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Abstract  Identifying groundwater contamination 
sources and supervising groundwater quality condi-
tions are urgently needed to protect the groundwa-
ter resources of coastal areas like Contai of India, as 
communities here are heavily relying on groundwater 
which deteriorates progressively. So current research 
aims to address in detail about origins and influenc-
ing factors of groundwater contamination, status, and 
monitoring water quality by employing extremely 
useful leading technologies like principal component 
and factor analyses (PCA/FA), groundwater quality 
index (GWQI), and multiple linear regression (MLR) 
that helps to simplify complicated works instead of 
the conventional methods. Eight groundwater qual-
ity parameters were evaluated here, such as pH, TH 
(total hardness), Tur (turbidity), EC (electrical con-
ductivity), TDS (total dissolved solids), Mn (manga-
nese), Fe (iron), and Cl (chloride) for 38 sites. Three 
principal components with ~ 81% of the total variance 
were extracted from the PCA/FA analysis. The origin 

of maximum loadings of each factor is identified as 
a result of saline water, disintegration and leaching 
process, organic or else biogenic activities, and litho-
genic or otherwise non-lithogenic links through per-
colating water. GWQI results show that ~ 87% of the 
samples fall into the good category and ~ 13% of the 
samples fall into the poor to very poor category. A 
model consisting of Tur, Fe, EC, Mn, TH, and Cl as 
independent parameters is more feasible and is pro-
posed to predict GWQI obtained from MLR analysis. 
This MLR model also suggests that turbidity with the 
highest beta coefficient (0.820) is a key contributor 
relative to the entire groundwater class in this affected 
area. The findings relating to this research may sup-
port the designer and officials in monitoring and pro-
tecting coastal groundwater resources like selected 
areas.
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Introduction

The basic origin of water for large amounts of the 
populace all over the globe is groundwater, and that 
affects the stable socio-economic growth of each 
society. In the last few decades, the stability of this 
essential resource has been a warning sign in several 
segments of the world due to its overexploitation and 
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increasing demand (Abulibdeh et  al., 2021; Sahour 
et al., 2020). Since about 60% population of the world 
is present in shoreside regions, the fast-growing popu-
lation related to these regions leads to too much utili-
zation of groundwater resources to fill the progressive 
water requirements (Motevalli et al., 2017). Ground-
water quality in the coastal zone has been degraded 
due to seawater intrusion (Arslan, 2013; Arslan & 
Demir, 2013; Heydarirad et  al., 2019) and several 
other factors such as man-made activities, disinte-
gration of material in aquifers, pollution and salinity 
from irrigation, and agricultural operations (Ferchi-
chi et  al., 2018; Jayathunga et  al., 2020). Identifica-
tion of various pollution sources of groundwater is a 
basic need because extreme squeezing and different 
pollution sources of groundwater badly affect its qual-
ity related to drinking (Li et al., 2021). Routine-wise 
quality monitoring of groundwater is mandatory to 
take care of its quality for drinking. However, exam-
ining the several water quality variables is expensive, 
takes too much time, and is a monotonous exercise. 
Even assessing all the variables in consistent intervals 
is nonessential as it will not offer additional informa-
tion about water quality features (Gulgundi & Shetty, 
2018). Troudi et  al. (2020) mentioned that monitor-
ing groundwater quality conditions and finding multi-
ple sources of pollution and the origin of influencing 
parameters related to groundwater contamination are 
initial requirements to find solutions to groundwater 
quality problems. An accurate and planned evaluation 
of the state of groundwater and, in addition, a cor-
rect forecast of groundwater quality are necessary to 
determine the optimal action plan for regional water 
resources management (Gholami et al., 2016).

Currently, several statistical techniques have been 
introduced to accurately examine and explain data 
due to the increase in the number of parameters for 
groundwater quality analysis (Taşan et  al., 2022), 
considering that water class is commonly expressed 
in terms of many water quality parameters. PCA can 
be used to regroup complicated multivariate variables 
into a nominal and a reasonable number of compo-
nents without compromising detail (Banda & Kumar-
asamy, 2020). PCA is an extremely used approach in 
data research studies and provides a true explanation 
of multicomponent estimates that allow a better per-
ception of the configuration of groundwater classes 
(Tripathi & Singal, 2019). Conventional methods for 
explaining groundwater quality data using the usual 

charts and graphs may not simultaneously express 
the uniformities between variables or samples. To 
overcome this incompleteness, the process of FA was 
introduced for efficient analysis to identify such simi-
larities between samples or parameters (Patil et  al., 
2019). There is some research related to PCA/FA that 
is used to determine the origin of contamination that 
is prone to degrade groundwater quality. The PCA/FA 
approach was effectively applied by Bouteraa et  al. 
(2019) and Nguyen et al. (2020) to identify sources of 
contamination and influencing parameters related to 
groundwater quality.

The main issue associated with groundwater is 
that when it is contaminated, it is very difficult to 
revive the groundwater class (Chen et  al., 2018). A 
conventional approach, such as the analysis of indi-
vidual parameters, is not immediately understandable, 
because each parameter has a different quality class, 
which makes it very difficult to clarify the results 
when more parameters are involved in the water 
quality assessment (Solangi et  al., 2019). Accurate 
assessment of the variety and extent of water pollu-
tion is very difficult and complex. The main problem 
related to monitoring the degree of water quality is 
the complexity of examining many variables. For this 
reason, the use of the WQI approach is considered 
a very effective mechanism (Valentini et  al., 2021). 
WQI helps to convert huge water quality data into 
an index score that directly and rationally tells about 
water quality (Awachat & Salkar, 2017). The WQI 
method is effectively employed to assess groundwa-
ter quality for drinking. Water quality sense and WQI 
assessment are essential to water quality management 
and control (Mahapatra et  al., 2012). A model can 
be prepared with respect to WQI using a statistical 
method such as MLR, considering several variables 
that actually affect the water quality of a particular 
source. The inclusion of fewer variables in the WQI 
provides cost-effectiveness that can be used to eval-
uate WQI in a given region in the future (Valentini 
et  al., 2021). If two or more parameters need to be 
considered simultaneously, the MLR approach should 
be used to find their interrelationship. It also plays an 
important role in identifying the variable that has the 
maximum impact on WQI. MLR model is applied to 
predict water quality for monitoring purposes (Wu 
et al., 2020).

Some progressive research studies are mentioned 
herein related to identifying pollution sources, 
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important parameters related to water quality, and 
forecasting water quality using different effective 
approaches. A few years ago, Zhang et al. (2020) and 
Li et al. (2021) identified the sources of groundwater 
pollution through positive matrix factorization (PMF) 
and PCA-based absolute principal component score 
multiple linear regression (APCS-MLR) models in 
their respective studies. Later, Mu et al. (2023) inves-
tigated the potential pollutants along with their vari-
ation in the Malian River through the PCA-APCS-
MLR model. Haghnazar et  al. (2022) compared the 
PMF and PCA-MLR receptor models and observed 
the main contributors associated with groundwater 
pollution. All the above studies effectively recognized 
the pollution sources and their impact on water qual-
ity in the respective study zone. Singha et al. (2021) 
acquired 91.7% accuracy in the prediction of WQI 
through the artificial neural network model approach. 
Alam and Singh (2023) measured the quality of 
groundwater by conducting statistical software–based 
multivariate statistics along with WQI and identified 
major variables that affected the water quality.

The communities have too much trust in ground-
water sources within the Contai area in India for 
drinking and miscellaneous activities, but its quality 
has been degraded day after day (Halder et al., 2021; 
Maity et al., 2017, 2018). After examining 6 years of 
groundwater quality data, Chakraborty et  al. (2020) 
stated that the concentration of groundwater vari-
ables such as pH, TH, Tur, EC, TDS, Mn, Fe, and 
Cl consistently increases within the Contai area. It 
makes groundwater in that zone unfit for drinking and 
domestic use. Recently, Das et al. (2022) observed an 
interrelationship between selected parameters using 
WQI, cluster, and regression analyses for the Dulal-
pur panchayat in Contai. Halder et al. (2021) declared 
that groundwater quality monitoring immediately 
requires for managing the vital resources here.

This research, therefore, focuses on water qual-
ity issues and the management of essential water 
resources in coastal areas like Contai by applying 
statistical approaches together with the groundwa-
ter quality index (GWQI), although the concentration 
of several parameters is constantly increasing, which 
affects water quality. But to date, details of ground-
water pollution sources, the most influential param-
eters, and the correct index model for water quality 
monitoring have not yet been identified for water 
resource management in this coastal region. Thus, it 

is necessary to identify the probable sources of pol-
lution and the degree of water quality and also to use 
feasible techniques to monitor the groundwater qual-
ity for managing the current water resources for the 
existing communities. The purpose of this analysis 
is therefore to determine in detail the likely sources 
of groundwater contamination, to identify the most 
influencing parameters for a specific location using 
PCA/FA, and to identify drinking groundwater qual-
ity using GWQI. This study also aims to create new 
mathematical models for GWQI using MLR analysis, 
to identify the influencing parameters related to water 
quality and assess the appropriate model for monitor-
ing groundwater levels in this coastal zone.

Research area

Contai I is formally known as Kanthi I block. It is a 
municipal development block building directorate 
division in the Contai sub-division of Purba Medin-
ipur district in West Bengal state of India. It is located 
at 21.75° N and 87.65° E with an elevation of 3  m 
(~ 10 ft). The total area of this block is 155.27 km2. 
As reported by the census (2011), the population in 
this block is about 170,894. Regarding the availabil-
ity of water quality data, Badalpur panchayat (BP) and 
Raipur Pashimbarh panchayat (RP) within this block 
were used for the study (Fig.  1). Selected area is 
abbreviated as BPRP area.

It is essentially a coastal area composed of system-
atic layers formed by the gradual deposition of mud, 
boulders, gravel, and cobblestones over many years 
following the continuation of rivers that continuously 
deposit alluvium. Soil salinity is high in the coastal 
region consisting of less than 60% clay soil. Agri-
cultural zones are usually the outer side of the main 
town. The main food crop is paddy rice, which is 
grown here. In relation to the highest production of 
paddy rice, the selected district is considered second 
in the concerned state.

The land is extremely productive, and therefore, 
agriculture is also a key driver that sustains the econ-
omy of middle-class families in the area. However, 
sometimes agriculture is affected by recurring floods 
due to relentless monsoon rains and cyclones caused 
by depressions in the Bay of Bengal. Currently, salt-
water intrusion is a threat to residents. People here are 
highly dependent on groundwater resources to meet 
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their essential requirements because of less rainfall 
and insufficient surface water resources. The soil here 

is mainly of fresh alluvial type. The rivers that flow 
in the area are not enough to handle the necessary 

Fig. 1   Locus plot and sampling points of the research area
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water demand. The demand for water is gradually 
increasing every day due to urbanization, increase in 
population density, and industrial development. To 
offset these demands, groundwater is over-extracted, 
and for this reason, there is an internal movement 
of salt water into the region. Figure  1 describes the 
locus graph of the research area and the location of 
the sample collection. In notation, BPi, i = 1 to 18, 
and RPj, j = 1 to 20, indicate the number of sampling 
points corresponding to the respective panchayat.

Methodology

Sampling, analysis, data accumulation, and parameter 
selection

During August 2019, 38 groundwater samples were 
accrued from five different Mouzas of Badalpur pan-
chayat (BP = 18) and Raipur Paschimbarh Panchayat 
(RP = 20) by Contai division specialists (CDS) of 
Public Health Engineering Directorate (PHED). 
Samples were taken at an approximate depth of 52 m 
(~ 170 ft) and 27 m (~ 90 ft) for Badalpur and Raipur 
Paschimbarh panchayats, respectively. CDS followed 
the APHA (2017) standard approach for sample accu-
mulation, preservation, and analysis. The sampling 
method is that first a plastic bottle was taken and 
refined with purified water. Then, the sample was 
taken into this bottle from the tubewell after 10 min 
of pumping and then tightly closed with an inner and 
outer cap to prevent the passage of air and after prop-
erly labeling the dispatch to the laboratory. Cooling 
to 4–6 °C was performed for each sample to prevent 
microbiological degradation of solids. The samples 
at various locations were checked in detail for several 
water quality variables like pH, TH, Tur, EC, TDS, 
Mn, Fe, and Cl in the quality testing lab at Mano-
harchak in CDS PHED. pH and Tur were measured 
by the electrometric method. EC, TDS, TH, Cl, Fe, 
and Mn were measured by electromagnetic method, 
gravimetric method, EDTA titrimetric method, and 
argentometric method, using a spectrophotometer. 
Proper quality assurance (QA) and quality control 
(QC) of the samples were believed to provide the best 
satisfaction of the data set from the analytical proce-
dures. The standard operating procedures were used 
for the day-to-day operation of any QA programme 
and for QC purposes. Special attention was paid to 

sample collection and preservation, reagent stand-
ardization, equipment calibration, and blanks, which 
are designated as standard water approaches (APHA, 
2017). All water quality datasets related to this study 
were collected from CDS PHED. The 38 samples and 
aforesaid parameters have been studied here as per 
existing information of the dataset from PHED.

All aforementioned eight parameters mentioned in 
IS 10500 (2012) and WHO (2011) are important in 
water quality assessment because their concentration 
above the permissible limit can significantly affect the 
quality of drinking water. The study area is located in 
the coastal zone and is subject to sea encroachment 
as identified by Chakraborty et al. (2020). EC, TDS, 
and Cl are major parameters as there are several solu-
ble in seawater (Liu et al., 2003). Wang et al. (2020a) 
suggested that seawater intrusion influences Fe lev-
els in groundwater. Gibrilla et  al. (2011), Gulgundi 
and Shetty (2018), Wu et al. (2020), and Ram et al. 
(2021) considered the maximum of all, and Das et al. 
(2022) included all eight parameters mentioned in 
their study. Therefore, based on the codal perspective, 
literature review, and database availability, the eight 
parameters presented here are included for groundwa-
ter quality assessment as they are often reported by 
relevant researchers.

Normal statistical analysis

The collected data on groundwater quality parameters 
were statistically studied using the Statistical Pack-
age for the Social Sciences (SPSS, version 26). Ini-
tially, data files were prepared using Microsoft Excel 
media and then moved to the SPSS software package 
to determine normal statistics of quality parameters. 
It was performed to provide background information 
regarding water class data (Papaioannou et al., 2010). 
The functions used in this statistical approach are (a) 
minimum (min.), (b) maximum (max.), (c) mean, (d) 
standard deviation (Std. dev.), and (e) variance of 
the collected concentrations of groundwater quality 
variables.

Principal component/factor analysis (PCA/FA)

PCA/FA was used to share sources of contamination 
and also to select vital water class variables associated 
with these sources. PCA was performed on the stand-
ardized data set to remove key principal components, 
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and these components were then subjected to vari-
max rotation to create varifactors (VFAs). Initially, 
the relevance of PCA was examined using the Kai-
ser–Meyer–Olkin (KMO) measure of sampling ade-
quacy and Bartlett’s test of sphericity. Both checks 
were used to successively verify the sample efficiency 
and freedom of each parameter (Yang et  al., 2020). 
Here, PCA was performed on the data set after the 
Z-score standardization of all parameters to minimize 
the impact of varieties on the dimensions used for 
quantification and variation and to provide a smaller 
unit of data (Gibrilla et al., 2011). Z-score normaliza-
tion using MS Excel was performed with respect to 
Eq. (1).

where, c, c , and SD are the concentration, mean con-
centration, and Std. dev. of the variables.

In the PCA technique, the eigenvalues are gener-
ally used to find out the principal components (Zein-
alzadeh & Rezaei, 2017). Principal components (PCs) 
with eigenvalues exceeding 1.0 were considered (Jay-
athunga et  al., 2020). Eigenvalues imply the impor-
tance of the principal component, so a component 
with a larger eigenvalue is considered highly influ-
ential (Li et al., 2019). The first PC is considered for 
extremely impressive variance in the database, then 
the second component, and the rest. It is common to 
alternate components to achieve an optimal spread of 
variance in different components (Mahapatra et  al., 
2012). Varimax rotation was used to obtain an opti-
mal distribution of variance in the various compo-
nents. Varimax rotation can minimize the impact of 
nonsignificant variables in groundwater quality analy-
sis because it naturalizes the loadings by accurately 
rotating the component axes to clarify the results 
(Islam et al., 2018). Here, a varimax rotation accom-
panied by Kaiser normalization was performed to 
find the rotated loadings of the various factors, and 
sources of contamination regarding the presentation 
of factor loadings were identified. A specific variable 
is how strongly it is associated with different factors 
as reflected by a rotated matrix of factor loadings (Li 
et  al., 2019). Factor scores (F1, F2, and F3) indicate 
the contribution of each factor for each sample loca-
tion point (Narany et al., 2014), which are computed 
here, and it also helps to identify the more active vari-
ables for a specific sample site (Taşan et  al., 2022). 

(1)Z =
c − c

SD

Equation (2) is used to find the principal component 
(Li et al., 2019). Here, PCA and FA were performed 
through the SPSS suite of groundwater quality data 
sets of 38 sampling sites.

where A, P, X, I, J, and M denote the component 
loading, component score, measured parameter value, 
number of components, number of samples, and the 
total number of parameters, respectively.

Groundwater quality index (GWQI) estimation

The WQI approach examines the respective contribu-
tions of water quality variables to the overall ground-
water health risk and seeks to translate complex water 
quality data sets into a value that is commonly accept-
able and usable in general (Asare et al., 2021). Here, 
GWQI was calculated at different sampling sites by 
including variables such as pH, TH, Tur, EC, TDS, 
Mn, Fe, and Cl. Four consecutive phases were used to 
calculate the GWQI.

The first step is to assign a weight (wti) to the 
selected eight water quality variables related to their 
respective importance for drinking water quality. A 
weight of five was assigned to maximum detrimental 
variables and a weight of one to nominal detrimen-
tal variables. The highest weight of five was assigned 
to TDS; weight of four was assigned to pH, Fe, Mn, 
Cl, and EC; weight of three was assigned to Tur; and 
weight of two was assigned to TH (Aminiyan et al., 
2018; Boateng et al., 2016). In the next step, by adopt-
ing Eq. (3), relative weight (RWT​i) was calculated.

The quality rating (QRi) was calculated using 
Eq. (4), where mi and STi are the measured concentra-
tions and prescribed Standard values related to each 
variable. The assigned weight, relative weight, and 
standard value related to each variable are shown in 
Table 1.

In the last stage, the GWQI was calculated using 
Eq. (5).

(2)P
IJ
= A

I1X1J + A
I2X2J + A

I3X3J + ....... + A
IM
X
MJ

(3)RWT
i
= wt

i

/

n
∑

i=1

wt
i

(4)QR
i
=

(

m
i

ST
i

)

× 100

1158 Page 6 of 19



Environ Monit Assess (2023) 195:1158

1 3
Vol.: (0123456789)

The class of water according to the index score can 
be designated as class “A” or excellent (GWQI < 50), 
class “B” or good (GWQI lies between 51 and 100), 
class “C” or poor (GWQI lies between 101 and 200), 
class “D” or very poor (GWQI lies between 201 and 
300), and class “E” or unacceptable (GWQI > 300) for 
drinking (Haghnazar et al., 2022).

Multiple linear regression analysis

In this work, the variables used for the MLR study are 
the same as the variables used for GWQI estimation. 
On a random sampling basis, 30 samples (80%) and 
eight samples (20%) of the total were taken for model 
preparation and model validation here. This statistical 

(5)GWQI =

n
∑

i=1

RWT
i
× QR

i

tool is used to understand the relationship between a 
dependent parameter and various independent param-
eters (Wu et al., 2020). It is expressed by Eq. (6).

where R is the response parameter, P1…..PM are the 
predictor parameters, B0….BM are the regression 
coefficients, and RE is the random error. Here, step-
wise MLR was performed to assess the association 
between groundwater quality parameters as independ-
ent variables and GWQI as a dependent variable using 
IBM SPSS to obtain a favorable model. After find-
ing the suitable model, index scores were calculated. 
Lastly, the significant variations were determined 
between the results of the original GWQI and the new 
GWQI using a paired samples t-test.

Results and discussion

Exploration of water quality through normal statistics 
of variables

The normal statistics of the individual values 
(Table  2) of water class variables sampled in this 
research area are shown here. The changes in the 
water quality variables for the BPRP area are illus-
trated by box plots (Fig. 2a–h). Basic statistics were 
calculated for the entire groundwater datasets to gain 
an overall view and to recognize dataset variations 
(Patil et  al., 2019). Groundwater quality variables 
are considered the most essential basis for pointing 
out the character, class, and diversity of groundwa-
ter. According to IS 10500 (2012), the permissible 
pH of drinking water can be in the range of 6.5–8.5. 
The pH value measures the balance between the 

(6)R = B0 + B1P1 + B2P2 + .......... + B
M
P
M
+ R

E

Table 1   Weight, relative weight, and the standard value of 
each parameter

a IS 10500 (2012)
b WHO (2011)

Sl no Parameters Weight (wti) Relative 
weight 
(RWT​i)

Standard 
value

1 pH 4 0.133 6.5–8.5a

2 Tur (NTU) 3 0.100 5a

3 TH (mg/l) 2 0.067 200a

4 TDS (mg/l) 5 0.167 500a

5 EC (µS/cm) 4 0.133 1500b

6 Fe (mg/l) 4 0.133 0.3a

7 Mn (mg/l) 4 0.133 0.1a

8 Cl (mg/l) 4 0.133 250a

∑ = 30 ∑ = 1

Table 2   Normal statistics 
of groundwater quality 
variables (total observation 
N = 38)

Sl no Variables Min Max Mean Std. dev Variance

1 pH 6.80 7.90 7.24 0.35 0.12
2 Tur (NTU) 1.34 64.90 8.72 16.07 258.26
3 TH (mg/l) 172.00 328.00 257.32 39.08 1527.57
4 TDS (mg/l) 319.00 735.00 397.95 135.57 18,378.05
5 EC (µS/cm) 534.00 1223.00 669.21 227.91 51,943.79
6 Fe (mg/l) 0.10 2.20 0.45 0.37 0.14
7 Mn (mg/l) 0.0020 0.0800 0.0266 0.0210 0.0004
8 Cl (mg/l) 11.00 139.00 56.34 27.87 776.99
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concentration of hydrogen ions [H+] and the concen-
tration of hydroxyl ions [OH−] in water and indicates 
the basicity, or acidity, of a mixture. The groundwater 
pH of the BPRP area ranges from 6.80–7.90 with an 
average concentration of 7.24, indicating a margin-
ally acidic to alkaline type. Tur concentration ranges 
from 1.34–64.90 NTU with an average concentration 
of 8.72 NTU, which is above the permissible value 
prescribed by IS 10500 (2012). Out of 38 samples, 11 
samples (29%) have Tur concentration above the per-
mitted limit. Here, the lower, higher, and mean values 
of TH of groundwater are 172, 328, and 257.32 mg/l, 
respectively. TH value (mg/l) between 150 and 300 
and exceeding 300 indicates that the water is hard and 
very hard, respectively (Todd & Mays, 2005). In the 
BPRP area, the groundwater is classified as hard to 
very hard. Most of the sample has a TH value that 
exceeds the permissible limit (200  mg/l) specified 
by IS 10500 (2012) for drinking. Only two sample 
points BP6 and BP15 have an acceptable TH value for 
drinking.

The minimal, maximal, and average concentra-
tions of TDS in groundwater in the BPRP area are 
319, 735, and 397.95  mg/l, respectively. The maxi-
mum sampling point has a TDS value within the 
standard limits, and only sampling locations RP1, RP7, 
RP12, RP13, and RP20 exceed the permissible TDS for 
drinking. Groundwater at all sites is categorized as 
fresh because the TDS concentration at each site is 
less than 1000 mg/l (Todd & Mays, 2005). The least, 
highest, and mean levels of electrical conductivity 
(EC) in the BPRP area are 534, 1223, and 669.21 μS/
cm, respectively. Results indicate that saltwater intru-
sion is less due to EC concentration below 1500 μS/
cm throughout the sites (Das et  al., 2022). Ground-
water samples with EC concentration are below the 
recommended drinking value in the BPRP area. Fe 
is a very crucial element that affects human health, 
and surplus or deficit of Fe ingestion can create sev-
eral diseases (Wang et  al., 2020a). The Fe range is 
between 0.10 and 2.20 mg/l with an average concen-
tration of 0.45 mg/l in the BPRP area. Fifty percent 
of the samples exceeded the permissible limit of Fe 
for drinking given by IS 10500 (2012). Manganese 
appears in groundwater naturally, chiefly in anaerobic 

conditions. Its concentration depends on the chem-
istry of rainfall, the lithologic condition of the aqui-
fer, the flow courses of groundwater, etc. (Ram et al., 
2021).

The concentration of Mn varies between 0.002 and 
0.08  mg/l with a mean of 0.026  mg/l, and the con-
centration of Mn in each sampling point is within the 
acceptable level for drinking. Chloride levels range 
from 11–139  mg/l with an average concentration of 
56.34 mg/l, and the Cl concentration at each sampling 
point is below the drinking limit.

Spotting the pollution sources through PCA/FA

A KMO value above 0.5 and Bartlett’s test value 
below 0.05 from water quality data are considered 
suitable for PCA (Yang et  al., 2020). If the KMO 
value of any data set is found below 0.5, lies 0.5–0.7, 
and is above 0.7, the data set is considered unsatis-
factory, adequate, and good for PCA (Ustaoglu et al., 
2020). In this work, the KMO value (0.636) indi-
cates that the data set is acceptable for PCA, and the 
parameters are significantly related to the significance 
level (0.00) obtained from Bartlett’s test.

Eigenvalues for eight water quality parameters and 
their variances were calculated using SPSS. Based 
on PCA, the first three components have eigenval-
ues greater than one, and the other components have 
eigenvalues less than one. So the first three compo-
nents (eigenvalues greater than 1) were considered, 
and the corresponding variance is shown in Fig.  3 
using a scree plot which addresses the change in the 
eigenvalue curve.

It shows that the eigenvalues corresponding to 
components 1, 2, and 3 are above 1 too evidently. 
The inflection point of the curve (Fig.  3) appears at 
the third component, so it is convenient to select the 
first three components that are considered to be the 
principal components, and clearly, the three counts of 
the principal components (PC1, PC2, and PC3) were 
achieved.

In this study, the first three PCs have 80.61% 
cumulative variance of the total variance, which 
explains that these PCs may represent the real eight 
water quality class variables. The first (PC1), second 
(PC2), and third (PC3) principal components have 
eigenvalues and corresponding contributions shown 
in Fig.  3. The interrelationship between PC and 
selected parameters is indicated by factor loadings, 

Fig. 2   Concentration representation of groundwater quality 
parameters such as a pH, b turbidity, c TH, d TDS, e EC, f Fe, 
g Mn, and h Cl through box plots

◂
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and loadings with the highest positive or negative 
value determine the highest contribution (Arslan, 
2013). Absolute loading values are more than 0.75, 
between 0.75 and 0.5, and between 0.5 and 0.3 
referred to as strong, medium, and weak factor load-
ings separately (Zhang et al., 2020).

Dutta et  al. (2018) stated in their research that 
the minimum factor loading standard used in sev-
eral research papers is different for determining the 
decisive parameters. Here, factor loadings above 0.6 
in bold (Table 3) were chosen to explain the results 
because they are significant for assessing the com-
ponents, and loadings with a negative and positive 
sign (Table  3) indicate the direction of the effect. 

Thus, a high negative loading value indicates that 
the factor is significantly and negatively affected by 
the parameter.

The PCA/FA approach shows that three key 
sources of groundwater contamination were extracted 
in parallel with three varimax factors (VFAs) 
(Table  3), which together illustrate 80.61% of the 
entire variance of the eight groundwater quality varia-
bles. The first varimax factor (VFA1) explains 34.35% 
of the total variation of the eight groundwater quality 
parameters and is considered the most important fac-
tor. The second vital varimax factor (VFA2) explains 
28.14%, and the third varimax factor (VFA3) explains 
18.12% of the total variance.

Fig. 3   Scree plot (pink 
line) and percent of 
variance (blue bars) corre-
sponding to each compo-
nent

Table 3   Factor loading and 
factor score coefficient of 
parameters after varimax 
rotation

Factor loadings exceeding 
0.6 are marked as bold

Variables Factor loading Factor score coefficient

VFA1 VFA2 VFA3 VFA1 VFA2 VFA3

pH 0.256  − 0.032 0.839 0.031  − 0.148 0.616
Tur 0.826 0.137  − 0.201 0.335 0.016  − 0.243
TH 0.688 0.506 0.176 0.212 0.164 0.007
TDS 0.055 0.972 0.119  − 0.080 0.462  − 0.039
EC 0.129 0.969 0.090  − 0.047 0.457  − 0.068
Fe 0.090  − 0.265  − 0.762 0.128  − 0.042  − 0.551
Mn 0.872  − 0.092 0.123 0.346  − 0.143 0.027
Cl 0.860 0.118 0.236 0.311  − 0.052 0.087
Eigenvalues 2.748 2.251 1.450
% of variance 34.351 28.138 18.119
Cumulative % 34.351 62.489 80.608
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VFA1 consists of positive strong loadings of 0.826, 
0.872, and 0.860 and medium loadings of 0.688 for 
Tur, Mn, Cl, and TH. The VFA2 has strong positive 
loadings on TDS (0.972) and EC (0.969). VFA3 has 
strong positive and negative loadings with pH (0.839) 
and Fe (− 0.762). According to Liu et  al. (2003), 
the main elements in seawater are Cl, TDS, and EC. 
Salinity is a very widespread form of groundwater 
pollution, specifically in coastal aquifers, and is meas-
ured by the rise in TDS (Rao et  al., 2013). Param-
eters such as Cl, TDS, TH, and EC with significant 
positive factor loading values are an indication of the 
amalgamation of saline water with fresh groundwa-
ter (Akshitha et  al., 2021). The above variables can 
cause salinity in groundwater, and Cl is recognized 
as a signal of saline water intrusion into groundwa-
ter resources (Taşan et al., 2022). Significant positive 
TH and Tur loading factors suggest that the origin is 
attributable to rock breakdown and leaching (Boateng 
et al., 2016). Perhaps, strong pH loading is predicted 
to be catalyzed by organic or otherwise biogenic 
activities (Reghunath et al., 2002). The strong Fe fac-
tor loading is probably caused by the liquefaction of 
non-lithogenic or otherwise lithogenic references via 
percolated water (Patil et  al., 2019). The origin of 
Mn in groundwater is likely due to the weathering of 
manganese minerals in aquifers and may be induced 
by industrial wastewater and landfill leachate (Zhang 
et  al., 2020). Perhaps, Mn originating from mineral 
sources can be released by the chemical disinte-
gration of the parent material (Bodrud-Doza et  al., 

2016). Here, the varimax factor (VFA1) is influenced 
by parameters such as Tur, Mn, Cl, and TH. Factor 2 
(VFA2) is affected by TDS and EC. Factor 3 (VFA3) 
is affected by pH and Fe. So the water in VFA1 can be 
affected by salt water along with the decay and leach-
ing process. Water in factor 2 (VFA2) is an immixture 
of seawater together with clean groundwater. Factor 3 
(VFA3) can be affected by a combination of organic 
biogenic activities and lithogenic or otherwise non-
lithogenic sources through percolating water.

Factor score coefficient (Table  3) is also deter-
mined for the entire variables that express the inter-
pretation of a certain factor in a given sampling loca-
tion (Patil et  al., 2019). The factor scores of the 38 
sampling sites are shown in Fig. 4. Absolute positive 
or negative scores (greater than + 1 or less than − 1) 
on any component indicate that the location is largely 
affected or unaffected by the parameters influencing 
the component, while a score close to zero defines 
a likely location moderately affected by the chemi-
cal action of that specific factor (Senthilkumar et al., 
2008).

Sampling points RP2, RP6, RP9, and RP11 with fac-
tor scores 3.013, 3.192, 2.719, and 1.106 are mostly 
affected by variables such as Cl, Tur, Mn, and TH, 
because the above sampling points have factor scores 
more than + 1.

Sampling points RP1, RP7, RP12, RP13, and RP20 
with factor scores 2.239, 2.256, 2.193, 2.632, and 
2.397 are affected by parameters such as EC and 
TDS. Sampling points RP3, RP4, RP5, RP8, RP10, and 

Fig. 4   Factor scores at different locations based on groundwater data
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RP12 with factor scores 1.542, 1.687, 1.784, 1.733, 
1.560, and 1.008 show that these sampling sites are 
most affected by pH and Fe. Biplots are more pro-
ductive and instructive that can be used for graphi-
cal demonstrations of statistical analysis (Banda & 
Kumarasamy, 2020). Biplots were composed in three 
dimensions accompanied by the first three PCs as 
three axes. They ideally describe connections among 
parameters and PCs. Biplots point to a branch of 
highly correlated parameters using an estimate of the 
true multivariate space (Gradilla-Hernández et  al., 
2020). 3D biplots of this current study describing the 
association between extremely correlated parameters 
and the first three PCs are shown in Fig. 5.

PCA/FA approach clearly indicates that the water 
quality in this selected zone is affected by salt water 
as mentioned in the earlier studies (Chakraborty 
et  al., 2020; Halder et  al., 2021; Maity et  al., 2017, 
2018) along with other several reasons like decay 
and leaching process, organic biogenic activities, and 
lithogenic and non-lithogenic sources from water 
percolation. This analysis also identifies the influ-
encing parameters along with their probable sources 
in the selected sites. The groundwater quality can 

be protected here by controlling the contamination 
sources. Some studies like Bouteraa et  al. (2019), 
Patil et  al. (2019), Nguyen et  al. (2020), and Wu 
et  al. (2020) investigated the potential water pol-
lution sources through PCA/FA, and that confirms 
the precision and acceptance of this technique. So 
this approach provided priceless information by effi-
ciently identifying the expected groundwater pollu-
tion sources including possible regulating parameters 
related to water quality for a specific site, and that 
helps the decision-maker restrain water pollution in 
that area.

Water quality rating by GWQI and identifying 
MLR‑based new GWQI model

The water quality type was determined based on the 
GWQI score. The measured GWQI scores range from 
52.33 to 204.84, and the water status related to the 
BPRP area is shown in Fig. 6. It is noted that 87%, 
11%, and 2% of the total samples fall into the cat-
egory of good, poor, and very poor condition for 
drinking, and none of the sampling sites fall into 
class E. In this study, a stepwise MLR approach 

Fig. 5   3D biplot explaining 
the association between the 
extremely correlated param-
eters and the three PCs
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was introduced to prepare new GWQI equations. 
Eight models (Table  4) were obtained from this 
MLR study. The results of this analysis are shown 
in Tables  4 and 5. New GWQI equations from this 
study are represented by Eqs. (7), (8), and (9) 
sequentially.

Three appropriate regression models Mod6, Mod7, 
and Mod8 were considered for the unequal signifi-
cance of the model variables (Table  5). Coefficients 
of determination (R2) for MLR were also more 
promptly explained than coefficients of multiple cor-
relations (R) as a scale of the level of relationship, 
because the multiple R2 is equivalent to the portion 
of the total variance in the presence of parameter that 
is possibly attributable to the predictor parameter out-
comes (Mondal et al., 2010).

The above three regression models Mod6, Mod7, 
and Mod8 adjusted R2 values equaling 1.0 (Table 4), 

indicating that the overall significance level of these 
three models is high.

The model Mod6 has six independent parameters 
that are significant (significance level < 0.05) (Musta-
pha et al., 2012) in describing the variation of water 
classes in the BPRP area. This regression model is 
expressed by Eq. (7). According to Mod6, Tur has the 
highest standardized beta coefficient (0.820) among 
the variables measured using the stepwise MLR 
approach (Boateng et  al., 2016; Uyanik & Güler, 
2013), which means that Tur has the largest contribu-
tion to the entire groundwater class of in the BPRP 
area. The beta coefficient for Fe (0.404) is the second 
highest after EC (0.164), Mn (0.075), TH (0.035), 
and Cl (0.033). Cl has a minimal contribution in this 
model with the smallest beta coefficient (0.033).

The regression model Mod7 consists of seven 
significant predictor parameters with a level of 

Fig. 6   Groundwater quality status at different locations according to GWQI

Table 4   Overview of models from the MLR analysis

GWQI is the dependent variable

Eigen models R R2 Adjusted R2 Std. error of 
the estimate

Independent variables (predictors)

Mod1 0.918 0.842 0.836 17.3099 Predictors: (constant), Tur
Mod2 0.981 0.962 0.959 8.6893 Predictors: (constant), Tur, Fe
Mod3 0.996 0.992 0.991 4.0270 Predictors: (constant), Tur, Fe, EC
Mod4 0.999 0.999 0.999 1.6416 Predictors: (constant), Tur, Fe, EC, Mn
Mod5 1.000 0.999 0.999 1.2435 Predictors: (constant), Tur, Fe, EC, Mn, TH
Mod6 1.000 1.000 1.000 0.8940 Predictors: (constant), Tur, Fe, EC, Mn, TH, Cl
Mod7 1.000 1.000 1.000 0.4746 Predictors: (constant), Tur, Fe, EC, Mn, TH, Cl, TDS
Mod8 1.000 1.000 1.000 0.0030 Predictors: (constant), Tur, Fe, EC, Mn, TH, Cl, TDS, pH
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significance < 0.05. This regression model Mod7 
is expressed by Eq.  (8). The standardized beta 
coefficients in this model show that Tur with the 
maximal beta coefficient (0.827) has the high-
est contribution to the whole groundwater stand-
ard within the BPRP area, followed by Fe (0.407), 
TDS (0.129), Mn (0.076), Cl (0.039), EC (0.037), 
and TH (0.033). TH with the smallest beta coeffi-
cient (0.033) is considered the smallest contributor 
in this model.

(7)
GWQI = 10.989 + 1.973Tur + 43.594Fe + 0.028EC

+ 142.940Mn + 0.039TH + 0.047Cl ± 1.588

(8)

GWQI = 10.666 + 1.990Tur + 43.978Fe + 0.006EC

+ 143.562Mn + 0.036TH + 0.055Cl

+ 0.037TDS ± 0.844

The regression model Mod8 contains eight pre-
dictor parameters and is expressed by Eq.  (9). The 
standardized beta coefficients related to this model 
show that Tur has the maximum contribution (simi-
lar observation with Uyanik & Güler, 2013) to the 
entire groundwater class in BPRP area due to its 
highest beta coefficient (0.831), followed by Fe 
(0.412), TDS (0.115), Mn (0.070), EC (0.051), Cl 
(0.038), TH (0.030), and pH (0.012). pH has a mini-
mal contribution in relation to water quality due to 
the lowest beta value (0.012) in this model.

(9)

GWQI = 0.009 + 2.000Tur + 44.442Fe

+ 0.009EC + 133.360Mn

+ 0.033TH + 0.053Cl + 0.033TDS

+ 1.568pH ± 0.015

Table 5   Estimated models 
with coefficients

GWQI is the dependent 
variable. All the measures 
of variables are in mg/l 
excluding Tur (NTU), pH, 
and EC (µS/cm)

Model Unstandardized coef-
ficients

Standardized beta 
coefficients

t-test Sig

B Std. error

Mod6 (Constant) 10.989 1.588 6.921 0.000

Tur 1.973 0.014 0.820 137.000 0.000
Fe 43.594 0.470 0.404 92.782 0.000
EC 0.028 0.001 0.164 33.193 0.000
Mn 142.940 11.685 0.075 12.233 0.000
TH 0.039 0.007 0.035 5.429 0.000
Cl 0.047 0.010 0.033 4.841 0.000

Mod7 (Constant) 10.666 0.844 12.640 0.000
Tur 1.990 0.008 0.827 250.297 0.000
Fe 43.978 0.254 0.407 172.921 0.000
EC 0.006 0.003 0.037 2.186 0.040
Mn 143.562 6.203 0.076 23.143 0.000
TH 0.036 0.004 0.033 9.590 0.000
Cl 0.055 0.005 0.039 10.464 0.000
TDS 0.037 0.005 0.129 7.721 0.000

Mod8 (Constant) 0.009 0.015 0.611 0.548
Tur 2.000 0.000 0.831 39,001.705 0.000
Fe 44.442 0.002 0.412 26,173.001 0.000
EC 0.009 0.000 0.051 484.591 0.000
Mn 133.360 0.041 0.070 3260.263 0.000
TH 0.033 0.000 0.030 1394.709 0.000
Cl 0.053 0.000 0.038 1638.667 0.000
TDS 0.033 0.000 0.115 1089.584 0.000
pH 1.568 0.002 0.012 753.752 0.000
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A suitable model for GWQI prediction for the BPRP 
area was obtained using the MLR approach. The 
causative variables that are considered in the above 
three models are significant. In Mod8, TDS and pH 
are attached, reducing the significance level of the 
constant. This suggests that Mod8 is associated with 
the maximum uncertainty regarding the constant 
(Wu et al., 2020). So Mod8 is not good compared to 
Mod6 and Mod7. In Mod6, all the predictor variables 
including the constant are significant (0.00) compared 
to Mod7. So, from the MLR study, the model Mod6 
which has Tur, Fe, EC, Mn, TH, and Cl as independ-
ent variables is more reliable and is designed for 
the appropriate projection of GWQI (Eq.  (7)) in this 
research area. To validate the proposed model, com-
pare the original and new GWQI of the 20% sample 
using a t-test. The results obtained from the new GWQI 
are not significantly different from those of the origi-
nal GWQI. The t-test result confirms the effectiveness 
of the new GWQI equation because the significance 
(0.873) is greater than 0.05.

GWQI converts all the parameters into a solitary 
value which is very acceptable in general. Among 
all the samples, RP16 shows the better GWQI score 
and indicates good for drinking, though the TH level 
is slightly higher than the permissible limit in that 
sample. On the other hand, RP6 shows a higher GWQI 
score and suggests very poor for drinking, and though 
apart from Tur, TH, and Fe, the rest of the parame-
ters are within permissible limits. The samples which 
are showing poor to very poor grade require some 
treatment prior to consumption. Before individual 
parameter analysis was done by Maity et  al. (2017) 
and Chakraborty et al. (2020) in that zone, they pro-
posed that the groundwater quality has been fall-
ing down due to elevated concentration of the above 
selected parameters progressively. But this conven-
tional approach did not provide the entire water qual-
ity because of the different classifications of every 
parameter, and that is confusing the results as vari-
ous parameters are included here to decide the water 
quality. So GWQI comprehensively provides a better 
interpretation of the complete water quality scenario 
in chosen stretches.

The above study also implies that the new GWQI 
MLR model with not many variables produces eco-
nomic benefits, reduces the eclipse effect, offers good 
accuracy to predict the water quality, and suggests 
that Tur is the main contributor in connection with 

groundwater pollution. So this will be very logical 
to monitor and manage the quality of existing water 
resources for the communities in this locality. Wang 
et  al. (2020b), Banda and Kumarasamy (2020), Wu 
et  al. (2020), and Valentini et  al. (2021) forecasted 
the WQI through the MLR model approach and 
also identified the most dominant parameter linked 
to water quality, authenticate the significance of 
this approach, and certify its feasibility. The results 
obtained from the above-stated studies and our cur-
rent study both prefer that the MLR model is a handy 
tool to predict water quality, and a model with lesser 
variables may provide greater performance than a 
model with more parameters.

The above investigation through PCA/FA, GWQI, 
and MLR prescribes a lot of information in respect 
of groundwater quality in BPRP. In addition, here, we 
have taken into account the eight water quality vari-
ables in 38 sampling points as per information avail-
able about the dataset. Analysis of more parameters 
will be helpful to know about the other characteristics 
of water, and more representatives will furnish a bet-
ter understanding about water quality processes and 
trends. As we have limited parameters for this analy-
sis, the reliability of the statistical approaches may be 
enhanced by introducing more parameters.

Conclusions

The WQI, along with statistical approaches, has been 
used to provide a comprehensive picture of ground-
water conditions associated with selected coastal 
areas, as groundwater quality is declining here. 
Therefore, here, the PCA/FA method was used to 
identify potential sources of groundwater contamina-
tion, and GWQI was involved in identifying the current 
groundwater class in the BPRP area. The MLR analy-
sis was used to develop a new appropriate mathemati-
cal model in GWQI estimation for groundwater quality 
monitoring. Current research shows that groundwa-
ter is fresh, hard to very hard, and slightly acidic to 
alkaline.

Three principal components were extracted from 
the PCA/FA study, which explained 80.61% cumula-
tive variance of the total variance. PCA along with 
FA revealed that VFA1 may be affected by salt water 
along with the disintegration and leaching process, 
VFA2 may be affected by salt water, and VFA3 may 
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be affected by association with the organic or oth-
erwise biogenic and lithogenic or otherwise non-
lithogenic process. This study also reveals that the 
sampling points RP2, RP6, RP9, and RP11 are mostly 
affected by variables such as Cl, Tur, Mn, and TH; 
sampling points RP1, RP7, RP12, RP13, and RP20 are 
mostly affected by the parameters such as EC and 
TDS; and sampling points RP3, RP4, RP5, RP8, RP10, 
and RP12 are mostly affected by pH and Fe.

The GWQI was evaluated for 38 sites, and the cal-
culated index scores ranged from 52.33 to 204.84. It 
was observed that 87% of the sample falls in grade 
B, 11% of the sample falls in grade C, and 2% of the 
sample falls in grade D. None of the samples fall in 
grades A and E. Therefore, groundwater is possibly 
considered for drinking purposes in entire sampling 
locations. The MLR model containing prediction 
parameters such as Tur, Fe, EC, Mn, TH, and Cl is 
more reliable and is proposed to predict the GWQI. 
The proposed MLR model also reveals that Tur is the 
highest contributor to the overall groundwater quality. 
This model also provides financial benefits because 
fewer variables are involved.

The WQI together with the statistical models 
is shown to be a favorable approach to identifying 
groundwater quality by converting the dataset into 
equivalent entity data and numerical index scores. 
Therefore, the assessment of groundwater quality 
using statistical and index approaches is not only a 
common study but allows to delineate the most unsafe 
area with regard to the class of groundwater that can 
adversely affect human health. This study can assist 
the designers and officials in observing and selecting 
solutions for groundwater contamination. Therefore, 
this type of analysis is very valuable for the mod-
ernization and permissible expansion of groundwater 
resources for the general public.
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