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and 0 .94 Kappa score (K) were obtained using a 
boundary-specific two-level model augmented with 
auxiliary feature and SNIC algorithm in comparison 
to PB, OB, and OBS, which achieve OA (K) of 81% 
(0.76), 91% (0.89), and 94.42% (0.92), respectively. 
The results demonstrate a notable enhancement in 
overall classification accuracy when augmenting the 
features and refining classification decisions using a 
boundary-specific two-level learning approach.
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Introduction

Remote sensing (RS) satellites collect vital informa-
tion from the earth for mapping and monitoring the 
Earth’s surface (Rogan & Chen, 2004). To effectively 
monitor and document the Earth’s surface, remote 
sensing data is commonly utilized for the collection 
of information about LULC (Sowmya et  al., 2017). 
Land use refers to the human use of landscapes such 
as urban, building, and agriculture (Kim, 2016). Land 
cover is a natural element that appears on the land-
scape like water, mountains, and forests (Lv et  al., 
2019). LULC classification refers to the process of 
assigning and classifying land cover classes to pix-
els. Waterbody, urban, cultivation, building, forests, 

Abstract  Land use land cover (LULC) classifi-
cation using remote sensing images is a valuable 
resource in various fields such as climate change, 
urban development, and land degradation monitoring. 
The city of Madurai in India is known for its diverse 
geographical elements and rich heritage, which 
includes the cultural sport of “Jallikattu”: whose 
main competitor, the zebusare deeply affected by 
the conversion of their waterbodies and pastures into 
concrete jungles. Hence, monitoring land degrada-
tion is vital in preserving the geography and cultural 
heritage of the study area, Madurai. The “Landsat 8 
Operational Land Imager tier_2 collection_2 Level_2 
Surface Reflectance” image was taken for this study. 
The LULC classification is performed based on the 
following classes: forest, agriculture, urban, water 
bodies, uncultivated land, and bare land. The objec-
tive of the study is to incorporate auxiliary features 
to spectral and textural features along with a simple 
non-iterative clustering (SNIC) segmentation algo-
rithm and implement a boundary-specific two-level 
learning approach based on support vector machines 
(SVM) and k nearest neighbors (kNN) classification 
algorithms. The overall accuracy (OA) of 95.78% 
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agriculture, plains, mountains, bare land, and high-
lands are a few example classes for LULC (Taluk-
dar et al., 2020). According to recent studies, LULC 
classification is an essential tool for finding the effect 
on a variety of characteristics of the Earth’s surface, 
including terrestrial ecosystems, water balance, bio-
diversity, and climate (Alshari & Gawali, 2021). For 
the LULC classification, Landsat 8 images are the 
most commonly used dataset from the United States 
Geological Survey (USGS). USGS imagery includes 
Landsat, MODIS, and Sentinel 2. Among them, the 
Landsat time series spanning nearly 40  years is of 
particular note. Kulkarni and Vijaya (2021a) used 
Landsat 8 imagery to identify the LULC changes that 
occurred in Bangalore during 2013, 2016, and 2019. 
They chose the study area of Bangalore because of 
urban sprawl and the city’s significant increase in 
built-up areas. Similarly, the study area of Madurai 
in the southeastern region of India was chosen for 
this research. Data were gathered by the Landsat 
8 satellite in 11 different bands using two different 
sensors. The information required for LULC clas-
sification may come from any band. However, if the 
bands themselves have a high degree of correlation, 
the information provided by each band will be redun-
dant. As a result, only a subset of all accessible bands 
may be utilized. The selection of spectral, texture, and 
vegetation indices features is a more important step 
in LULC classification (Kulkarni & Vijaya, 2021b). 
Numerous vegetation indicators were used in the 
current study to achieve consistent accuracy. It also 
ensures a comprehensive analysis of vegetation con-
ditions and characteristics (Qu et  al., 2021). These 
indices offer a more exact view of vegetation dynam-
ics to differentiate forest, agriculture, and unculti-
vated regions.

Traditionally, most LULC classifications were 
based on PB classification from remotely sensed 
images (Varma et al., 2016). They either used super-
vised or unsupervised categorization or both. Sev-
eral supervised machine-learning algorithms have 
been used for LULC classification, including SVM 
(Heumann, 2011), maximum likelihood (ML) (Sinha 
et  al., 2015), kNN (Hudait & Patel, 2022), and ran-
dom forests (RF) (Hütt et  al., 2016). There are also 
several unsupervised machine-learning algorithms 
commonly used for LULC classification, includ-
ing a priori (Lee et  al., 2018), principle component 
analysis (PCA) (Deng et al., 2008), and independent 

component analysis (ICA) (Lu et  al., 2019). A PB 
takes into account the spatial and contextual informa-
tion associated with the particular pixel. As higher-
resolution imagery becomes more available, it may 
be possible to use this spatial information to produce 
more accurate LULC classifications (Willhauck, 
2000). To address these issues, remote-sensing image 
analysis increasingly uses segment-based classifica-
tion instead of pixel-based classification. By analyz-
ing objects individually, it is possible to minimize the 
spectral variability within a class, as well as classi-
fication errors caused by pixel artifacts due to spec-
tral differences in atmospheric corrections. OB clas-
sification offers another advantage when it comes to 
broad-area mapping, in that it reduces computational 
complexity, although segmentation may be a time-
consuming process (Blaschke, 2010).

Many studies have compared the performance 
of PB and OB approaches for classifying land use. 
Gholoobi et al. (2010) examined the performance of 
PB classification and OB classification of land use 
in mountainous regions. Based on their findings, the 
OB classification approach yields no noisy results. 
According to Johansen et al. (2010), the OB approach 
reduces the following effects: differences in sensor 
view, shadows of clouds, high spatial frequency noise, 
and unregistered images. Based on Aggarwal et  al. 
(2016) work, it is possible to accomplish OB classi-
fication without the limitations of PB classification, 
which is dependent solely on the spectral values of 
the data collected through remote sensing. The limita-
tion of OB classification was discussed by Zhou et al. 
(2008a) in which the OB method requires greater 
computational power than PB classification, and the 
effectiveness of the rule is heavily dependent on the 
expertise of the experts. Several OB LULC classifica-
tion problems can be successfully solved using SVM 
classification algorithms (Shao & Lunetta, 2012). 
It is important to note that one of the issues with 
SVM is that while the classification training data set 
is divided by the class boundary line, many misclas-
sifications occur near this boundary line. In order to 
refine the classification decision near the boundary 
line of SVM, in second level, kNN distance measure 
is used. Thus, the misclassification rate of the data 
classification is reduced as a result of the two-level 
classification (SVM-kNN). The papers (Garcia-Gut-
ierrez et al., 2010; Rithesh, 2017) proposed and dis-
cussed a two-step SVM-kNN classification approach, 
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which uses both SVM and kNN classifiers sequen-
tially to solve classification problems. During the OB 
classification process, similar pixels are grouped into 
clusters, and objects are generated based on the clus-
tering and segmentation of the pixels. The accuracy 
of OB LULC classification has improved significantly 
since the segmentation process was developed.

The traditional segmentation algorithm works 
based on the following algorithms, that are region 
growth, threshold, level set and active contours. Many 
segmentation algorithms such as fractal net evolu-
tion (Zhou et al., 2008b), bottom‐up region‐merging 
(Im et al., 2008), multitemporal segmentation (Civco 
et al., 2002), hierarchical segmentation (Tassi & Viz-
zari, 2020), and multiresolution segmentation (Atik 
& Ipbuker, 2021) are achieving good results in the 
object, but most traditional segmentation algorithms 
need to achieve decent improvement in the segmen-
tation speed. In the current state of technology, the 
superpixel segmentation (Wang et  al., 2017) algo-
rithm is widely applicable to image segmentation 
and classification in various fields because of its low 
calculation quantity, faster processing speed, and bet-
ter anti-noise characteristics. Achanta and Süsstrunk 
(2017) presented simple linear iterative clustering 
(SLIC) and SNIC segmentation algorithms in 2012 
and 2017, respectively, based on the concept of 
superpixel segmentation. Several approaches were 
developed according to the original SLIC segmenta-
tion technique, and these algorithms have the advan-
tage of being quick and simple to compute.

Increasing the accessibility of geographical 
imagery has recently made it possible to create and 
develop cloud-based spatial analysis frameworks 
such as the Google Earth Engine (GEE). Previously, 
a large-volume spatial analysis such as LULC was 
impossible to implement because of the complexity 
of the algorithm. The GEE interface provides users 
with the opportunity to state, create, and execute the 
algorithms according to their needs using an intuitive 
interface. Furthermore, it offers a publicly accessible 
dataset that encompasses a comprehensive archive of 
Landsat 6, 7, 8, and 9 images, along with the MODIS 
dataset, and Sentinel 1, 2, and 3 imagery. Because of 
the factors outlined above, the proposed work will be 
implemented and executed over a GEE platform for 
simplicity and efficiency.

In the present study, a novel boundary-spe-
cific two-level learning approach augmented with 

auxiliary features is used to evaluate LULC classifi-
cation systems. The primary contribution lies in the 
comparison between PB classification and OB clas-
sification methods using SVM classification within 
the GEE environment. To enhance OB classification 
accuracy, auxiliary features are incorporated along-
side traditional features, and the SNIC segmentation 
algorithm is utilized for segmentation instead of the 
previously employed multiresolution segmentation. 
Finally, a boundary-specific classification algorithm 
combining SVM and kNN is employed to minimize 
SVM’s misclassification rate. These findings provide 
valuable insights for improving LULC classification 
techniques.

Material and methods

Methodological framework

The boundary-specific two-level classification 
framework for the LULC classes is shown in Fig. 1 
along with a comparison of the classification accu-
racy of PB and two OB techniques with and without 
SNIC (OBS and OB) using Landsat 8 datasets. The 
typical workflow comprises the following steps: 
(i) data composition, (ii) creation of PB and OB 
data, (iii) boundary-specific two-level classifica-
tion, and (iv) accuracy evaluation. In the first step 
of the methodology, a data composition approach 
is a process of merging data from several sources, 
such as spectral bands, dates, and resolutions, to 
produce a more complete image of the study area. 
The data composition helps to increase the quantity 
and quality of information available from Landsat 
8 data. In the pre-processing step to increase the 
quantitative and qualitative information, Landsat 8 
data is included with date, ROI (region of interest 
masking), and cloud coverage filter. Then, the fea-
tures are collected from the preprocessed image and 
the features are mainly three types: spectral, tex-
tural, and indices. Following this, the next step of 
the methodology is the creation of PB and OB data. 
PB data is the combination of bands Surface Reflec-
tance_Band7 (SR_B7), SR_B5, and SR_B3. In OB, 
that spectral composite image is segmented into an 
object (group of similar pixels) by applying multi-
resolution segmentation. Based on these objects, 
the spectral and textural information of the image 
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is used for the classification. After that to imple-
ment the second OBS approach, auxiliary features 
are added and compared with the existing spectral 
features as well a new SNIC segmentation approach 
is used for the object creations.

The final methodological step is boundary-specific 
two-level classification; here, the first level dataset is 
divided into two parts, training and testing, then it is 
classified with SVM classification. Based on the clas-
sification result the training data is labeled and com-
pared with the user-defined class labels. kNN clas-
sification is implemented to refine the training set 
and improve the accuracy of the SVM classification. 
Based on the classification output and the ground 
truth value the confusion matrix is generated for each 
method. The accuracy level of the output LULC map 
is interpreted and generated using these matrices, 
which are used to create a number of qualitative and 

quantitative measures helpful for comparing the per-
formance of the various techniques.

Study area

Tamilnadu’s district of Madurai (study area) is situ-
ated in the southern part of India and is one of the dis-
tricts of that state. In the north, it is bordered by the 
districts of Dindigul and Thiruchirapalli, in the east 
by Sivagangai, in the west by Theni, and in the south 
by Virudhunagar. There are 3,038,252 residents in the 
city, which covers an area of 3710 km2. In terms of 
geographical location, it lies between the North Lati-
tudes of 9°30.00 and 10°30.00 and the East Latitudes 
of 77°00.00 and 78°30.00 (Alaguraja et  al., 2010). 
The study region is bounded by the Southeast Ghats 
and several mountain spurs of the Western Ghats. 
During the 8  months of the year, the climate of the 

Fig. 1   Flowchart illustrating the proposed methodology’s data processing and analysis implemented in GEE
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study area is predominantly hot and dry. As a result 
of the difficult patterns of topography and climate that 
dictate the locations of Madurai LULC, a great deal 
of biodiversity is created as well as unique landscapes 
(Rajesh et  al., 2020). Forestry, agriculture, urban, 
water bodies, uncultivated land, and bare land are 
the most common land uses and land cover patterns 
in the study area and these six classes are used for 
the LULC classification. The selected classes, their 
codes, and the description of the class information are 
present in the Table 1. The number of classes is cho-
sen based on the characteristics of the study area and 
the importance of the problem that was desired to be 
solved. The study area is carefully examined depend-
ing on how the various classes were distributed in the 
data (Mohideen, 2017). The study area location map 
is shown in Fig. 2.

Data composition

Landsat 8 Operational Land Imager (OLI) images 
are used in this study and the images are collected 
from the Landsat 8 satellite which was operated by 
the National Aeronautics and Space Administration 
(NASA) and USGS. On average, Landsat 8 produces 
a 30-m resolution image every 2 weeks, and its cat-
egories with three tiers (tier_1, tier_2, and tier_RT), 
two collections (collection_1, and collection_2), and 
three different processing methods (surface reflec-
tance, top of atmosphere, and raw images) (Knight 
& Kvaran, 2014). Among the categories, “Landsat 
8 Level_2 tier_2 collection_2 Surface Reflectance” 

images are collected from the GEE archive and these 
images are already atmospherically corrected data-
sets. The input parameters of the data insertion in 
GEE are shown in Table  2. The images comprise 
five visible and near-infrared bands (VNIR) and 
two short-wave infrared bands (SWIR) (Barsi et  al., 
2014). To minimize the impact of cloud coverage and 
the most suitable time for vegetation growth, the data 
set is filtered with the appropriate time intervals from 
June 2015 to October 2015. Moreover, the image is 
filtered with the geometric boundary based on the 
study area, and the filtered image is shown in Fig. 3a 
and b.

Feature collection

According to earlier research, the different remote 
sensing feature sets are responsive to various forms 
of LULC. As a result, there is no comprehensive 
feature set for LULC. In the feature set collection 
process, 7 spectral characteristics, 4 texture features, 
and 4 spectral indices were extracted from preproc-
essed Landsat 8 OLI images (Table 3). In order to 
create the PB classification data composition, SR_
B7, SR_B5, and SR_B3 are linearly combined. The 
combination of these bands is perfect for tracking 
agricultural crops, which tend to appear in bright 
green hues (Acharya &  Yang, 2015). A similar 
combination of bands is used for the classification 
of OB. In addition to this, gray level co-occurrence 
matrix (GLCM) and entropy are added in order to 
create the feature set for OB classification. For OBS 

Table 1   Class descriptions, codes, and descriptions of the LULC classes

Classes Code Description

Forest area FAC To qualify as a forest, there must be both trees present and no other predominant land use. The trees 
should reach a minimum height of 5 m. It consists of evergreen, deciduous, forest plantation, scrub 
plantation

Urban area UAC​ The urban landscape refers to an area that is not linear and built up by impervious surfaces that surround 
streets or are connected by them. This cover is related to population centers. There will often be a 
combination of this class of area, as well as vegetation that is connected to built-up areas with a regular 
pattern, such as trees, gardens, and so on, as well as industrial or other areas

Agriculture land ALC Lands that are primarily used for agriculture, food production, fiber production, and other horticultural or 
commercial activities. It consists of cropland, plantation, and fallow

Water body WBC In a water body, the land is immersed or saturated with water, regardless of whether they are man-made 
or natural, whether they are permanent or temporary, vegetated or un-vegetated

Uncultivated land ULC The land has not been prepared, tilled, planted, or used for agricultural or other human activities related 
to cultivation. This type of land typically remains in its natural state

Bare land BLC Open spaces with no vegetation, bare rocks and limestone, sandstone and gravel
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classification auxiliary dataset is added with the 
earlier feature (F2, F3, F4, and F5). Here auxiliary 
dataset is a geospatial dataset not derived from the 
Landsat 8 satellite. A global forest/non-forest map 
(FNF) (F2) is created by categorizing backscatter-
ing coefficients in a 25-m resolution mosaic, differ-
entiating “forest” and “non-forest” using variable 
thresholds (Altunel et al., 2020). The auxiliary fea-
ture, “Inland water bodies—GLCF: Landsat Global 
Inland Water,” (F3) aids in identifying water bodies 

with Landsat imagery (Chen et al., 2015). Soil tex-
ture auxiliary feature (F4) characterizes soil prop-
erties and influences vegetation growth globally, 
including numeric properties at different depths and 
soil class distribution (De Lannoy et al., 2014). The 
global population dataset (F5) enhances predictions 
for dense classes and reduces confusion between 
similar urban classes (Chen et  al., 2020). These 
datasets are open access datasets in GEE shown 
in Fig.  4, and this dataset provides variation and 

Fig. 2   Location map for the study area

Table 2   Data collection input specification in GEE

Important input parameters for data insertion in GEE

• Region of interest (geometry boundary of the study area) collection = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").
filterDate(’2015–06-01’, ’2015–10-31’).filterBounds(geometry).
filterMetadata(’CLOUD_COVER’, less_than’, 10)

• The time period of interest (staring and ending time frame)
• Cloud coverage filter (less than 10% of cloud coverage)
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spatial distribution of human settlements, soil fea-
tures, inland water bodies, and forest cover.

SNIC segmentation

In the OBS method, a SNIC segmentation algo-
rithm is used for image segmentation. Simple linear 
iterative clustering (SLIC) acts as a base for SNIC, 
an advanced super-pixel segmentation method. 
Compared with the SLIC segmentation algorithm, 
the SNIC segmentation algorithm has more advan-
tages, since it reduces the computation time of 
segmentation by using non-iterative procedures. 
The main parameters of SNIC segmentation in the 

GEE environment are super-pixel size, connectivity, 
compactness, neighborhood size, and seed shape. 
Figure  5 shows the input parameters and output 
image of the SNIC segmentation algorithm for the 
study area.

In SNIC, K initial centroids in the image plane 
are generated using a regular grid. The grid matches 
with K corresponding elements in the input image 
and here K is the user-specified number of super-
pixels. The main user-defined parameter of SNIC is 
K, which stands for the number of initial centroids. 
It establishes a super-pixel size s, which may be 
computed as follows:

Fig. 3   The study area’s multispectral image is shown in a prior to cloud and ROI masking, and in b after applying the masking pro-
cess

Table 3   Feature set description and code

ASM angular second moment, IDM inverse difference moment, RVI ratio vegetation index, EVI enhanced vegetation index, NDVI 
normalized difference vegetation index, DVI difference vegetation index

Feature sets and number of 
features

Code Description

Spectral (7) F1 Mean of bands (1–7)
Texture (4) GLCM (Entropy), entropy of band (2), texture of NDVI band (5,4), Geary’s C
Spectral indices (4) RVI, EVI, DVI, NDVI
Auxiliary feature (4) F2 Forest cover—Global 3-class PALSAR-2/PALSAR forest/non-forest map 

(Shimada et al., 2014)
F3 Inland water bodies—GLCF: landsat global inland water (Feng et al., 2016)
F4 Soil features—OpenLandMap soil texture class (USDA system)
F5 Population features—GHSL: global human settlement layers, population grid
F6 F1 + F2 + F3 + F4 + F5
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where N is the image’s pixel count and the Image 
{

I
i

}N

i=0
 . Each element in SNIC consists of the spatial 

position of the candidate pixel, the CIELAB color of 
the pixel, and the label of the super-pixel centroid. 
The priority queue Q is interleaved with K elements, 
and it checks to see if Q is not empty first, then it pops 
out the minimum distance element from the queue. 
For each linked neighbor pixel of the popped ele-
ment, a new element is formed and the distance from 

s =
√

N∕K the connected centroid and the label of the connected 
centroid are assigned. Repeat this procedure until the 
centroid has been assigned or all of the image’s pixels 
have been popped. The result is an image where each 
pixel is mapped to the nearest centroid.

Boundary‑specific two‑level classification

This methodology utilizes a two-level boundary-
specific classification method to compute the LULC 
Classification. The earlier investigations have shown 

Fig. 4   The auxiliary data-
set used in study. A Global 
human settlements white 
pixels denote the human 
settlements. B Forest cover 
green pixels denote the for-
est regions. C Soil features 
green and gray pixels 
denote the different textures 
of the soil. D Inland water 
bodies blue pixel denotes 
the water bodies regions

Fig. 5   The outcome of SNIC segmentation in GEE environment with parameter list
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that, as a consequence of the uniqueness and limita-
tions of the tools, no classifier can be categorically 
regarded as superior to other classifiers since it cannot 
guarantee high-quality classification for all datasets 
(Vivekananda et al., 2021; Alshari & Gawali, 2021). 
The binary SVM classification provides satisfactory 
classification results in complex multidimensional 
datasets. In complex multidimensional datasets, 
binary SVM classification can provide satisfactory 
classification results. On the other hand, it does not 
work when applied to large and imbalanced datasets. 
It is necessary to perform another classification at the 
second level in order to reduce the misclassification 
rate. A kNN classifier is implemented in the second 
level to reduce the misclassifications caused by the 
SVM classifier. Therefore, the boundary-specific two-
level classification method combines the strengths of 

the two classifiers to increase LULC classification 
accuracy. This method has proven to be reliable and 
accurate in various applications. Figure  6 illustrates 
the algorithm steps for implementing the boundary-
specific two-level classification. Figure  7 illustrates 
the boundary-specific two-level approach in a two-
dimensional space, which utilizes the cascade learn-
ing method. In the first level of classification, the 
SVM classifier is applied to the dataset, forming a 
hyperplane based on the support vectors and kernel 
function. This hyperplane separates the dataset into 
two classes with labels + 1 and − 1. The objects fall-
ing inside the strip line are considered as a dataset for 
the kNN classifier. To develop a training set for the 
kNN classifier, objects from the boundary region are 
selected, assuming that the SVM classifier will con-
tinue to correctly classify objects outside the area, but 

1 SVM Classification

Step 1.1 Input: X = { <I1,C1>,….<IN,CN> }, tuple <Ii,Ci> i : 1 to N (number of pixels or objects), and c : 1,-1(class

lable).

Step 1.2 For each sample in Xtraining

w += sample.lambda * sample.classLabel * sample.imageObject

b += w.dot(sample.imageObject) - sample.classLabel

end for

Step 1.3 For each sample in Xtesting

prediction = predictClass(w, sample.imageObject)

if prediction == sample.classLabel:

correctPredictions += 1

end if

accuracy = correctPredictions / len(Xtesting)

end for

Step 1.4 Xmisclassified

prediction = predictClass(w, sample.imageObject)

if -1 < prediction < 1 and prediction != sample.classLabel:

Xmisclassified.append(sample)

end if

end for

2 kNN Classification

Step 2.1 utilize data from within the strip line to form the Dataset Xmisclassified, k : nearest neighbor.

Step 2.2 for sample in Xmisclassified_training

distance = calculateEuclideanDistance

distances.append(distance)

end for

Step 2.3 for neighbor in nearestNeighbors:

label = neighbor.classLabel

if label in labelCounts:

labelCounts[label] += 1

else:

labelCounts[label] = 1

end if

end for

Fig. 6   Algorithm steps for boundary-specific two-level classification using SVM and kNN
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may make mistakes inside this area. The kNN clas-
sifier works differently from the SVM classifier and 
can improve the overall data classification quality in 
some cases.

In the GEE environment, the important parameters 
for the SVM and kNN classifier are shown in Table 4.

Accuracy assessment

In the GEE environment for testing and training of 
the boundary-specific two-level classification, 200 
polygons are randomly collected from the study 
area. The number of sample polygons is chosen 
based on the study area size and previous stud-
ies (Avci et  al., 2023). To create the ground truth 

points, the polygons is overlaid with the Google 
Earth high-resolution base map, and manually 
labeled each polygon as FAC, UAC, WBC, BLC, 
ULC, and ALC (Al-Abdulrazzak & Pauly, 2014). 
According to a random selection, 70% of these 
points are used for training and 30% for validation. 
The confusion matrix is used to assess the accuracy 
of PB, OB, and OBS LULC classification. To assess 
the LULC classification accuracy quantitatively 
producers’ accuracy (PA), users’ accuracy (UA), 
OA, and K were calculated (by calculating the con-
fusion matrix). A confusion matrix based on the 
number of pixels was calculated in the PB classi-
fication methods. Object-based classification meth-
ods can be applied either based on the number of 

Fig. 7   Boundary-specific two-level classificationin two-dimensional space

Table 4   Classification parameters and code for SVM and kNN in the GEE environment

Parameters Code

SVM_Type: C_SVC, NU_SVC, ONE_CLASS, EPSI-
LON_SVR AND NU_SVR

Kernal_Type: linear, Poly, RBF and Sigmoid

var classifier = ee.Classifier.libsvm ({svmType:’C_SVC’, kernelType: 
’LINEAR’}).train(training, ’class’);

Mertic: Euclidean, Cosine, Mahalanobis
kNearest: k Nearest Neighbor always greater than 1

var classifier1 = ee.Classifier.minimumDistance (’ euclidean’, 1).train 
({features: training1, classProperty: bands, inputProperties: classified.
bandNames()});
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objects or based on the area of the objects to deter-
mine the confusion matrix.

Results

Figure  8 shows the step-by-step outcome of PB 
LULC classification. The initial step of the classifica-
tion is masking and creating the true color compos-
ite image. The true-color composite layer is used to 
examine how pixels are visualized for each band. To 
generate a true-color composite image, the “SR_B4,” 
“SR_B3,” and “SR_B2” bands are utilized. In the 
next step, spectral features and indices are collected. 
As a result of the feature collection, the study area is 
classified into one of the PB LULC classes such as 
FAC, UAC, WBC, BLC, ULC, and ALC using the 
supervised classification method.

The findings of the OB and OBS LULC catego-
rization are displayed in stages in Figs.  9 and 10. 
In the classification of OB and OBS approaches, 
the processing stages are similar, but the segmenta-
tion methodologies differ. As part of the OB LULC 

classification approach, a multiresolution segmenta-
tion algorithm is employed to construct the objects, 
and the contextual information is added to the feature 
collection. The OBS LULC classification process 
uses the SNIC segmentation approach for segmenta-
tion and auxiliary features are introduced during the 
feature-collecting stage. These results suggest that 
object-based classifiers take into account smooth-
ness, form, and texture in addition to spectral values, 
whereas PB classifiers simply take into account spec-
trum values.

Figure  11 illustrates the significance of augment-
ing auxiliary feature sets using the OBS method. In 
this context, F1 represents the accuracy (92.45%) 
of the OBS method when using the earlier feature 
set, comprising spectral features (7), texture (4), 
and indices (4). F2 corresponds to the inclusion of 
the auxiliary feature forest cover alongside the ear-
lier feature set, resulting in an accuracy of 93.36%. 
Furthermore, when incorporating the inland water 
bodies feature with F1, the accuracy increases to 
93.60% (F3). Similarly, the simultaneous addition of 
soil feature and population feature to the F1 feature 

Fig. 8   The step-by-step 
outcome of PB LULC clas-
sification
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yields accuracies of 94.25% (F4) and 94.39% (F5), 
respectively. Finally, by augmenting all auxiliary fea-
tures with the earlier feature set, the overall accuracy 
reaches 94.42%. It is worth noting that each feature 
provides marginal improvement over its predecessor, 
but the combined augmentation leads to a notable 2% 
increase in accuracy.

In GEE, a confusion matrix was developed to 
statistically compare the ground truth points to the 
validation points with the output classifications to 
assess the accuracy of both LULC classifications. In 
addition to providing information about the OA and 
K, the confusion matrix also indicates the LULC 
classes that produce errors (quantified by the UA 
and PA, respectively). These errors can be used 
to identify potential areas of improvement in the 
analysis for more accurate results. Furthermore, the 
confusion matrix can be used to identify the most 
and least accurate LULC classes. Table  5 lists the 
OA and K values of the PB, OB, and OBS LULC 
classifications. The results from the OBS LULC 
classification accurately depicted the land cover of 
the study area. The table showed that the OA and 

K values of the OBS LULC classification (OA: 
94.42% and K: 0.92) were higher than those of the 
PB (OA: 81% and K: 0.76) and OB (OA: 91% and 
K: 0.89) LULC classifications. Therefore, the OBS 
LULC classification is more accurate than the other 
two.

Based on the classification methodologies 
employed in this study, Fig. 12 shows the proportion 
of the total area filled by each class. Based on OBS’s 
highest accuracy methodology, BLC is the biggest 
area class and ULC is the second biggest area. Fol-
lowing UAC occupies nearly 14% of the total study 
area. The remaining classes occupy lesser areas of the 
total study area, with the smallest proportion being 
occupied by the ALC class. This is followed by the 
FAC and WBC classes, which occupy nearly 7% 
and 1.7% of the total area, respectively. Overall, the 
results show that BLC is the most dominant class in 
the study area.

The SVM classification in the OBS method pro-
duced an OA of 94.42% and a K of 0.92, which was a 
marked improvement over the PB and OB methods. 
However, when it came to PA and UA, the accuracy 

Fig. 9   The step-by-step outcome of OB LULC classification
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of ULC and UAC classes remained quite low due to 
misclassification between them. The maximum rate 
of misclassification occurs between the following 

pairs of classes ULC and UAC, UAC, and BLC. To 
improve the accuracy of the OBS method, special 
attention should be paid to these misclassifications.

Fig. 10   The step-by-step outcome of OBS LULC classification

Fig. 11   Auxiliary feature augmentation
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The proposed two-level boundary-specific SVM-
kNN classifiers could increase the accuracy of the 
classification. It may be possible to reduce the 
number of misclassified objects by applying the 
kNN classifier to objects that are near the separat-
ing hyperplane found by the SVM classifier. As a 
result of this method, the OA is increased by 3%, 

Table 5   Accuracy assessment of the proposed LULC classifi-
cation methodologies

PB OB OBS

K 0.76 0.89 0.92
OA (%) 81% 91% 94.42%

Fig. 12   Distribution of 6 LULC classes for the study area
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and the K is 0.94. There is also a slight increase 
in the PA and UA of ULC and UAC when com-
pared with SVM. The confusion matrix of the 
OBS method, employing SVM classification and 
a boundary-specific two-level classification, is dis-
played in Tables 6 and 7.

Figure 13 displays a map of the small section of 
the study area with a scale of 500 m, which clearly 
outlines the land use and land cover classes. It can 
be seen that this region is mainly composed of 
waterbodies along with some urban land, agricul-
tural land, and uncultivated land. This output map 
from the OBS LULC classification method accu-
rately differentiates the land within the waterbody 
and road as an urban area.

Discussion

LULC classification is heavily dependent on the accu-
racy of the classification algorithms. Thus, improv-
ing the classification accuracy is of primary impor-
tance in remote sensing. Prior studies have attempted 
to increase the accuracy of the LULC classification, 
both by the traditional PB (Varma et al., 2016; Whi-
teside & Ahmad, 2005) and OB (Dorren et al., 2003; 
Kavzoglu & Yildiz, 2014) methods. In order to 
improve the accuracy of LULC classification exist-
ing in literature, Landsat8 OLI image is taken for the 
study area Madurai. The choice of Landsat 8 is based 
on the work by Chen et al., (2015) which proves that 
medium-resolution (Landsat-like, 10–30  m) sensors 

Table 6   Confusion matrix 
for SVM Classification in 
OBS method

Confusion matrix for SVM classification in OBS method

Reference data Row total UA (%)

Classified data FAC UAC​ WBC ALC ULC BLC

FAC 1406 0 5 27 1 0 1439 97.70
UAC​ 0 195 0 4 17 47 263 74.14
WBC 1 0 339 0 1 0 341 99.41
ALC 9 0 0 240 0 0 249 96.38
ULC 0 8 0 9 38 11 66 57.57
BLC 0 17 1 0 16 729 763 95.54
Column total 1416 220 345 280 73 787 3121 –
PA (%) 99.29 88 98.26 85.71 52 92.63 – –
OA: 94.42%
K: 0.92

Table 7   Confusion matrix 
for boundary-specific two-
level classification in OBS 
method

Confusion matrix for boundary-specific two-level classification in OBS method

Reference data Row total UA (%)

Classified data FAC UAC​ WBC ALC ULC BLC

FAC 1430 0 7 25 0 0 1462 97.81
UAC​ 0 201 0 2 19 30 252 79.76
WBC 1 0 369 0 1 0 371 99.46
ALC 9 0 0 253 0 0 262 96.56
ULC 0 7 0 9 39 11 66 59.09
BLC 0 5 1 0 9 774 789 98.09
Column total 1440 213 377 289 68 815 3202 –
PA (%) 99.31 94.37 97.88 87.54 57.35 94.97 – –
OA: 95.78%
K: 0.94

Page 15 of 20    1280



Environ Monit Assess (2023) 195:1280

1 3
Vol:. (1234567890)

are more competent for detecting most human-nature 
interactions in high-resolution LULC classification. 
Landsat 8 is low to moderate-resolution sensors, 
which are not suitable for high-precision LULC clas-
sification studies at regional scales. The two lead-
ing platforms for medium-resolution satellite land 
imaging are Landsat and Sentinel. Due to Landsat’s 
compatibility with its earlier missions and extensive 
historical datasets compared to Sentinel satellites, 
Landsat is frequently used in research (Chander et al., 
2009). The increased radiometric performance and 
the thermal band calibration of Landsat 8 also con-
tribute to improved analyses of LULC classification 
(Roy et  al., 2014). Thus, “Level 2 Surface Reflec-
tance image from the Landsat 8 OLI (tier 2)” was 
employed. surface reflectance (SR) data from Land-
sat 8 Level-2 data products have already undergone 
certain radiometric and geometric adjustments (Acha-
rya & Yang, 2015), under the direction of the United 
States Geological Survey (USGS). These corrections 
have been precisely applied to the Landsat 8 Level-2 
data products, so using this dataset often does not 
require further radiometric and geometric corrections 
by individual researchers (Vermote et al., 2016).

The study aims to develop an OB LULC classifi-
cation by combining auxiliary features, SNIC and 
boundary-specified two-level classification on a freely 
accessible GEE platform. Furthermore, the study also 
compares the LULC classifications of PB and OB. 
The OA for the PB classification achieved was 81%, 
whereas the OA for the OB classification without 
SNIC and auxiliary features was 91%. An accuracy 

improvement of 10% is observed for OB over the 
PB classification, which is a significant improve-
ment over the accuracies achieved by Whiteside and 
Ahmad (2005) and Weih and Riggan (2010). In addi-
tion to the OB, Qu et al. (2021), Zhu et al. (2016), and 
Hurskainen et  al. (2019) discuss the advantages of 
integrating the auxiliary features for better classifica-
tion. The integration of freely available auxiliary fea-
tures (F2, F3, F4, and F5) with spectral and textural 
features done in this paper has demonstrated a sig-
nificant enhancement (2% improvement) in the OA of 
LULC classification (Fig. 11). The feature set F1 (7 
spectral characteristics, 4 texture features, and 4 spec-
tral indices) are selected based on the result obtained 
from the previous study (Rohini & Geraldine Bessie 
Amali, 2023).

In addition to addressing and analyzing the effect 
of the segmentation algorithms namely multiresolu-
tion and SNIC segmentation on OB classification, a 
comparison is also presented in this paper. The multi-
resolution segmentation and SNIC segmentation pro-
vide an accuracy of 91% and 94.42%, respectively, in 
OB LULC classification. The implementation of the 
OBS approach resulted in a significant gain of almost 
14% in the OA in comparison to the PB classification. 
The SNIC segmentation algorithm makes use of the 
“compactness factor” to define cluster shapes (with 
greater values leading to more condensed clusters), 
“connectivity” to decide how neighboring clusters 
merge (either four connections like queens or eight 
connections like rooks), and a “neighborhood size” 
to eliminate artifacts at tile boundaries when merging 

Fig. 13   LULC classifica-
tion outcome of Boundary-
specific two-level classifica-
tions in the OBS method
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nearby clusters. The selection of compactness (0.1) 
and connectivity (8) parameters involves a methodi-
cal approach of experimentation and analysis. It was 
systematically assessed for compactness and connec-
tivity through iterative testing.

Previous studies (Machhale et al., 2015; Zanchettin 
et  al., 2012) improved the classification accuracy of 
SVM by using a hybrid SVM/kNN model. To imple-
ment this, researchers used SVM and kNN algorithms 
simultaneously on the complete dataset. However, in 
this study only a subset of data is considered for the 
second level of kNN based on the boundary condition 
of the SVM classification at the first level (Fig.  7). 
The results indicate that the boundary-specific two-
level classification algorithm proposed in this paper 
provided better results than the existing literature 
despite the reduced dataset used at the training at the 
second level. A significant increase of 5% in terms 
of UA and PA for LULC classes was also observed 
(Tables 6 and 7).

Conclusion

This study offers valuable insights into LULC clas-
sification for monitoring the land degradation for 
the study area of Madurai. The primary focus of this 
research is to enhance classification accuracy through 
the integration of auxiliary features, utilization of the 
SNIC segmentation algorithm, and the implementa-
tion of a boundary-specific two-level classification 
approach using SVM and kNN. The evaluation of 
PB and OB classification techniques highlights the 
limitations of PB methods when compared to the OB. 
Advancements in the computational capabilities of 
platforms like GEE and improvements in the SNIC 
segmentation algorithm are poised to elevate LULC 
classification outcomes for Landsat 8 data, even at a 
30-m resolution. The study effectively illustrates the 
efficiency of incorporating auxiliary features such as 
spanning forest cover, inland water bodies, soil char-
acteristics, and population data. The study also devel-
ops a novel boundary-specific two-level classification 
methodology that synergistically combines the SVM 
and kNN techniques to reduce the misclassification 
rate. The proposed OBS method increases the OA 
and K from (94.42% to 95.78%) and (0.92 to 0.94). 
Overall, the present study provides a solid foundation 
for further research and opens avenues for improving 

LULC classification techniques, thereby enabling 
more accurate and reliable land cover information for 
various scientific and practical purposes. The limita-
tion of the proposed method is that it does not take 
advantage of deep learning techniques, which can 
learn from large quantities of data and complex pat-
terns that will be considered for future work. The 
proposed LULC classification can be extended and 
applied to different temporal data to identify the 
changes over a certain period of time.
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