MWD values in the cultivated land (Lacoste et  al., 
2014). Therefore, applying regular SOM is recom-
mended. In addition, the comparison of Figs.  6, 7, 
and 8 showed that the SOM and clay contents are the 
most important covariates influencing the prediction 
of GMD and MWD. Among the rest of the impor-
tant environmental covariates, CNBL and WB had 
the same trend as GMD and MWD in the study area. 
The CNBL as a proxy of topography has an impor-
tant role in GMD and MWD, which is correlated 
with the SOC for soil conservation (Schillaci et  al., 
2017; Sabetizade et  al., 2021). Spatial variability of 
the SPM including SS and PR shows the soil quality 
condition and provides useful information for mak-
ing the appropriate decision for improving the soil 
fertility conditions. The highest values of SS were 
observed in the southern, central, and northwestern 
part of the area (Fig. 9). Unlike, the lowest values of 
SS and PR, properties were observed in the southern, 
central, and northwestern zone, whereas the high-
est values were observed in the northern and north-
eastern zone (Fig. 10). Also, the amount of SS from 
surface to depth showed a decreasing trend (3.65 to 
3.42 kPa), while the PR showed an increasing trend 
(1.09 to 3.05 kPa). The most influential soil and envi-
ronmental covariates in predicting SS and PR are 
derived from expert opinion and DEM (Table  3). 
The clay, silt, and SOM showed direct relationship 
with SS and indirect relationship with P unlike sand 
(Fig.  6). The WB and CNBL showed a negative 
relationship with SS, GMD, and MWD, while they, 
especially WB, showed a positive relationship with 
PR (Fig. 5). SIPI and MNDWI showed no significant 
trend with changes in GMD and MWD properties 
(Fig. 5). Khalil et al. (2011) used topographic attrib-
utes such as slope, slope direction, and elevation to 
predict SS and reported that the use of topographic 
attributes increases the accuracy of SS prediction 
maps. The changes in SS and PR as the result of land 
use and agricultural activities affect vegetation type, 
SOM, soil structure, and porosity. From the start to 

the point of maximum shear, soil shear is related to 
the soil physical condition, especially soil compac-
tion (Komandi, 1992), and as soil density increases, 
more force is required to break soil particles (Bre-
vik et  al., 2015). Lower SS in the northern parts is 
attributed to mountains and piedmont physiographic 
units, whereas in the low relief areas (alluvial plains), 
higher SS was achieved. Higher level areas have a 
weak soil structure, low SOM, high erosion rate, and 
low resistance to cutting. Based on field observations, 
severe erosion, the presence of stones and gravels, 
and surface soil runoff can lead to a weak soil struc-
ture at depth and a decrease of SS from surface to 
depth (Castro Filho et  al., 2002). Based on Fig.  10, 
the PR values decreased from the north and northeast 
parts to the central, southwest, south, and southeast 
parts of the area. It is also observed that the central 
and the southern parts have the lowest PR values. 
The suitable vegetation, minimal tillage operations, 
appropriate land use, and high organic matter reduce 
the penetration resistance depending on the condition 
of the soil structure and the porosity of the topsoil. 
It has been reported that increasing SOM by using 
organic matter, vermicompost, and biological sludge 
creates a strong and stable soil structure; therefore, 
the crust formation on the soil surface and PR values 
reduces (Asghari et al., 2010). From the surface to the 
depth, an increasing trend for PR was observed indi-
cating the lower soil quality and weak soil structure 
due to a low amount of SOM and a reduction of the 
soil formation process at the deeper layers. Finally, 
the prepared maps using the ML algorithms indicated 
that the variation of GMD, MWD, and SS decreased 
from surface to depth, while PR had an increasing 
trend from surface to deeper layers. In contrast to PR 
variation, GMD, MWD, and SS were increased in the 
southern and central parts of the study area compared 
to that of the northern parts. The variation trend of 
these properties indicates that the southern and cen-
tral parts of the study area have a favorable soil struc-
ture compared to the northern parts, and the quality 
of soil structure decreased from surface to depth.

Conclusions

In this study, the DSM maps of SPM were produced at 
four standard depths by RF, k-NN, and CB algorithms in 
a semi-arid region. Two covariates’ scenarios consist of 
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environmental factors, i.e., RS and topography attributes 
(S1) and environmental factors plus soil properties (S2) 
were assessed. In S2 scenario, which accounted for both 
soil variables and environmental covariates, it was rec-
ognized as the better scenario for modeling SPM com-
pared to S1. Based on the relative ranking of soil and 
environmental features, it was found that SOM and clay 
played a more important role in predicting SPM at all 
studied depths than that of the topographic and remote 
sensing attributes. The validation results revealed that 
the RF algorithm was the best comparison to other ML 
algorithms in predicting PR at the depth of 15–30 cm, 
while the k-NN algorithm had the highest prediction fre-
quency. So, k-NN model has the high potential for map-
ping SPM in agricultural area and can help soil scientists 
for filling the gap of SPM mapping in these areas. Our 
findings display that the spatial and vertical variation of 
three soil properties (GMD, MWD, and SS) decreased 
from the surface to subsurface layer, except for PR.

For SPM spatial distribution, we conclude that 
including soil and environmental factors can lead to 
an increase in the accuracy of predicting soil prop-
erties. Globally, this research highlights the role of 
soil properties in DSM research. When soil vari-
ables are not measured, it is recommended to use 
freely available global soil databases, such as Soil 
Grid products, to account for the role of soil prop-
erties along with environmental covariates in the 
modeling process. The applied method is a prom-
ising approach for land use planer and farmers for 
better management of agricultural zones, especially 
in areas with highly intensive cultivation activ-
ity. Finally, for moving forward, future research 
could further refine the digital mapping of SPM by 
incorporating more detailed soil and environmen-
tal covariate data and expanding the study to other 
regions with diverse soil-forming factors. By con-
tinuing to advance our knowledge about the SPM 
spatial variability, we can better inform agricultural 
management practices and contribute to the sustain-
ability of our planet’s natural resources.
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