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Abstract  Crop type identification is critical for 
agricultural sustainability policy development and 
environmental assessments. Therefore, it is impor-
tant to obtain their spatial distribution via different 
approaches. Medium-, high- and very high-resolution 
optical satellite sensors are efficient tools for acquiring 
this information, particularly for challenging studies 
such as those conducted in heterogeneous agricultural 
fields. This research examined the ability of four mul-
titemporal datasets (Sentinel-1-SAR (S1), Sentinel-
2-MSI (S2), RapidEye (RE), and PlanetScope (PS)) to 
identify land cover and crop types (LCCT) in a Medi-
terranean irrigated area. To map LCCT distribution, a 

supervised pixel-based classification is adopted using 
Support Vector Machine with a radial basis function 
kernel (SVMRB) and Random Forest (RF). Thus, 
LCCT maps were generated into three levels, includ-
ing six (Level I), ten (Level II), and fourteen (Level 
III) classes. Overall, the findings revealed high over-
all accuracies of >92%, >83%, and > 81% for Level I, 
Level II, and Level III, respectively, except for Senti-
nel-1. It was found that accuracy improves consider-
ably when the number of classes decreases, especially 
when cropland or non-cropland classes are grouped 
into one. Furthermore, there was a similarity in per-
formance between S2 alone and S1S2. PlanetScope 
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LCCT classifications outperform other sensors. In 
addition, the present study demonstrated that SVM 
achieved better performances against RF and can 
thereby effectively extract LCCT information from 
high-resolution imagery as PlanetScope.

Keywords  Crop type identification · Optical remote 
sensing · Sentinel-1 · Machine learning

Introduction

The demand for food as well as other agricul-
tural products has expanded globally given the 
world’s  rapid population growth. Nevertheless, cli-
mate change challenges and restricted land and water 
resources are anticipated to constitute a substantial 
danger to guaranteeing food security. Thereby, these 
challenges are likely to constrain the attainment of 
agricultural Sustainable Development Goals (SDGs) 
(United Nations, 2015), notably SDG-2. This goal 
includes nutritious food provision, which is closely 
linked to improved health and a more productive 
life, as highlighted by Martos et al. (2021). To main-
tain food security, several variables, including crop 
growth and yield, require proper monitoring. Moreo-
ver, accurate and trustworthy crop type mapping can 
assist in determining agricultural areas’ proportions 
and crop variety geographical distribution patterns 
(Dahhani et al., 2022; Song et al., 2021). This neces-
sitates the measurement of numerous spatio-temporal 
variables, either directly or indirectly.

Traditional agricultural areas (crop types) iden-
tification and monitoring methods are based on 
field investigation and statistical approaches, which 
demand significant human, financial, and mate-
rial resources and are subject to human variables. 
Currently, remote sensing (RS) technology offers 
cost-effective, irreplaceable, and considerably faster 
tools for conducting comprehensive and accurate 
land cover and crop type’s (LCCT) studies. Indeed, 
this promising technology has been progressively 
exploited in various studies (Asgarian et  al., 2016; 
Belgiu & Drăguţ, 2016; Heupel et  al., 2018; Luo 
et al., 2023; Song et al., 2021; Talukdar et al., 2020) 
due to ongoing platform upgrades (e.g., (Copernicus, 
2022; USGS Team, 2022)), free data availability, 
and, in some cases, permission is available to access 
high-quality data for education and research programs 

(Planet Team, 2022). According to He et  al. (2022), 
RS images include a wealth of textural informa-
tion indicating the spatial distribution structure of 
ground elements, which aids in crop identification 
and improves classification accuracy. Therefore, sev-
eral studies (Chakhar et  al., 2021; He et  al., 2022; 
Heupel et al., 2018; Htitiou et al., 2021; Orynbaikyzy 
et al., 2019; Song et al., 2021) have been carried out 
in recent years to investigate the RS data products use 
(e.g., synthetic aperture radar (SAR), optical data) 
with varying spatiotemporal resolutions (from low 
to very high) to provide trustworthy information to 
assist agricultural sustainability.

The supervised classification approach is one of 
the most often used techniques in LCCT identifica-
tion, and it performs exceptionally well in RS image 
classification. Specifically, supervised machine learn-
ing (ML) classification algorithms, like Support 
Vector Machine (SVM) (Cortes & Vapnik, 1995), 
Decision Tree (DT) and Random Forest (RF) (Brei-
man, 2001), have been successfully applied in LCCT 
classification and have exhibited high performance 
(as illustrated in Table  1). These algorithms, which 
are able to handle non-linear data, can identify com-
plicated discriminating patterns by being fed high-
dimensional data, including original optical/SAR 
bands, numerous vegetation indexes, and phenologi-
cal metrics (Löw et  al., 2013). For crop types map-
ping in Spain, Chakhar et  al. (2021) examined 22 
algorithms, including DT, Nearest neighbor (KNN) 
and SVM, and observed that the KNN classifier pro-
duced the greatest accuracy. In Japan’s agricultural 
area, Sonobe et  al. (2017) applied four algorithms 
(SVM, RF, multilayer feedforward neural networks 
mFNN, and kernel-based extreme learning machine 
KELM). Their results indicated that the KELM 
algorithm had the highest performance. Wang et  al. 
(2019) examined three algorithms (RF, K-means 
(KM) and Gaussian Mixture Model (GMM)), and 
claimed that the RF algorithm achieved the best per-
formance for crop mapping in the United States Mid-
west. Further, ML approaches enhance accuracy with 
rising input data dimensions while avoiding the need 
for human-designed categorization rules. Nonethe-
less, selecting an appropriate ML algorithm remains 
challenging since each approach has restrictions that 
affect its outcomes. Similarly, Zhang and Li’s (2022) 
recent review highlighted that there are still some 
challenges to implementing advanced ML, such as 
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Table 1   An overview of LCCT mapping research

Reference Location Sensor(s) Algorithm Classes number Accuracy 
assessment

Best model

Htitiou et al. 
(2021)

Morocco S2 and MODIS RF 2 OA: 97.86%
Kappa: 0.95

–

Song et al. 
(2021)

United States L8, S1, S2 and 
MODIS

DT 2 OA: 92.0%–
97.0%

L8 + S1 + S2 + MODIS

Samasse et al. 
(2020)

West African 
Sahel

L8 RF 3 OA: 90.1% –

Wang et al. 
(2019)

United States 
Midwest

L5/7/8 RF, KM and 
GMM

3 OA: >85% RF

Rao et al. (2021) India S1 and S2 and 
PS

SVM 4 OA: 69.0%–
85.0%

PS + S1 + S2

Pott et al. (2021) Brazil S1, S2 and 
SRTM

RF 4 OA: 56.0%–
95.0%

S1 + S2+SRTM

Crnojević et al. 
(2014)

Serbia L8 and RE RF 6 OA: 76.0%–
95.0%

Kappa: 0. 
71–0.88

L8 + RE

Ouzemou et al. 
(2018)

Morocco L8 RF, SVM and 
SAM

6 OA: 57.2%–
89.3% Kappa: 
0.43–0.85

RF

Sonobe et al. 
(2017)

Japan S1 and S2 SVM, RF, 
mFNN and 
KELM

6 OA: 95.7%– 
96.8%

KELM

Azar et al. 
(2016)

Italy L8 MLC, NN, 
EMD and 
SAM

7 OA: 62.4%–
92.7%

Kappa: 
0.54–0.91

MLC

Heupel et al. 
(2018)

Germany L8, S2 and RE FMC 8 OA: 77.2%–
89.5%

–

El Imanni et al. 
(2022)

Morocco S1 and S2 RF 8 OA: 86.3–
95.0%

Kappa: 
0.81–0.93

S1 + S2

Ustuner et al. 
(2014)

Turkey RE SVM 10 OA: 56.4–
87.5%

Kappa: 
0.51–0.85

–

Chakhar et al. 
(2020)

Spain L8 and S2 22 algorithms, 
including DT, 
KNN and 
SVM

12 F1-score: 
0.55–0.89

L8 + S2

Chakhar et al. 
(2021)

Spain S1 and S2 12 F1-score: 
0.34–0.93

Subspace KNN

Van Tricht et al. 
(2018)

Belgium S1 and S2 RF 12 OA: 39%–82%
Kappa: 

0.22–0.77

S1 + S2

Htitiou et al. 
(2019)

Morocco L8 and S2 RF 12 OA: 90%–93%
Kappa: 

0.88–0.91

S2

Kpienbaareh 
et al. (2021)

Malawi S1, S2 and PS RF 14 OA: 47.1%–
85.8% Kappa: 
0.37–0.83

PS + S1 + S2
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selecting and combining the relevant information for 
accurate land cover mapping. According to Martos 
et al. (2021) and He et al. (2022), identifying essential 
features is critical for further training ML algorithms 
for improved accuracy. Moreover, Orynbaikyzy et al. 
(2020) demonstrated that feature selection may fur-
ther improve the ML algorithms’ accuracy, especially 
once the training samples’ number is restricted.

Numerous studies have shown that LCCT mapping 
techniques employing time-series data outperform 
single-date approaches (Azar et al., 2016; El Imanni 
et al., 2022; Van Tricht et al., 2018). Besides, a recent 
review by Orynbaikyzy et  al. (2019) emphasized 
that, in several research concentrating on a few crop 
types (e.g., oilseeds, sugar crops, and cereals), com-
bining optical and radar data with different spatial 
and temporal resolutions substantially enhanced crop 
types discrimination findings. Indeed, several studies 
have combined SAR data (i.e., Sentinel-1 (S1)) with 
optical imagery, notably Sentinel-2 (S2) (Chakhar 
et al., 2021; El Imanni et al., 2022; Pott et al., 2021; 
Sonobe et al., 2017; Van Tricht et al., 2018), Landsat 
and Moderate Resolution Imaging Spectroradiometer 
(MODIS) images (Blickensdörfer et  al., 2022; Song 
et  al., 2021). For instance, to detect crops in Bel-
gium, Van Tricht et  al. (2018) used multi-temporal 
S1 and S2. Their findings revealed that SAR data 
might enhance classification accuracy by 4%–14% 
when compared to S2 alone. Likewise, Blickensdör-
fer et  al. (2022) reported a 6%–10% accuracy gain 
for crop type identification when combining optical 
(Landsat-8 (L8) and S2), SAR (S1), and environmen-
tal data (i.e., elevation, topographic wetness index, 
temperature, and precipitation). Moreover, Song et al. 
(2021) combined S1 images with MODIS, L8, and 

S2 images to produce an enhanced crop types map. 
Additionally, Pott et al. (2021) found a 3% improve-
ment in accuracy for mapping in-season crops by 
integrating S1, S2, and Shuttle Radar Topography 
Mission (SRTM) data. Despite numerous RS tech-
nology developments, few studies have concentrated 
on LCCT mapping with very high spatial resolution, 
including PlanetScope (PS, 3 m) and RapidEye (RE, 
5 m). For instance, Rao et al. (2021) and Kpienbaareh 
et al. (2021) produced a crop types map for India and 
Malawi using S1, S2 and PS combination data. Other 
investigations conducted over Uzbekistan-Kazakhstan 
(Löw et al., 2013), Turkey (Ustuner et al., 2014), Ger-
many (Heupel et  al., 2018), and Serbia (Crnojević 
et  al., 2014), indicate the RapidEye utility for crop 
types discrimination. Table  1 highlights different 
LCCT classification experiences using various loca-
tions, algorithms, sensors, and numbers of classes.

Some research in Morocco has reported using 
multi-temporal optical and/or SAR remote sensing 
imagery to map land cover and land use (LULC) 
(Acharki et  al., 2021; Hadria et  al., 2009; Höpfner 
& Scherer, 2011; Mohajane et  al., 2018). Neverthe-
less, few researchers (Acharki, 2022; Acharki et  al., 
2020; El Imanni et  al., 2022; Htitiou et  al., 2019, 
2021; Ouzemou et  al., 2018) tried to map irrigated 
crops in diverse time periods with detailed classes, 
thus proving the tremendous potential of RS products 
for accurate crop mapping. For instance, in the Tadla 
irrigated perimeter (central Morocco), Ouzemou et al. 
(2018) identified 6 crop types using multi-temporal 
L8 (October 2013–June 2014) and three machine 
learning algorithms (Spectral Angle Mapper, Sup-
port Vector Machine (SVM) and RF). El Imanni et al. 
(2022) recently combined S2 and S1 data (September 

L5/7/8 Landsat 5, 7, and 8, L8 Landsat-8, MODIS Moderate Resolution Imaging Spectroradiometer, PS PlanetScope, RE RapidEye, 
S1 Sentinel-1, S2 Sentinel-2, SRTM Shuttle Radar Topography Mission, DT Decision tree, MLC Maximum likelihood classification, 
NN Neural Networks DT Decision trees, EMD Maximum likelihood Euclidean Minimum Distance, FMC Fuzzy c-means clustering, 
mFNN multilayer feedforward neural networks, KM K-means, KELM kernel-based extreme learning machine, GMM Gaussian Mix-
ture Model, KNN Nearest neighbor, RF Random Forest, SAM Spectral Angle Mapper, SVM Support Vector Machine

Table 1   (continued)

Reference Location Sensor(s) Algorithm Classes number Accuracy 
assessment

Best model

Acharki et al. 
(2020)

Morocco S1 and S2 RF 8–21 OA: 86.4%–
99.1% Kappa: 
0.86–0.99

S2

Blickensdörfer 
et al. (2022)

Germany S1, S2 and L8 RF 24 OA: 77.0%–
80.4%

L8 + S1 + S2 Env
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2020–March 2021) and focused on the identification 
of 7 crop types and 1 non-cropland in the same area 
using RF algorithm. Moreover, Htitiou et  al. (2021) 
used multi-temporal L8 and S2 data, along with RF 
algorithm to identify 10 cropland classes and 2 non-
cropland classes in Triffa’s and Tadla ‘s irrigated 
perimeters. This approach yields an overall accuracy 
of higher than 90%. This study reveals Sentinel-2’s 
relevance in producing accurate agricultural crop-
type maps in semi-arid regions. Acharki et al. (2020) 
conducted a first study, in addition to employing SAR 
and optical time series at various levels for Louk-
kos’ crop type mapping, combining multi-temporal 
S1 and S2 data. They discriminated between 13 crop 
types and 8 non-cropland areas and obtained an over-
all accuracy of >86%. Moreover, Acharki (2022) 
recently mapped 6 crop types (fruit trees) and 10 non-
cropland classes for 2020–2021 employing multi-
temporal L8, S2, and PS data and indicated an overall 
accuracy of more than 82.2%. Currently, no research 
in Morocco has investigated the ability of high-
resolution imagery, such as RapidEye, to map crop 
types (e.g. cereals and  horticultural crops) at differ-
ent classification levels. In this research, we employ 
Support Vector Machine with radial basis function 
kernel (SVMRB) and Random Forest (RF) as super-
vised per-pixel classification algorithms to map land 
cover and crop types (LCCT). These methods were 
chosen because of their speed, robustness, and abil-
ity to obtain the objectives for a certain land cover 
assignment. In this current research, we investigate 
(i) the possibility of combining multi-temporal Senti-
nel-1 and Sentinel-2 data and (ii) the ability of utiliz-
ing multi-temporal PlanetScope and RapidEye data to 
improve LCCT mapping in a Mediterranean irrigated 
area (Loukkos-Northwestern Morocco). This map-
ping is carried out using hierarchical nomenclature 
with three classification levels.

Materials and methods

Study area

The study area covered 645 km2 and is situated in the 
Loukkos irrigated perimeter (2,572  km2), which is 
well known for its abundant water and soil resources 
in northwestern Morocco (Fig.  1). This area’s soil 
is largely categorized as sesquioxide soils (69.2%), 

followed by vertisols (10.7%), calcimagnesic soils 
(8.0%), slightly developed soils (6.6%), and browned 
soils (5.5%). This study area is predominantly flat 
plains with relatively moderate elevation (less than 
100 m). Furthermore, it has a Mediterranean climate 
with an annual average temperature of 18.3  °C, and 
annual rainfall of 617.9 mm (Acharki et al., 2020).

Agriculture in the study region is a significant soci-
oeconomic development sector, and it includes crops 
and fruit trees such as wheat, fodder crops, potatoes, 
groundnuts, chickpeas, beans, rice, citrus fruits, 
red fruits, sugar beets, and sugar cane. Barley, olive 
trees, watermelon, maize, peas, rosacea, lentils, avo-
cado trees, sunflowers, rapeseed, and other legumes 
and vegetables are also present in Loukkos. In 2018, 
crop production in this region was 1,534,359.8  t, 
with 20.3% sugar crops, 1.5% oilseeds, 12.0% cere-
als, 23.8% fodder, 33.6% market gardening, and 8.8% 
arboriculture (Mouhssine, 2018). Moreover, this 
perimeter further assists dairy production and thereby 
has a considerable hay-producing area. This study 
focuses on greenhouse crops, groundnut, potato, 
watermelon, rice, wheat, maize, and  fruit trees, 
among all crop types. Acharki et al. (2020) reported 
that the landscape linked with these crops varies in 
terms of vegetation structure (e.g., vegetation height 
and leaf angle) and cover geometry (e.g., row plant-
ing, density, trees), as illustrated in Fig. 2.

Remotely sensed data

The methodology used in this research is depicted in 
Fig. 3.

Dataset

To map LCCT, we exploit cloud-free multi-tempo-
ral data from one SAR sensor (Sentinel-1 Level 1 
GRD data) and three optical sensors (Sentinel-2 A 
and B at Level 1C, RapidEye Ortho Tile and Plan-
etScope Ortho Scene), covering our study area from 
September 1, 2017 to August 31, 2018. Medium-
resolution Sentinel-1 and Sentinel-2 (10 m) imagery 
were acquired via the Copernicus Open Access Hub 
(Copernicus, 2022). Furthermore, high-resolution 
RapidEye (5  m) and PlanetScope (3.1  m) imagery 
were acquired via the Planet Explorer website 
(Planet Team, 2022). The digital elevation model 
(SRTM), with a spatial resolution of 30 m, required 
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Fig. 1   Loukkos perimeter’s study area, illustrating (a) the study area’s location in northwestern Morocco (b) A RapidEye true color 
composite (band 3-2-1) image acquired on March 28, 2018
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for Sentinel-1 radiometric calibration was obtained 
using the Earth Explorer (USGS Team, 2022). Over-
all, a total of 34 images were used: twelve Senti-
nel-1 images, seven Sentinel-2 images, five Rapi-
dEye images, and ten PlanetScope images. Figure  4 
illustrates the image acquisition dates from the four 
sensors.

Pre‑processing

Sentinel‑1 imagery  Sentine-1 images were 
obtained at C-band (λ ≈ 5.6  cm) Level-1 Ground 
Range Detected (GRD) in Interferometric Wide (IW) 
swath mode. Although both polarizations (VV and 
VH) were obtained, only the  descending orbit was 
used in this investigation. In crop studies, Chakhar 
et  al. (2021) stated that ascending and descending 
mode data behaved remarkably similarly. Python 
scripts based on the Orfeo Toolbox software (OTB, 
2022) were applied to these images, as outlined by 
Frison and Lardeux (2018). The calibration, which 
is one of the most important Sentinel-1 processing 
steps (Acharki et al., 2021; Frison & Lardeux, 2018; 
Lopes et al., 2020), consists of converting the digital 

values to numerical values to obtain the backscatter 
coefficient (sigma zero (σ0) in decibels (dB), [Eq. 1]). 
Subsequently, the SRTM was employed to correct the 
geometric distortions caused by changes in the satel-
lite’s location and attitude. Finally, a multi-temporal 
filter was generated in order to eliminate speckle 
effects (Quegan & Yu, 2001). This filtering method is 
particularly adapted to time series analysis consisting 
of a large number of images, such as those acquired 
by Sentinel-1 (Frison & Lardeux, 2018). Accord-
ing to Baghdadi and Zribi (2017), this method can 
reduce speckle noise while preserving image spatial 
resolution. Besides, the processed images were in 
dual polarization (VH and VV) and had a VH/VV 
ratio (cross polarization ratio). Many studies (Blick-
ensdörfer et al., 2022; 2021; Song et al., 2021) have 
explored crop-type classification methods using VH/
VV ratio and revealed that this ratio improves SAR 
image quality.

Sentinel‑2 imagery  Sentinel-2 A and B images 
were acquired at Level 1C (top-of-atmosphere, TOA), 

(1)�
0
dB

= 10 ∗ log10
(

�
0
)

Fig. 2   Photograhs of crop types taken in the field (2017–2018). a) Maize. b) Potatoes. c) Beans. d) Wheat. e) Greenhouse crops. f) 
Fruit trees (citrus). g) Watermelon. h) Groundnuts. i) Rice
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implying that they have been geometrically and radio-
metrically corrected, but not atmospherically cor-
rected (Acharki et al., 2021; Lopes et al., 2020). The 
atmospheric correction consists of transforming the 
numerical number DN into top-of-atmosphere (TOA) 
radiance and subsequently converting TOA reflec-
tance into surface reflectance values. This process 
was carried out to generate a Level-2A (bottom -of-
atmosphere, BOA) reflectance image using the dark 
object subtraction algorithm (DSO1) (Goslee, 2011). 
Moreover, ten spectral bands were exploited in this 
research, comprising four 10  m bands. Numerous 
researchers revealed that these ten bands are the most 
designed for land applications (Acharki, 2022; Lopes 
et  al., 2020) and that Sentinel-2’s red-edge bands 
were beneficial for crop classification (El Imanni 
et al., 2022; Song et al., 2021). In contrast, Sentinel-2 
bands 1, 9, and 10 were eliminated due to their sen-
sitivity to aerosols and cirrus clouds, as well as their 

low spatial resolution (60 m) and irrelevance for crop 
type identification (ESA Team, 2015). Furthermore, 
to enable integration and consistency, the six bands 
collected at a spatial resolution of 20 m (5, 6, 7, 8a, 
11, and 12) were resampled to 10  m using bilinear 
interpolation. According to Stam and Fung (2011), 
this interpolation approach was chosen over the near-
est neighbor since it produced smoother interpolation 
and enhanced overall image quality.

RapidEye imagery  RapidEye Level 3A images 
with five spectral bands were selected. These bands 
are orthorectified products with radiometric, geomet-
ric and sensor corrections. At nadir, RapidEye data 
has an initial spatial resolution of 6.5 m, whereas the 
RapidEye Ortho Product was provided with a resa-
mpled spatial resolution of 5  m. Previous research 
(e.g., (Ustuner et al., 2014)) demonstrated that Rapi-
dEye’s red-edge (sensitive to chlorophyll content and 

Fig. 3   Flowchart of methodology
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enabling enhanced class separation) and near-infrared 
bands were specifically designed for monitoring and 
identifying crop varieties in agricultural regions on a 
regional and/or global scale.

PlanetScope imagery  Dove Classic, the initial ver-
sion, provided four spectral bands (RGB and NIR). 
Nevertheless, Dove-R and SuperDove (newer gen-
erations since 2019) supplied eight spectral bands. 
In this research, four spectral bands in Level 3B that 
capture radiation between 455 and 860 nm were used. 
These bands are subjected to orthorectification, along 
with radiometric, geometric, and atmospheric cor-
rections, in order to obtain surface reflectance val-
ues. This provides more consistency throughout time 
and space while reducing ambiguity in the spectral 
response (P.B.C. Planet Labs, 2021). Its worth not-
ing that this method performs atmospheric correction 
based on 6S radiative transfer model with ancillary 
data from Moderate Resolution Imaging Spectroradi-
ometer (MODIS) (P.B.C. Planet Labs, 2021).

Ultimately, all pre-processed images were clipped 
to match the study area’s borders. Subsequently, these 
images were combined into multi-band stacks using a 
virtual raster (VRT) approach to produce the datasets 
mentioned in Table 2. Specifically, each band repre-
sents a different spectral or radar channel. Thus, this 

approach allowed us to merge data from Sentinel-1 
and Sentinel-2 while preserving their original details 
intact. It is noteworthy that all preprocessing steps 
were implemented in the R programming language 
(CoreTeam, 2022) and the R Studio (version 4.2.1) 
integrated development environment.

Training samples collection

We generated spatially-distributed training sam-
ple data using (i) geotagged photographs from field 
surveys conducted in 2017–2018, (ii) Google Earth 
(Digital Globe) imagery, and (iii) our field expertise. 
To achieve a robust and balanced dataset, we adopted 
a stratified random sampling design, wherein the map 
classes were subdivided into separate sub-areas or 
strata depending on particular criteria, such as land-
cover types. From within each strata, samples were 
then randomly selected. We chose this commonly 
used approach to enhance the precision and reliabil-
ity of our classification results, as recommended by 
Stehman and Foody (2019). Likewise, we considered 
a three-level hierarchical classification, as presented 
in Fig.  5. The first level concerns five non-cropland 
(land cover) classes and one cropland class (Level 
I), which are commonly applied in the literature. In 

Fig. 4   Data acquisition dates for 2017–2018
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the second level (Level II), the cropland classes have 
been subdivided into nine crop types in order to see 
their detailed discrimination potential. It should 

be pointed out that crop types’ classes were chosen 
depending on their availability during the field sur-
veys. Some of these crops are displayed in Fig.  2. 

Table 2   Different used remote sensing data characteristics

No. Model Sensor Data type Bands Spatial 
Resolu-
tion

Number of features

Polari-
zation/ 
Canals

Image’s number Total

A S1 Sentinel-1 Radar (SAR) VV, VH and VH/VV ratio 10 m 3 12 36
B S2 Sentinel-2 Optical B02 (λ = 490 nm); B03 (λ = 560 nm); 

B04 (λ = 665 nm); and B08 
(λ = 842 nm)

10 m 10 7 70

B05 (λ = 705 nm); B06 (λ = 740 nm); 
B07 (λ = 783 nm); B8A 
(λ = 865 nm); B11 (λ = 1610 nm); 
and B12 (λ = 2190 nm

20 m

AB S1S2 Sentinel-1 
and Senti-
nel-2

Radar +Optical VV, VH, VH/VV ratio, B02, B03, 
B04, B05, B06, B07, B8A, B11, B12

10 m 3 + 10 12 + 7 106

C RE RapidEye Optical B01 (λ = 440–510 nm); B02 (λ = 520–
590 nm); B03 (λ = 630–685 nm); 
B04 (λ = 690–730 nm); and B05 
(λ = 760–850 nm)

5 m 5 5 25

D PS PlanetScope Optical B01 (λ = 455–515 nm); B02 (λ = 500–
590 nm); B03 (λ = 590–670 nm); and 
B04 (λ = 780–860 nm)

3 m 4 10 40

Fig. 5   LCCT three-level hierarchical classification
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In the third level (Level II), we combine land cover 
(non-cropland) classes with crop types (cropland) 
classes. Thus, this allowed us to retain six, ten, and 
fourteen classes for level I, level II, and level III, 
respectively. Based on this data, a spatial distribution 
of 7,521 samples covered the area in 2017–2018, with 
more than 500 sample points collected in each class 
(as shown in Table  3). These sample datasets were 
then randomly partitioned into two parts: 70% for 
classification model initialization and 30% for model 
validation and performance evaluation.

Classification and accuracy assessment

The supervised pixel-based classification for LCCT 
was performed using two well-known machine learn-
ing algorithms: Support Vector Machine with radial 
basis function kernel (SVMRB) and Random For-
est (RF). To train these algorithms, 5-fold cross-
validation was applied, which prevented overfitting 
concerns. RF and SVMRB classification procedures 
were conducted using R programming language 
(CoreTeam, 2022). Further, a total of 30 thematic 
maps have been produced.

Random Forest (RF) algorithm is a well-estab-
lished supervised statistical classification approach 
that, in fact, has become the standard in many fields, 
most notably to classify/identify/map land cover/land 
use and crop types (Acharki, 2022; Acharki et  al., 
2021; Blickensdörfer et al., 2022; Kpienbaareh et al., 
2021; Ouzemou et al., 2018; Van Tricht et al., 2018). 
Technically, it is a non-parametric algorithm (Brei-
man, 2001), involving the combination of decision 
trees and an aggregation technique(Breiman, 2001; 
Rodriguez-Galiano et  al., 2012). Indeed, RF gener-
ates exceptionally minor generalization errors (Brei-
man, 2001). This characterizes it as having low sensi-
tivity to noise or overtraining. Besides, RF algorithm 
is able to process high-dimensional RS data and has 

the capacity to determine important variables (Rod-
riguez-Galiano et al., 2012; Van Tricht et al., 2018). 
Similarly, it is computationally more robust and has 
exhibited high precision in comparison to alternative 
algorithms (Acharki, 2022; Lopes et al., 2020; Zhang 
et  al., 2020). Other advantages and limitations have 
been indicated in Belgiu and Drăguţ (2016). Overall, 
RF algorithm necessitates the configuration of two 
main parameters: Ntree (number of trees to grow in 
the ensemble) and Mtry (number of features used in 
each split) (Belgiu & Drăguţ, 2016). Based on previ-
ous studies (Belgiu & Drăguţ, 2016; Pelletier et  al., 
2016), Ntree and Mtry stand out as the most crucial 
RF parameters given their potential to exert a sub-
stantial influence on the classifier’s performance. In 
this research, we used the default values and set Ntree 
to 25 trees and Mtry to 25 as mentioned by Acha-
rki (2022). These values, according to Lopes et  al. 
(2020), provided a reasonable balance between clas-
sification accuracy and calculation time.

Support Vector machine, is a nonparametric sta-
tistical algorithm employed for binary classification. 
Several studies have demonstrated that SVMs can 
classify satellite images with reasonable accuracy 
(Acharki et  al., 2021; Chakhar et  al., 2021; Ghay-
our et  al., 2021; Löw et  al., 2013; Rao et  al., 2021; 
Ustuner et  al., 2014). Specifically, SVM algorithm 
classifies linearly separable data by selecting the opti-
mal N-dimensional hyperplane that best separates 
two classes (Cortes & Vapnik, 1995). Detailed infor-
mation on SVMs can be found in Cortes and Vapnik 
(1995). It is worth mentioning that SVM algorithm 
has five widely used  kernel functions, including 
radial basis function kernels, linear kernels, sigmoid 
kernels, Laplacian kernels, and polynomial kernels. 
In this research, a radial basis function kernel (RBF) 
was adopted for its computational efficiency. Sev-
eral studies revealed that RBF, which is an exponen-
tial function, is the most prevalent approach for crop 

Table 3   LCCT classes and 
number of samples used for 
classification

Class Number Class Number Class Number

Water 521 Greenhouse crops 528 Wheat 535
Wetlands 530 Groundnut 573 Maize 549
Buildings and 

infrastructures
529 Potato 528 Other crops 564

Other 531 Watermelon 546 Fruit trees 527
Forest 526 Rice 525
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classification and delivers greater accuracy than other 
traditional techniques (Löw et  al., 2013; Talukdar 
et al., 2020; Thanh Noi & Kappas, 2017). Conversely, 
Ghayour et  al. (2021) concluded that linear kernel 
provides the best classification accuracy compared 
to other SVM kernels. Besides, the SVM classifier’s 
performance is based on the input parameters such as 
the optimal cost, or regularization, or penalty param-
eter (C) and the kernel width parameter (γ). Accord-
ing to Thanh Noi and Kappas (2017), high C values 
result in significant penalties, which might result in 
overfitting. High γ values, on the other hand, tend to 
overfit the training data. Therefore, the kernel type 
and parameters were set according to Ghayour et al. 
(2021) findings.

To guarantee reliability and validity, each classifica-
tion map was evaluated using confusion (error) matrix 
approach (Foody, 1992). Moreover, precision (produc-
er’s accuracy) [Eq. (2)] and recall (user’s accuracy) [Eq. 
(3)] were computed to measure the precision of indi-
vidual classes. Precision, also known as positive pre-
dictive value, refers to omission errors and is defined as 
the number of correctly classified items relative to the 
total items’ number in that class within the classifica-
tion. Recall, on the other hand, relates to commission 
errors and indicates the number of accurately classified 
items relative to the total items’ number in that class 
in validation samples. In addition, F1-score [Eq. (4), 
(Van Rijsbergen, 1979)], which is determined by tak-
ing precision and recall harmonic mean, was employed 
to evaluate classifier appropriateness by class. Other-
wise, overall accuracy (OA) [Eq. (5)] and kappa coef-
ficient [Eq. (6), (Foody, 1992)] were used for the global 
accuracy assessment. The overall precision, obtained 
by dividing the total correctly labeled samples by the 
total number of tested samples, determines its overall 
efficiency. The Kappa coefficient indicates the agree-
ment degree between sample data and predicted values 
(Foody, 1992).

(2)P =
TP

(TP + FP)

(3)R =
TP

(TP + FN)

(4)F1 − score = 2 ×
P × R

P + R

where TP, FN and FP: Number of pixels accurately 
classified, pixels incorrectly unclassified, and pix-
els incorrectly unclassified in class i, respectively. 
P: Precision, R: Recall, Xii: Number of pixels cor-
rectly classified, N: Total number of pixels in the 
confusion matrix. Xii: Diagonal elements in error 
matrix. x: Total number of sample in error matrix. 
∑r

i=1

�

x+i × x+i
�

 : Sum of row’s total column totals. 
N
∑r

i=1
xii : Total sum of appropriate samples.

In this research, during post-classification process-
ing, we employed filtering to reduce the noise’s effect 
and thus enhance the uniformity of LCCT classifica-
tion. Specifically, a majority filter was utilized and 
implemented through the SAGA Qgis software (ver-
sion 3.24.1). This filter was configured with a one-
pixel radius and a square search mode.

Results and discussion

Accuracy analysis

An accuracy evaluation was conducted to evaluate 
the effectiveness of LCCT identification. The statis-
tical metrics (overall accuracy and kappa coefficient) 
for five sensor models (Sentinel-1 (S1), Sentinel-2 
(S2), Sentinel-1 and Sentinel-2 combined (S1S2), 
RapidEye (RE) and PlanetScope (PS)), two machine 
learning algorithms (RF and SVMRB), and three 
classification levels are summarized in Table 4. Thus, 
the results indicate that classification performance 
spans from 77.35% to 97.87%, with kappa values 
ranging from 0.73 to 0.96. Furthermore, these accura-
cies are comparable to, or even better than (Chakhar 
et  al., 2021; Kpienbaareh et  al., 2021; Rao et  al., 
2021; Van Tricht et  al., 2018), those of supervised 
machine learning methods performed by previous 
studies in different areas (Azar et al., 2016; El Imanni 
et  al., 2022; Htitiou et  al., 2019; Song et  al., 2021; 
Sonobe et  al., 2017). Conversely, they were slightly 
lower than those reported in the same area by Acha-
rki et  al. (2020) considering Sentinel-1 and -2 time 

(5)OA =

∑r

i=1
xii

x

(6)kappa =
N
∑r

i=1
xii −

∑r

i=1

�

xi+ × x+i
�

N2 −
∑r

i=1

�

x+i × x+i
�
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series (2017-2018). This variation could be attributed 
to differences in the quantity of images, training sam-
ples, and classes used. According to He et al. (2022) 
and Song et al. (2017), ML algorithms’ performance 
is affected by both the types of classification features 
and the size of classification indexes. Moreover, Hti-
tiou et  al. (2019) claimed that number of training 
samples influences classification accuracy. Löw et al. 
(2013) stated that as the number of features rises, 
classification accuracy may decrease, a concept called 
the ‘Hughes effect’. Additionally, other research (He 
et al., 2022; Orynbaikyzy et al., 2019) has found that 
the distinguishing information among different land 
covers is present within in a low-dimensional fea-
ture space. They also concluded that including more 
images often provide minimal information although 
increasing the computational complexity (Orynbai-
kyzy et al., 2019). However, comparing accuracy data 
directly with previous studies is challenging due to 
the variations in sensors, classes, and classification 
algorithms, as mentioned by Blickensdörfer et  al. 
(2022).

The results reveal that SVMRB achieved the high-
est overall classification accuracy of 78.46%–96.49%, 
independent of classification level or sensor type. 
RF ranks last, lower than SVMRB by 0.49%–3.55%. 
These findings align with earlier research, suggest-
ing that SVM is recommended for supervised clas-
sification in most cases (Ghayour et  al., 2021; Löw 
et  al., 2013; Rao et  al., 2021; Ustuner et  al., 2014). 
On the other hand, they argued that SVM outper-
forms owing to its ability to solve overfitting com-
plexity and its suitability to handle smaller datasets 
with high dimensionality. In contrast, Ouzemou et al. 
(2018) mapped six crop types in the Tadla irrigated 
perimeter and found that RF slightly exceeded SVM 

by 4% in overall accuracy. In terms of level classifi-
cation, the findings demonstrate that Level I accura-
cies exhibit a slight improvement compared to Level 
II and Level III. This means that as the number of 
classes decreases, accuracy tends to increase. Accord-
ing to Acharki et  al. (2020), the class classification 
complexity increases with the number of classes since 
subclasses exhibit less consistent behavior and have a 
limited training samples’ number.

It is worth noting that S2 has greater accuracy than 
S1, with discrepancies ranging between 10.31% and 
16.21%. Sentinel-1 has the lowest accuracy (77.35%) 
regardless of the classification algorithm. This finding 
is consistent with previous work (Acharki et al., 2020; 
Lopes et al., 2020; Pott et al., 2021), which found that 
classification based on S2 data consistently outper-
formed classification based on SAR data. Besides, 
it can be found that, except for Level I, integrat-
ing S1 and S2 does not notably enhance crop map-
ping accuracy over S2 alone (a gain <1.07%), which 
is in agreement with earlier findings (Acharki et  al., 
2020; El Imanni et al., 2022; Lopes et al., 2020). For 
instance, El Imanni et  al. (2022) and Acharki et  al. 
(2020) exhibited a similarity between S1S2 perfor-
mance and S2 performance alone and found a gain 
of 1.22% and < 1% in Tadla and Loukkos irrigated 
perimeters, respectively. They proposed that utiliz-
ing S2 data alone could produce better performance 
than using S1 and S2 combined. In contrast, earlier 
research (Blickensdörfer et al., 2022; Chakhar et al., 
2021; Orynbaikyzy et al., 2019, 2020; Sonobe et al., 
2017; Van Tricht et  al., 2018) discovered that this 
combination substantially enhanced crop type iden-
tification compared to employing single-sensor data. 
For example, Van Tricht et al. (2018) identified eight 
crop types for Belgium using RF, S1, and S2 data and 

Table 4   Statistical metrics for each classification level, algorithm, and sensor

Bold values are maximum values, and underlined values are minimum values

No Model Class (Level I) Class (Level II) Class (Level III)

RF SVMRB RF SVMRB RF SVMRB

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

A S1 86.06 0.73 87.57 0.77 82.50 0.79 83.13 0.80 77.35 0.76 78.46 0.77
B S2 96.40 0.93 97.87 0.96 94.85 0.94 95.52 0.95 93.56 0.93 94.49 0.94
AB S1S2 96.27 0.93 97.60 0.96 95.52 0.95 96.00 0.95 94.63 0.94 95.47 0.95
C RE 91.92 0.85 94.58 0.90 83.88 0.80 86.32 0.83 80.86 0.79 84.41 0.84
D PS 95.16 0.91 97.34 0.95 95.20 0.94 96.49 0.96 92.94 0.92 95.69 0.95
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emphasized that integrating SAR data boosted overall 
RF accuracy by 4%–14%.

Similarly, our findings indicate that PlanetScope 
accuracies surpass RapidEye for crop type discrimi-
nation, which can be referred to as an improvement in 
spatial resolution. When comparing PS to RE models, 
the accuracy improvement for RF varies from 3.24% 
to 12.08%. Whereas, the SVMRB accuracy improve-
ment ranges from 2.75% to 11.28%. Notwithstanding 
the red-edge band inclusion, which is susceptible to 
plant chlorophyll content, RapidEye was placed sec-
ond to last after Sentinel-1. This might be due to the 
fact that the RapidEye collected images did not cap-
ture the whole crop types’ phenological development 
and had the lowest number of features compared to 
other sensors. Crnojević et al. (2014) noted that Rapi-
dEye images obtained in a short time period, which 
is a very tiny percentage of the overall period con-
taining all selected crop types’ phenological devel-
opment, are of low quality and cannot be relied on. 
Nevertheless, previous research has proven that Rapi-
dEye contributed the most substantial improvements 
in crop types classification accuracy, particularly in 
multi-sensor scenarios (Crnojević et  al., 2014; Heu-
pel et al., 2018) and single (Löw et al., 2013; Ustuner 
et al., 2014) models.

It’s noteworthy that the accuracy obtained by Sen-
tinel-2 and PlanetScope isn’t that different. Specifi-
cally, PlanetScope achieved the greatest classification 
accuracy for Levels II and III (a gap of 0.36%–1.20% 
compared to S2), while Sentinel-2 was the best model 
for Level I (a difference of 0.53%–1.24% compared 
to PS). This is consistent with prior research (Kpien-
baareh et  al., 2021; Rao et  al., 2021) proving Plan-
etScope’s ability to classify crop types. For instance, 
Rao et  al. (2021) used SVM to identify four Indian 
crop types and demonstrated that PlantScope sur-
passed Sentinel-2 by 1%.

Class discrimination comparison F1‑score

In this section, the F1-score findings for Level I and 
Level II are interpreted (Fig.  6). Overall, F1-score 
comparison for each level, class, sensor, and algo-
rithm shows that the classifications obtained good 
F1-score values (>70%). This indicates that, with few 
exceptions, all classes were correctly differentiated 
by the five sensors used. For example, wetlands, and 
other (potato and other crops) were sparsely identified 

by S1-Level I (RE-Level II), indicating that Senti-
nel-1 data has the weakest discriminative potential. 
The resulting F1-score values are comparable to ear-
lier research (Htitiou et al., 2019), in which the values 
obtained were 67%–98%. Nonetheless, they are below 
those achieved by Acharki et al. (2020), who attained 
mean F1-score values >86.5%.

Considering algorithm, the average F1-score val-
ues, for Level I and RF (SVMRB), are 75.2% (78.8%), 
94.4% (96.2%), 94.3% (96.0%), 86.9% (91.2%), and 
92.0% (95.6%), respectively, for S1, S2, S1S2, RE, 
and PS. For Level II and RF (SVMRB), these values 
are 80.1% (81.0%), 93.9% (94.4%), 94.7% (95.1%), 
80.8% (83.2%), 94.6% (95.8%), respectively, for S1, 
S2, S1S2, RE, and PS. It was clearly shown that 
SVMRB led to the highest F1-score, even though 
its performance was comparable to RF algorithm in 
some classes. Although the SVM classifier requires 
intensive time and computational resources when 
dealing with extensive training datasets or numer-
ous features, it demonstrated good F1-score results 
for LCCT classification. Furthermore, it is evident 
that the average F1-score decreases as the number of 
classes increases, with few exceptions.

In terms of sensors, we found that for both lev-
els, Sentinel-1 had the lowest F1-score (>55.9% for 
RF and > 63.4% for SVMRB). This finding contra-
dicts Orynbaikyzy et  al. (2020)’s, which implies 
that Sentinel-1’s classification precision is greater 
than Sentinel-2’s. Their results are explained by 
selecting classes with phenological similarities and 
focusing entirely on crop type classification and 
no other land cover class. However, RapidEye was 
relatively successful in distinguishing between non-
cropland (Level I) and cropland classes (Level II) 
(F1-score > 77.6% for Level I). Furthermore, Sen-
tinel-2 and PlanetScope clearly revealed significant 
discrimination against all classes. From Fig. 6, it can 
be observed that the F1-score values of both sensors 
are nearly identical (a difference < 1%) in several 
classes. Sentinel-2’s F1-score values outscored those 
of PlanetScope in certain classes including forest, 
wetland (Level I), wheat and greenhouse crops (RF-
Level II). In other classes, such as potatoes, water-
melon, other crops, and fruit trees, PlanetScope’s 
F1-score values surpass Sentinel-2. Other studies that 
investigated Sentinel-2 and/or PlanetScope’s poten-
tial for land cover and/or crop-type mapping reported 
similar results (Acharki, 2022; Rao et  al., 2021). 
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Acharki (2022) illustrated that greenhouse crops were 
well distinguished by Sentinel-2, and crops were bet-
ter identified by PlanetScope. It can be concluded 
that PlanetScope has a great capacity to detect crop 
classes since its high spatial resolution corresponds to 
that of small farms, decreasing the mismatched pix-
els’ probability at field boundaries. Besides, the dis-
crepancies in Sentinel-2  F1-score values and those 
of the Sentinel-1 and Sentinel-2 combined are minor, 

except for watermelon (RF and SVMRB), other crops 
(SVMRB), and wheat (RF) classes (differences 2.3% 
and 4.9%). For example, the watermelon was detected 
more effectively when Sentinel-1 and Sentinel-2 were 
combined. These findings are compatible with the 
F1-score findings reported by Lopes et al. (2020) and 
Acharki et al. (2020).

Considering the individual classes, the water and 
cropland classes were easily detected among the 

Fig. 6   F1-score com-
puted for five sensors, two 
algorithms, per level, and 
each class
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Level I classes, regardless of the sensor or algorithm. 
This is related to their distinctive spectral character-
istics. Although the urban settlements’ reflectance 

properties varied from those of vegetation, they were 
moderately detected by all sensors. Moreover, Level 
II findings indicated that F1-score for rice, wheat, 

Fig. 7   a) SVMRB classification results based on PlanetScope imagery at level II (2017–2018). b) Comparison of RF and SVMRB 
classification results for the five used sensors in the zoomed area
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maize, groundnut, fruit trees, and greenhouse crops, 
are all more than 96%, especially for PlanetScope 
and Sentinel-2 using the SVMRB algorithm. This 
suggests that these sensors have a good discriminat-
ing ability to distinguish between these classes. It 
appears that groundnut has been accurately classi-
fied using only Sentinel-1 (93.86%–95.80%). Other 
crops, such as potatoes and watermelons, have lower 
F1-score values (<93%), implying that they are less 
distinguishable compared to other classes. This might 
be because some crops, such as potatoes and water-
melons, exhibit similar (spectral) behavior. Previous 
research has shown that phenological patterns are 
similar across a wide variety of crop types (Orynbai-
kyzy et  al., 2020; Zhang et  al., 2020). For instance, 
Zhang et al. (2020) observed that there is some mis-
understanding between potatoes and maize since 
they are all dryland crops with similar growth cycles. 
Conversely, Van Tricht et al. (2018) exhibited that, in 
Belgium, Sentinel-1 and Sentinel-2 clearly identified 
potatoes, maize, and sugar beets in late August, while 
winter cereals were better discriminated against in 
late June. Similarly, Orynbaikyzy et al. (2020) inves-
tigated sixteen crop types in Northern Germany and 
revealed that potatoes and maize seemed to have the 
highest F1-score values (0.76 and 0.79, respectively). 
A lower F1-score value might also be attributable to 
field size, which can be influenced by mixed pixels 
at parcel boundaries, as mentioned by Orynbaikyzy 
et al. (2020). It can be seen that F1-score values, inde-
pendently of sensor or algorithm, improve when all 
cropland (or non-cropland) is aggregated into single 
classes.

LCCT classifications

The classification findings shown in this section are 
for Level II, which includes one non-cropland and 
nine cropland classifications. Figure  7 illustrates the 
spatial distribution of various crops in the study area 
from 2017 to 2018.

Maps derived from RapidEye and Sentinel-1 
(Fig.  7-b) contain misperceptions between numer-
ous classes (such as potato and groundnut), and 
they did not seem to correspond to our local knowl-
edge. However, the results from PlanetScope were 
very comparable to visual interpretation map. 
Moreover, it was noted that most parcels were accu-
rately identified.

Conclusions

Crop type maps serve as crucial for developing agri-
cultural sustainability policies and are also useful in 
other disciplines, such as environmental assessments. 
In this research, we evaluated the possibility of com-
bining SAR (Sentinel-1) and optical (Sentinel-2) 
multi-temporal data as well as the ability of high-res-
olution (PlanetScope and RapidEye) multi-temporal 
data to improve land cover and crop type (LCCT) 
mapping. For this purpose, LCCT maps with six, ten, 
and fourteen classes (Level I, II, and III, respectively) 
were created using two machine learning algorithms 
(support vector machine with a radial basis function 
kernel and random forest). A Mediterranean irrigated 
region in Loukkos, northwest Morocco, was chosen 
as the experiment site. The results demonstrated that 
combining Sentinel-1 and Sentinel-2 did not enhance 
LCCT classification accuracy when compared to Sen-
tinel-2 alone. Besides, PlanetScope’s performances 
are better than those of other sensors (Sentinel-1, 
Sentinel-2, and RapidEye), especially for levels II and 
III. PlanetScope data was able to identify all classes 
with high accuracy (F-Score > 86%). Furthermore, 
this research has proven the capability of SVMRB in 
LCCT classification. It was shown that the classifica-
tion accuracy increased when cropland or non-crop-
land classes were grouped into one class. In light of 
these findings, the resulting crop-type map can be uti-
lized for a variety of purposes, including yield estima-
tion analysis. Lastly, future research could look into 
the new generation of PlanetScope (with 8 bands) 
data and other environmental indices to improve crop 
type classification accuracy.
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