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Abstract Aquatic environments are important sources 
of healthy and nutritious foods; however, clams, mus-
sels, and oysters (the bivalves most consumed by 
humans) can pose considerable health risks to consum-
ers if contaminated by heavy metals in polluted areas. 
These organisms can accumulate dangerously high con-
centrations of heavy metals (e.g., Cd, Hg, Pb) in their 
soft tissues that can then be transferred to humans fol-
lowing ingestion. Monitoring contaminants in clams, 
mussels and oysters and their environments is critically 
important for global human health and food security, 
which requires reliable measurement of heavy-metal 
concentrations in the soft tissues. The aim of our pre-
sent paper is to provide a review of how heavy metals 
are quantified in clams, mussels, and oysters. We do this 
by evaluating sample-preparation methods (i.e., tissue 
digestion / extraction and analyte preconcentration) and 
instrumental techniques (i.e., atomic, fluorescence and 
mass spectrometric methods, chromatography, neutron 
activation analysis and electrochemical sensors) that 
have been applied for this purpose to date. Application 
of these methods, their advantages, limitations, chal-
lenges and expected future directions are discussed.
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Abbreviations 
HM  heavy metal
LOD  limit of detection
LOQ  limit of quantification
SPE  solid-phase extraction
CPE  cloud-point extraction
AAS  atomic absorption spectrometry
AFS  atomic fluorescence spectroscopy
ICP  inductively coupled plasma
MS  mass spectrometry
OES  optical emission spectrometry
EDXRF   energy dispersive X-ray fluorescence 

spectroscopy
ES  electrochemical sensor
NAA  neutron activation analysis
HPLC  high-performance liquid chromatography
GC  gas chromatography

Introduction

Clams, mussels, and oysters are important foods for 
human consumption, especially in coastal areas. The 
estimated production of these marine bivalves on the 
global market is more than 15 million tonnes per year 
with slightly more than 10% coming from wild fisheries 
(Wijsman et al., 2019). Marine bivalves are considered 

T. Pasinszki (*) · S. S. Prasad 
College of Engineering, Science and Technology, Fiji 
National University, P.O. Box 3722, Samabula, Suva, Fiji
e-mail: tibor.pasinszki@fnu.ac.fj

M. Krebsz 
School of Chemistry, Monash University, Clayton, 
Victoria 3800, Australia

/ Published online: 19 August 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-023-11686-9&domain=pdf
https://orcid.org/0000-0001-7558-8230
http://orcid.org/0000-0001-5486-7142
https://orcid.org/0000-0001-9961-6988


Environ Monit Assess (2023) 195:1066

1 3
Vol:. (1234567890)

as healthy food (Noman et  al., 2022; Pastorelli et  al., 
2012; Qin et al., 2021), however, environmental contam-
inants and biotoxins may create food safety issues and 
decrease market demands. Food is the primary source 
of toxic element intake; therefore, food safety and con-
sumer protection are of major concerns (Barchiesi et al., 
2020; Chera-Anghel & Staden, 2023; Liao et al., 2020; 
Millour et  al., 2012). Monitoring poisonous element 
concentration in food is therefore of high importance 
because bioaccumulation of harmful elements to toxic 
levels may occur even at low concentration of these ele-
ments at long-term exposure. Clams, mussels, and oys-
ters are filter feeding organisms and are sensitive to their 
environment. They accumulate harmful compounds and 
heavy metals in their soft tissue depending on their sur-
roundings, which can be 100 to 1000 times higher than 
that of water where they reside (Dang et al., 2022; Lehel 
et al., 2018). Concentrations of heavy metals in soft tis-
sue are measures of the bioavailability of metals and 
are the results of complex and interrelated geological, 
hydrological, physico-chemical, and biological factors, 
including feeding habits and kind of organisms. Sig-
nificant correlation has been established between heavy 
metals in water and sediments and in bivalves (Amiard-
Triquet et al., 1998; Cao et al., 2023; Diwa et al., 2022; 
Griscom & Fisher, 2004; Kalman et  al., 2014; Khoei, 
2022; Luoma & Bryan, 1982; Shirneshan et al., 2013; 
Wang & Lu, 2017).

Heavy metals (metals and metalloids having a den-
sity of higher than 5 g   cm−3) are natural constituents 
of the lithosphere and occur in varying concentrations 
in all ecosystems. However, anthropogenic activity, 
especially in urban and industrial areas, has increased 
the concentration of both essential (e.g., Co, Cu, Fe, 
Mn, Mo, Zn) and non-essential (e.g., Cd, Hg, Pb) 

heavy metals in these systems, which generates envi-
ronmental and health concerns (Andrade-Rivas et al., 
2022; Jin et  al., 2023; Millour et  al., 2012; Sajwan 
et al., 2008). The most important anthropogenic activi-
ties in this respect are industrialization, urbanization, 
and agriculture, which include heavy metal sources 
such as industrial wastes and wastewater, wastes 
from smelting ores, leachates from mining sites, sew-
age sludge, vehicular traffic, marine transportation, 
fertilizers, and pesticides (Jahromi et  al., 2021; Liu 
et al., 2022). Heavy metal pollution of rivers, estuar-
ies and coastal areas possess risk to river and marine 
organisms due to adverse effects, and to consumers 
of aquatic animals, as heavy metals are toxic and not 
biodegradable. Bivalves are known to accumulate high 
concentrations of heavy metals in their tissues due to 
their very efficient dietary assimilation and exceed-
ingly dissolved uptake (Chen et al., 2014). The ability 
of these organisms to accumulate heavy metals makes 
them excellent species for monitoring metal contami-
nation in rivers and coastal waters but may possess 
threat to human health via the food chain if they are 
harvested in polluted environment (Sun et al., 2023).

Due to direct link of toxic heavy metal accumu-
lation in bivalve soft tissues to human health issues, 
the tolerance limit of most toxic heavy metals in food 
is regulated by many countries and organizations 
around the world; examples are shown in Table 1.

Harmful heavy metal accumulation in soft tis-
sues of clams, mussels, and oysters is receiving con-
tinuous interest due to its direct link to health issues 
and environmental pollution (Yap, Sharifinia, et  al., 
2021). Analysis of the relevant literature to date con-
firms the increasing number of publications on heavy 
metal quantification in these bivalves, namely, 19% 

Table 1  Maximum permitted levels of heavy metals in bivalve foodstuff (in mg  kg−1 wet tissue)

a  Commission of European Communities (CEC, 2006; CEC, 2008), b Canned foods,  c Food and Agriculture Organization of the 
United Nations (FAO) (FAO, 2003), d FAO and World Health Organization (FAO-WHO, 2019), e Standardization Administration of 
the People’s Republic of China (SCA, 2017), f Inorganic arsenic, g Viscera removed, h Methyl mercury, i Food Standards Australia 
New Zealand (ANZ-FSC, 2021), j Food Safety and Standards Authority of India (FSSAI, 2020)

Regulator As Cd Cr Hg Sn Pb

EUa 1.0 0.5 200b 1.5
FAOc 1 0.5 1
FAO/WHOd 2 250b

Chinae 0.5f 2.0g 2.0 0.5h 250b 1.5
AU/NZi 1f 2 0.5 250b 2
Indiaj 86 2.0 12 0.5 (0.25h) 250b 1.5
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of publications to date are published in the period of 
2000 and before, 26% between 2001 and 2010, and 
55% between 2011 and 2022 (Tables  4-6). Targeted 
heavy metals in previous works, and a comparison of 
the number of studies for quantification of each heavy 
metal is shown in Fig. 1.

Clams, mussels, and oysters, either as foods 
or sentinel organisms of environmental change, 
play an important role in aquatic ecosystems, and 
monitoring their soft tissue heavy metal concen-
tration is of crucial importance for both food secu-
rity and environmental pollution. Several methods 
have been developed and applied to date to test for 
heavy metal accumulation in these bivalves. Chal-
lenges for these techniques, in general, are the low 
concentration of heavy metals in the tissue and the 
need for quantifying multiple elements. There has 
been a clear trend over the last decades to improve 
the efficiency (recovery and analyte enrichment) of 
sample preparation and sensitivity of applied instru-
mentation techniques, as well as to reduce the total 
analysis time. Instruments which are sensitive and 
able to perform simultaneous multielement analysis 
are becoming more and more popular as shown for 
example by the increasing application of internally 
coupled plasma optical emission or mass spectrom-
etry. Although only 20% of publications reported 
the quantification of heavy metals using these two 
techniques in year 2000 and before, this number 
increased to 55% between 2001 and 2010, and fur-
ther increased between 2011 and 2022 up to 65% 

(based on publications listed in Tables 4–6). Despite 
developments, it is disadvantageous for the currently 
used analytical methods that they require labora-
tory conditions, trained workforce, expensive instru-
ments, and complex and time-consuming analysis. It 
remains challenging to adopt or develop simple tools 
for field applications. The present review aims to 
summarize sample preparation and instrumentation 
techniques applied to date for the quantification of 
heavy metal content in tissues of clams, mussels, and 
oysters. The aim of the work is to give an overview 
of the field by discussing in consecutive sections the 
heavy metal extract preparation from tissue of these 
bivalves, including digestion/extraction and precon-
centration, instrumentation used to date for heavy 
metal quantification in the extract, and the impor-
tance of quality assurance and control. Pros and cons 
and references to further reading of each technique, 
as well as future challenges of heavy metal testing in 
clams, mussels and oysters are also presented.

Quantification of heavy metals in soft tissues 
of clams, mussels, and oysters

The success of HM quantification in bivalves depends 
on both the sample preparation method and the instru-
mental technique used. For HM determination, the 
soft tissue matrix of bivalves needs to be digested to 
convert the solid sample into solution prior to analyti-
cal measurements. If the measurement of the total HM 

Fig. 1  Comparison of the number of studies for the determination of heavy metals in soft tissues of clams, mussels, and oysters
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concentration in soft tissue is required, which is most 
often the case, the destruction of the matrix and com-
pounds in the matrix is acceptable and the method of 
choice; special extraction techniques must be used if 
HM speciation is aimed. The two major steps of HM 
quantification, therefore, are 1.) liquid HM extract 
preparation, which may include drying, digestion, 
extraction, and pre-concentration, and 2.) instrumen-
tal determination of HM concentration in the extract, 
typically by utilizing atomic spectrometric methods, 
such as AAS, ICP-OES and AFS, mass spectrometry, 
such as ICP-MS, chromatographic methods, such as 
HPLC and GC, or other methods such as EDXRF, 
NAA or ES. Steps of HM quantification in soft tissue 
is summarized in Fig. 2 (only those methods are listed 
which have already been applied in HM evaluation 
in bivalves). Relatively large number of papers have 
addressed the HM determination in clams, mussels, 
and oysters to date, and details of HM extract prepa-
ration and instrumental HM quantification are col-
lected in the Appendix in Tables 4, 5, and 6, respec-
tively (Anagha et al., 2022; Araujo et al., 2019; Avelar 
et  al., 2000; Bat et  al., 2019; Belbachir et  al., 2013; 

Blankson et al., 2022; Bray et al., 2015; Bryan et al., 
1980; Camusso et al., 2001; Dabwan & Taufiq, 2016; 
Dahms et al., 2014; de Astudillol et al., 2005; Elvira 
et al., 2021; Esposito et al., 2022; Ferreira et al., 2004; 
Ferreira et  al., 2005; Grant & Ellis, 1988; Griscom 
et al., 2002; Hursthouse et al., 2003; Intawongse et al., 
2012; Januar et  al., 2019; Jia et  al., 2018; Kamaruz-
zaman et al., 2010; Katsallah et al., 2013; LaBrecque 
et al., 2004; Langston et al., 1999; Li et al., 2015; Lias 
et al., 2013; Lin et al., 2004; Liu et al., 2022; Lozano-
Bilbao et al., 2018; Lu et al., 2005; Matos et al., 2021; 
Mauri et  al., 2004; McDougall et  al., 2020; Meng 
et al., 2014; Mtanga & Machiwa, 2007; Otchere, 2022; 
Ozden et  al., 2009; Pakingking et  al., 2022; Peake 
et al., 2006; Rohalin et al., 2019; Ruelas-Inzunza et al., 
2009; Rule, 1985; Said et al., 2022; Santos & Boehs, 
2021; Senez-Mello et al., 2020; Shenai-Tirodkar et al., 
2017; Sheng et al., 2021; Silva et al., 2001; Siva et al., 
2010; Sokolowski et  al., 2007; Soto-Jimenez et  al., 
2001; Telahigue et al., 2022; Tessier et al., 1984; Tran 
et al., 2001; Tu et al., 2014; Vieira et al., 2022; Wang 
et al., 2022; Weston & Maruya, 2002; Yap et al., 2021; 
Zhang et al., 2022; Zhu et al., 2017).

Fig. 2  Steps of heavy metal quantification in soft tissue of clams, mussels, and oysters
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Heavy metal extract preparation

The liquid sample preparation is a key step for the 
accurate measurement of HM concentration in dif-
ferent soft tissue matrices of bivalves. Several pro-
cedures have been developed to date to minimize 
sample loss and maximize recovery, to minimize 
contamination and to shorten the extract preparation 
time, as well as to address specific requirements of 
consecutive HM determination in the extract, such 
as the need for total HM concentration or specia-
tion or decreasing matrix effects. Selected examples 
are shown in Table 2, and more details including the 
name of bivalve species are collected in Tables 4–6.

Extract for total heavy metal determination

Clams, mussels, and oysters are consumed without 
removing organs or viscera; therefore, the HM anal-
ysis usually aims to determine the HM content in 
the whole body and all tissues. Samples for analysis 
are prepared by removing the whole body from the 
shell using a metal-free tool, cutting and homogeniz-
ing. There are a limited number of studies, however, 
which are aimed at determining HM distribution 
among bivalves’ various tissues and organs. Vadop-
ivez et  al. observed that the kidney tissue of Later-
nula elliptica contained much higher concentration 
of Cd, Mn, Pb and Zn than the digestive gland or the 
gills, but the digestive gland contained the highest 
amount of Cr and Cu (Vodopivez et al., 2015). Couil-
lard et al. detected higher Cd, Cu and Zn concentra-
tion in gills of Anodonta grandis than in hepatopan-
creas and the mixture of remaining tissues (Couillard 
et al., 1993). Shaari et al. studied the Cd, Cu, Pb, Co 
and Zn content of different organs of Psammotaea 
elongate, namely stomach, ligament, and leg, from 
different sampling sites and found that the variation 
of HMs concentration in the different organs fol-
lowed the variation of the HMs concentration in the 
whole-body tissue. The distribution of HMs among 
organs was dependent on the sampling site (Shaari 
et al., 2015). Zheng et al. determined the distribution 
of Cd in visceral, mantle, gill, and muscle tissues of 
Crassostrea gigas (Zheng et al., 2021). The total Cd 
content was the highest in the viscera, but the Cd con-
centration was the highest in gill followed by viscera, 
mantle, and muscle (see Fig. 3).

The soft tissue of bivalves contains large amounts 
of water, which is disadvantageous for concentrated 
acid digestion, dilutes the sample and reduces sensi-
tivity; therefore, the soft tissue is usually dried to con-
stant weight and grounded to powder as the first step 
of extract preparation. High temperature drying or 
especially ashing results in loss of volatile analytes, 
e.g., Hg and As, therefore the freeze-drying at around 
−50  °C or drying at slightly elevated temperature 
between 60 and 130 °C are the most popular methods 
(Tables 2 and 4–6).

Digestion of the dried tissue, as the next step of 
liquid extract preparation, is critical concerning analy-
sis time and analyte recovery. The hot acid digestion 
method using concentrated oxidizing acids, typically 
 HNO3, offers a simple and relatively rapid sample 
decomposition for total HM analysis. The advantage 
of this method is in its simplicity, and that it does not 
require any special equipment and concentrated acidic 
solutions after appropriate dilution can be directly 
injected into AAS, ICP-OES and ICP-MS instru-
ments. Concentrated  HNO3 is either used alone or in 
combination with other acids, such as  HClO4, HCl and 
 H2SO4, or oxidizing agents such as  H2O2 and  KMnO4 
(Tables 2 and 4–6). Elevated temperature always pre-
sents a risk for sample loss, and typically the loss of 
mercury might become a major problem in the hot 
acid sample preparation procedure due to its volatility. 
To avoid this problem, it was shown that the presence 
of oxidizing agents could prevent complete mercury 
loss even under severe heating conditions (Akagi & 
Nishimura, 1991). Digestion time is critical for sam-
ple throughput. Combination of acid treatment with 
microwave or ultrasound irradiation has been shown to 
provide a significant speeding up in the pre-treatment 
step; the typically 6–24 hours hot acid treatment time, 
in general, can be reduced to 15–60 min using irradia-
tion (Tables 2 and 4–6). An additional advantage of the 
microwave digestion is that it is carried out in a closed 
vessel, which latter can reduce the amount of envi-
ronmental contamination and contamination from the 
digestion vessel. Microwave digestion can be effective 
without a pre-drying step (Tables 4–6) and requires, in 
general, less acid for the digestion than do conventional 
wet digestion methods (Sheppard et  al., 1994). Con-
cerning different microwave digestion techniques, the 
cavity-microwave acid digestion method was shown 
to be more advantageous than the focused-microwave 
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Table 2  Selected examples for the quantification of HM content in soft tissues of clams, mussels, and oysters (see Tables 4–6 for 
more details)

Extraction and digestion 
method

HM  Determinationa Ref.

Method LOD / μg  g−1 HM monitored

Freeze-dried; ultrasound + 
centrifugation, dilute HCl, 
 HNO3 and  CH3COOH, 
25–30 °C

ICP-OES 0.012–2.62 Cd, Cu, Mn, Zn (dos Santos et al., 2010)

Freeze-dried for 48–72 h; 
microwave, cc  HNO3

ICP-OES 0.05–0.3 Cd, Cr, Cu, Fe, Mn, Pb, Zn (Vodopivez et al., 2015)

Dried at 60 °C for 48 h; 
microwave, cc  HNO3 + cc 
 H2O2

ICP-OES 0.01–0.03b Cd, Cu, Zn (Wanick et al., 2012)

Freeze-dried; Microwave, cc 
 HNO3 + cc  H2O2, 100–
140 °C, 50 min

ICP-OES 0.002–0.03b As, Cd, Co, Cr, Cu, Hg, Fe, 
Mn, Mo, Ni, Pb, Zn

(Zheng & Yan, 2011)

Microwave, cc  HNO3 + cc 
 HClO4, 200 °C, 40 min

ICP-OES 0.00033–0.01518 Co, Cu, Fe, Mn, Ni, Pb, Zn (Chinnadurai et al., 2022)

Microwave, cc  HNO3, 
125–155 °C, 1 h

ICP-OES
ICP-MS

0.2–2.7
0.0002–0.0028

As, Cd, Pb (Sheppard et al., 1994)

Freeze-dried; cc  HNO3 for 
6 h, + cc  H2O2, microwave, 
180 °C, 30 min

ICP-MS 0.0013–0.0135b As, Cd, Cr, Cu, Hg,
Pb, Ni, Zn

(Liao et al., 2020)

Freeze-dried; microwave, 
cc  H2O2 + cc  HNO3, 
70–180 °C, 1 h; SPE using 
MGO@SiO2-APTES-IL

ICP-MS 0.00242–0.00375b Cd, Cu, Pb (Dong et al., 2021)

Dried at 50 °C for 24 h; cc 
 HNO3, 1 h at room temp, 
4–6 h at 110 °C; cc  H2O2, 
1 h

ICP-MS 0.01–0.2 Cd, Cu, Ni, Pb, Zn (Thomas & Bendell-Young, 
1998)

Microwave, cc  HNO3 + cc 
 H2O2 + cc HF

ICP-MS 0.0015–0.0076 Cd, Hg, Pb (Barchiesi et al., 2020)

Freeze-dried; cc  HNO3 + cc 
 H2O2, microwave for 1.5 h

ICP-MS 0.01–3.67 As, Cd, Cr, Cu, Ni, Pb, Zn (Chen et al., 2022)

Microwave, cc  HNO3 + cc 
 H2O2, 120–190 °C, 60 min

ICP-MS 0.001–0.004 Cd, Hg, Pb (Miedico et al., 2015)

cc  HNO3 at room temp. For 
8 h then at 85 °C for 8 h

ICP-MS 0.02–0.05 As, Cd, Hg, Pb (Falco et al., 2006)

Microwave, cc  HNO3 + cc 
 H2O2

ICP-MS 0.02–0.05 Cd, Pb (Pastorelli et al., 2012)

Freeze-dried; microwave, cc 
 HNO3 + cc  H2O2, 24 min

ICP-MS 0.006–0.08 As, Cd, Co, Cr, Cu, Mo, Ni, 
Pb, Sb, Tl, V, Zn

(Culotta et al., 2008)

Dried at 60 °C; n.a. ICP-MS 0.0038–0.0461 As, Cd, Cr, Cu, Fe, Ni, Pb, Zn (de Souza et al., 2021)
Dried at 105 °C; cc  HNO3 at 

r.t., cc  HNO3 + cc  H2O2 at 
180 °C

ICP-MS 0.03–1.66 As, Cd, Cr, Cu, Pb, Zn (Liu et al., 2022)

Freeze-dried; Microwave, cc 
 HNO3 + cc  H2O2

ICP-MS 0.00047–0.00236 As, Cd, Cr, Pb (Jin et al., 2023)

Microwave, cc  HNO3 at 195 °C 
for 20 min

ICP-MS 0.0003–0.005 As, Cd, Cr, Hg, Ni, Pb (Pan & Han, 2023)
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Table 2  (continued)

Extraction and digestion 
method

HM  Determinationa Ref.

Method LOD / μg  g−1 HM monitored

Dried in vacuum at 80 °C 
overnight; microwave, cc 
 HNO3, 20 min; + cc  H2O2, 
20 min

AAS 0.004–0.05 Cd, Cu, Pb, Zn (Yaru et al., 1999)

Dried at 50 °C for 24 h; cc 
 HNO3, 1 h at room temp, 
4–6 h at 110 °C; cc  H2O2, 
1 h

AAS 0.004 Hg (Thomas & Bendell-Young, 
1998)

Freeze-dried for 18 h; 
microwave, aq.  H3PO4/
KH2PO4 buffer, SDS, Triton 
X-100 surfactant

AAS 0.02–0.05 Cd, Co, Cr, Ni, Pb (Hernandez-Martinez et al., 
2016)

Microwave, cc  HNO3 + cc 
 H2O2

AAS 0.5 Hg (Pastorelli et al., 2012)

Wet sample; cc  HNO3 + cc 
 H2O2, microwave for 46 min

AAS 0.01–0.12 As, Cd, Cu, Hg, Pb, Zn (Garcia-Rico et al., 2001)

Freeze-dried; cc  HNO3 + cc 
 HClO4, microwave for 2 h

AAS
AFS

0.005–0.4
0.002–0.2

Cd, Cr, Cu, Pb, Zn
As, Hg

(Noman et al., 2022)

Dried at 105 °C; cc  HNO3 + cc 
 HClO4

AFS 0.002 Hg (Liu et al., 2022)

Freeze-dried; Microwave, cc 
 HNO3 + cc  H2O2

AFS 0.001 Hg (Jin et al., 2023)

Dried at 120 °C for 24 h; cc 
 HNO3 at 90–130 °C for 6 h

AFS n.a. Hg (Maanan, 2008)

Dilute  HNO3, ultrasound, 1 h HPLC-ICP-MS 0.0083, 0.0052b H3AsO3,  H3AsO4 (Liao et al., 2020)
2-mercaptoethanol, 

L-cysteine, aq. HCl, 
ultrasonicated at 40 °C for 
30 min

HPLC-ICP-MS n.a. MeHg (Ferraris et al., 2021)

Ashing at 500–550 °C; 
aq. HCl; HMA-HMDC; 
extraction

HPLC n.a Cd, Ni, Pb, Zn, Co, Cu, Bi (Ichinoki et al., 1984)

Microwave, 1 M HCl, 70 °C, 
3 min; ethylation

GC-MS 0.0007 MeHg (Valsecchi et al., 2021)

Freeze-dried; microwave, 
4 M  HNO3, 55 °C 
overnight; purge and trap 
preconcentration

GC-ICP-MS 0.000072 MeHg (Taylor et al., 2008)

Freeze-dried; microwave, cc 
 HNO3; buffered, eluted on a 
Chelex-100 resin

NAA n.a. As, Co, Cr, Hg, Sb, Zn (Yusof et al., 1994)

Dried at 40 °C; no chemical 
pretreatment

NAA n.a. As, Ag, Co, Cr, Fe, Mn, Mo, 
Sb, Th, U, V, Zn

(Bezuidenhout et al., 2015)

Freeze-dried for 48 h; no 
chemical pretreatment

EDXRF n.a. As, Fe, Cu, Zn (Santos et al., 2014)

Dried at 45 °C for 24 h; cc 
 HNO3 + cc  H2SO4, 140 °C, 
3 h

ES n.a. Cu, Cd, Pb, Zn (Locatelli, 2000)

Freeze-dried for 24 h; 
microwave, cc  HNO3 + cc 
 H2O2

ES n.a. Cd, Pb (Pizarro et al., 2020)
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acid digestion because the latter was prone to losses of 
certain volatile elements and compounds (Costa et al., 
2009). Combination of ultrasound and centrifugation 
has been reported to be effective under mild condi-
tions using dilute acids and room temperature (dos 
Santos et al., 2010). Although different variants of the 
acid digestion method are fast exclusively used in this 
field, a disadvantage of acid digestion is the applica-
tion of highly corrosive and toxic acids. It is important 
to note in this respect that Hernandez-Martinez at al. 
have recently developed an oxidizing acid free extrac-
tion method based on biodegradable mixed-micelles 
(Sodium Dodecyl Sulphate (SDS) and Triton X-100) 
dissolved in aqueous phosphate buffer and microwave 
irradiation (Hernandez-Martinez et al., 2016).

Sample pre-treatment can cause analyte loss and 
influence the detected amounts of HMs if not care-
fully performed. Open vessels and high temperature for 
digestion always present a risk; however, this strongly 
depends on the oxidized form of the HM and the diges-
tion medium. Best choices for sample acid digestion 
are the use of closed vessels either heating in a cavity-
microwave oven or digesting at low temperature. It is 
worth to note that, in general, good recoveries can be 
obtained by the acid digestion method if properly per-
formed (see references in Tables 4–6). Each instrumen-
tal technique used to detect and quantify HMs have 
specific requirements concerning the MH extract. Chro-
matographic methods, for example, may require the 
derivatization of the analyte (see below).

Table 2  (continued)

Extraction and digestion 
method

HM  Determinationa Ref.

Method LOD / μg  g−1 HM monitored

Without drying; microwave, cc 
 HNO3

ES 0.0005–0.0040 Cu, Cd, Pb, Zn (Skiba et al., 2023)

a n.a. = not available; LOD in μg  g−1 (ppm) unless otherwise indicated, bLOD in μg  L−1

Fig. 3  Distribution of Cd in visceral, mantle, gill, and muscle tissues in an oyster (Zheng et al., 2021). Reproduced from the original 
article according to the Creative Commons Attribution 4.0 International License
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Extract for the quantification of specific compounds 
in soft tissue

The speciation analysis of heavy metal compounds in 
soft tissue of bivalves is still challenging due to the 
lability of these compounds in vitro and the scarce of 
the reference metalorganic compounds. Not surpris-
ingly, most of the speciation analysis to date has been 
focused on known small molecules such as MeHg 
(methyl mercury). The determination of specific com-
pounds in the soft tissue requires the extraction of 
these compounds from the tissue without decomposi-
tion, therefore aggressive concentrated acid digestion 
methods cannot be used. HPLC using ICP-MS as the 
detection technique is typically used for this purpose, 
however, knowledge about the metalorganic compound 
is essential as the HPLC-ICP-MS coupled technique 
can only acquire the elemental messages of the species; 
unknown compounds and the metal-binding ligands 
need to be further characterized. GC is rarely used for 
speciation in clams, mussels, and oysters to date due to 
its limitation concerning volatility and lability of metal 
compounds; it is mainly used for MeHg speciation. 
To avoid breaking the metal-ligand bond, extraction 
of HM-compounds from bivalves requires a low tem-
perature leach. MeHg is usually extracted from the wet 
soft tissue using ultrasound assisted dilute HCl extrac-
tion (Liao et al., 2020). Alternatively, thiol compounds 
may be added to the aq. HCl solution for the extraction 
of mercury species (Ferraris et  al., 2021). Arsenious 
and arsenic acid can be extracted similarly using dilute 
 HNO3 (Liao et al., 2020). Extraction with a mixture of 
dilute  HNO3 and  H2O2 leads to the oxidation of arse-
nous acid and thereby to the speciation of the inorganic 
arsenic content as arsenic acid (Ferraris et  al., 2021). 
After neutralization and mixing with mobile phase car-
rier solution, the extract can be injected onto the HPLC 
column, and compounds can be identified with various 
detection techniques, typically UV or ICP-MS.

Bioaccumulation of HMs in bivalves’ soft tissue 
is expected to lead to the formation of various metal 
organic compounds and identifying these species 
could provide important information for the under-
standing of bivalve’s metabolism and the toxicology 
of heavy metals. Analytical procedure for HM specia-
tion, however, is more complex than that of total HM 
quantification, which partially explains the paucity of 

such research on clams, mussels, and oysters to date. 
A notable example is the work of Li et al. who inves-
tigated Cd species in short necked clam by extract-
ing the tissue with aqueous tris (hydroxymethyl)
aminomethane-HCl buffer containing dithiothreitol 
and identified Cd species using size exclusion chro-
matography (SEC) coupled with ICP-MS. Three Cd 
species were observed and further characterized after 
pre-fractionation of the extract with Sephadex col-
umn using SEC coupled with electrospray ionization 
quadrupole - time of flight mass spectrometry (ESI-
Q-TOF-MS) (Li et al., 2021).

Preconcentration

It is, in general, a great challenge for quantitative 
analysis to increase the sensitivity of the analytical 
method and decrease the LOD and LOQ. All these 
performance parameters depend on both the sam-
ple preparation and the instrumental technique used. 
Analyte preconcentration is an effective method to 
improve sensitivity and reduce matrix interference. 
Preconcentration is based on separating HMs from 
the sample into a small volume. The preconcentration 
factor can be defined as the ratio of the highest initial 
sample volume and the lowest final volume. Applying 
preconcentration is relatively new in HM quantifica-
tion in clams, mussels, and oysters. Methods that are 
already used in this field are the Cloud Point Extrac-
tion (CPL), the Solid-Phase Extraction (SPE), and the 
‘purge and trap’ method for MeHg quantification (see 
below). The trial of potential complexant and sur-
factant for CPL and adsorbent for SPE, as well as the 
development of green methods seem to be the main 
trend in this field.

Cloud point extraction CPE procedure is based on 
the property of a surfactant to form micelles in aqueous 
media after changing experimental conditions such as 
temperature or inclusion of additives. The surfactant- 
rich phase extracts and preconcentrates HMs, which can 
be subsequently separated by centrifugation (Fig.  4).  
Adjusting the pH of the solution is very important, 
as the extraction of HMs is quantitative only at the 
optimum pH range of the CPE procedure (Mortada, 
2020; Sunder et  al., 2020). High acidity of the soft 
tissue extract can prevent preconcentration. CPE is 
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considered as a green method as it consumes no or 
minimum amounts of organic solvent. A CPE method 
in the investigated field was developed by Dos Santos 
Depoi et al. for As, Bi, Cd, and Pb quantification using 
ICP-OES. The method was based on the application 
of O,O-diethyldithiophosphate (DDPP) as complexant 
and octylphenoxypolyethoxy-ethanol (Triton X-114) as 
surfactant (dos Santos Depoi et al., 2012); LODs were 
0.055, 0.063, 0.047 and 0.28 μg   L−1, respectively. To  
obtain an extract with low acid concentration, oyster 
samples were digested in dilute aqueous nitric acid 
using microwave induced combustion (MIC).

Solid‑phase extraction SPE is one of the most fre-
quently used preconcentration techniques due to its 
simplicity, high preconcentration factors, and avail-
ability of a wide variety of sorbent materials. It is 
based on the consecutive steps of 1) adsorption of 
HMs on an adsorbent, 2) separation of adsorbent, 
and 3) desorption of HMs from adsorbent by using 
an eluent (Fig. 4) or simply the heat of the atomizer 
of an instrument after injection. Since SPE does not 
require or only small amounts of organic solvents, it 
is a green technique (Sunder et al., 2020). There is a 
continuous development in this field to improve effi-
ciency and operational aspects by introducing novel 
extractants and new adsorbents, reducing manual 

Fig. 4  a) Preconcentration of HMs using CPE, reproduced with 
permission from ref. (Mortada, 2020). Copyright of Elsevier 
Ltd., 2020; b) SPE using effervescent tablets. Reproduced with 

permission from ref. (Zhou et al., 2019). Copyright of The Royal 
Society of Chemistry, 2019
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operations, and speeding up the analysis time (Faraji 
et al., 2019; Madikizela et al., 2019; Schettino et al., 
2022; Song & Huang, 2022; Su et al., 2022).

Concerning developments in the field of HM 
quantification in clams, mussels, and oysters, Benvidi 
et  al. developed recently a SPE separation method 
for Ni determination in oyster tissue (Benvidi et  al., 
2020). The method was based on collecting nickel 
ions after digestion of the soft tissue on magnetic 
Silk Fibroin-Fe3O4-EDTA nano adsorbent, separat-
ing the nano-adsorbent from the solution using a 
magnet and injecting the nano-adsorbent into the 
furnace of an AAS instrument. An extremely low 
LOD of 0.0017 μg   L−1, a linearity range of 0.0030–
5.0  μg   L−1, a preconcentration factor of 243, and a 
mean recovery percent of 100.1% could be achieved 
(Benvidi et  al., 2020). Yekrangi et  al. synthesized 
and applied magnetic nano-adsorbents for the SPE of 
 Pb2+ ions for AAS quantification. The nano-sorbent 
consisted of humic acid as the lead-collecting ligand 
anchored to graphene oxide (GO) as the substrate. 
GO was magnetized with iron oxide (Yekrangi et al., 
2021). LOD of 0.07 μg   L−1 and a linearity range of 
0.2–12 μg  L−1 was achieved. Other examples of SPE 
include the development of Dong et  al. on a disper-
sive magnetic solid phase microextraction method 
using ionic liquid-coated amino silanized magnetic 
graphene oxide (MGO@SiO2-APTES-IL) as adsor-
bent for enriching and extracting Cd, Cu, and Pb ions 
in shellfish digests; LODs for the three target HM 
ions were 3.75, 3.36, and 2.42  ng   L−1, respectively, 
with recoveries between 95.4 and 99.5%, and micro-
extraction time of 6.4 min (Dong et al., 2021). Zhou 
et  al. developed an effervescent tablet SPE method 
using  NiFe2O4-based magnetic nanoparticles for pre-
concentration of Cu, Mn, Zn and Cd ions prior to 
ICP-MS analysis of shellfish (Fig.  4). LODs for the 
four metal ions were as low as 0.007–0.018  μg   g−1 
(Zhou et  al., 2019). Ghanemi et  al. applied sulfur 
nanoparticle (NP) loaded alumina for the determi-
nation of trace amounts of Cd, Cu, Zn, and Pb and 
low LODs of 0.30, 0.24, 0.21 and 0.63 μg   L−1 were 
achieved, respectively, using flame AAS (Ghanemi 
et al., 2011).

Purge and trap Purge and trap method refers to 
the preconcentration technique in which volatile 

compounds are purged out of the sample matrix by 
an inert gas or by suction and carried onto a trap, 
where they are collected and concentrated, and con-
sequently introduced into an instrument for analysis. 
The sample matrix may contain the volatile com-
pound, or this latter is generated by derivatization of 
matrix components. The trap can be a sorbent mate-
rial or volatiles may be collected in a low tempera-
ture trap without sorbents. The most frequently used 
instrumental techniques for analysis are the GC and 
GC-coupled techniques with various detectors. The 
purge and trap method was introduced in the 1970s 
for headspace analysis, and has been gone through 
improvements and modifications over the last half 
century concerning instrumentation (purging device, 
sorbent trap, sorbent type, inlet and outlet systems), 
operational procedures (performance of thermal des-
orption or solvent elution, application of secondary 
trap and analyte refocusing), and quantification meth-
ods (external standards and internal standards using 
stable isotopically labeled compounds) to broaden 
the application field (Harries & Bruno, 2019; Kou & 
Mitra, 2005). The overall performance of the method 
depends on the efficiency of each of the three main 
individual steps, namely purging (extraction), trap-
ping (adsorption), and subsequent desorption (ther-
mal desorption or elution using a solvent). Although 
the purge and trap method is widely used in vari-
ous fields of analytical chemistry, it has hardly been 
applied in HM quantification in clams, mussels and 
oysters to date. A notable example is the method 
developed by Taylor et  al. for MeHg quantification, 
which involves the aqueous derivatization of Hg(II) 
species in the acid leachate with  NaBEt4, purging 
the solution with He and collecting volatile mercury 
compounds in a trap, thermal desorption of mer-
cury compounds from the trap, and determination of 
MeHg and Hg(II) species on a GC-ICP-MS. A very 
low LOD of 0.000072 μg  g−1 was achieved for MeHg 
determination (Taylor et al., 2008).

Quantification of heavy metals in the soft tissue extract

In principle, there are numerous spectroscopic and 
chromatographic techniques that could be used for 
the determination of HM content in tissue extract. 
The applied instrumental method, however, depends 
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on several factors, such as the HM concentration in 
the extract, viz. required sensitivity of the instrument 
and LOQ, sample throughput number, and the avail-
ability and running and investment costs of the instru-
ment. The application of an instrumental technique is 
also not independent of extract properties, e.g., sol-
vent, electrolyte, and pH, and extracts are prepared to 
fulfill instrumental requirements, and vice versa. In 
general, the method of standard additions and using 
internal standards are widely used to allow for matrix 
interferences, however, each techniques require spe-
cific conditions to counter matrix effects. General 
techniques like preconcentration (see above) and col-
umn chromatography may be used to prevent matrix 
effects (Shiel et al., 2012). A brief introduction of the 
instrumental techniques that have been used to date 
for HM quantification in clams, mussels and oysters 
is presented in this section. The advantages and dis-
advantages of each technique are summarized at the 
end.

Spectroscopic methods

ICP‑OES and ICP‑MS ICP-OES and ICP-MS are 
based on atomizing and ionizing the sample in an 
argon plasma, introduced as a fine aerosol, and detect-
ing emitted lights of excited state atoms (ICP-OES) or 
extracting ions and detecting them with a mass ana-
lyzer (ICP-MS) (Donati et  al., 2017; Wilschefski & 
Baxter, 2019). Both methods require a liquid sample 
for nebulizing (note that there is capability for direct 
solid sampling, but it is not applied for routine analy-
sis or HM determination in bivalves). The analytical 
sensitivity of an analyte in ICP-OES is linked to its 
overall atomization and excitation; in ICP-MS to its 
overall ionization and isotopic abundance of the meas-
ured isotope. The detection sensitivity therefore differs 
considerably according to the analyte and operating 
conditions. Both methods can simultaneously measure 
multiple elements, and strongly acidic digested sam-
ples can be introduced directly into these instruments; 
these are huge advantages in HM analysis in bivalves. 
Challenges in analysis, namely spectral and chemical 
interferences, are well documented and avoidable for 
both methods (Sneddon & Vincent, 2008; Wilschefski 
& Baxter, 2019). Using internal standards is essential 
to correct for matrix effects and instrumental drifts, 

which latter are smaller in ICP-OES than in ICP-MS 
(Sheppard et  al., 1994). The determination of some 
elements by ICP-MS is known to suffer from polya-
tomic isobaric interferences. The MS/MS mode com-
bined with collision reaction cell using He,  O2 or  NH3 
as collision gas is proved to be an effective method for 
relieving such isobaric interferences (Culotta et  al., 
2008). LODs of most sensitive analytical methods 
for HM quantification in clams, mussels, and oysters 
using ICP-OES or ICP-MS are now reaching 0.0003–
0.015 μg   g−1 (Chinnadurai et  al., 2022) and 0.0003–
0.005  μg   g−1 (Jin et  al., 2023; Pan & Han, 2023), 
respectively (this includes the efficiency of both sam-
ple preparation and instrumental HM quantification; 
see Tables 2 and 4–6).

AAS In AAS, the sample is desolvated and then 
atomized in an atomizer. The gas-phase analyte atoms 
are then irradiated with photons emitted by a nar-
row line profile light source and the intensity of the 
absorbed light is detected. Measurement of each ele-
ment requires a different light source (either line source 
or selected wavelength of a continuum source), there-
fore only one analyte can be measured at a time. The 
sensitivity of the technique is linked to the overall 
atomization of the analyte and the amount of ground 
state analyte atoms (Bings et al., 2010; Hill & Fisher, 
2017a). The two major types of atomizers are the flame 
and electrothermal. In flame AAS (FAAS) the sample 
is nebulized as a fine spray into a high-temperature 
flame where metal ions are reduced to their atoms. The 
advantage of FAAS is that it is a robust technique, how-
ever, its sensitivity is relatively low due to the spectral 
noise created by the flame and because a large part 
of the sample is lost in the flame. The electrothermal 
graphite furnace AAS (GFAAS) has much higher sen-
sitivity than FAAS. In GFAAS the sample is atomized 
and vaporized within seconds in a hollow graphite tube 
and the absorption of the vapor is measured above the 
heated surface. Other specialized atomizing techniques 
for HM analysis are the hydride-generating atomization 
and the cold-vapor atomization. Hydride-generation 
(HGAAS) is mainly used for HM atoms which form 
volatile and thermally unstable hydrides, like As, Sb, 
Bi, Sn, Se. Metal-hydrides are generated in acidified 
sample solutions using sodium borohydride, and then 
transferred to the flame or furnace of the atomization 
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chamber by an inert gas to produce atoms. Cold-vapor 
atomization (CVAAS) is specifically developed for 
Hg analysis as Hg does not atomize well in a flame or 
furnace. In CVAAS the sample containing Hg ions is 
acidified and reduced to Hg, with e.g., sodium borohy-
dride, and then purged by an inert gas. The absorption 
of the Hg in the gas is then determined. The detection 
sensitivity of AAS depends on the analyte, method of 
atomization, and operating condition of the instrument. 
Reported LODs of HM quantification in clam, mussel, 
or oyster samples are between 0.004 and 0.5 μg  g−1 (see 
Tables  2 and 4–6) (Hernandez-Martinez et  al., 2016; 
Noman et al., 2022; Yaru et al., 1999).

AFS In AFS, gaseous atoms are excited to a higher 
energy level with a light source and the emitted pho-
tons, which formed in the deactivation process, are 
detected. The instrumentation of AFS is very similar 
to that of AAS, and the LOD of classical AFS instru-
ments is about the same as AAS (Butcher, 2019; Hill 
& Fisher, 2017b; Stchur et  al., 2001). This similarity 
may explain why AFS has not been so heavily com-
mercialized than AAS in the past, and this latter may 
explain the limited number of applications of AFS 
in HMs quantification in bivalves. The introduction 
of modern intensive lasers as light sources for AFS, 
however, has strongly increased sensitivity and selec-
tivity of the technique. Laser excited AFS (LEAFS) 
instruments exhibit much smaller detection limit than 
AAS, and have LODs for many elements lower than 
those of ICP-MS. The disadvantage of LEAFS is that 
it is a sequential multielement technique, namely only 
one element at a time can be measured, as well as the 
technical complexity of tunable lasers used to excite 
the wide variety of atomic energy levels. AFS may 
become a routine analytical tool in the future, but it is 
not expected to compete with the multielement analy-
sis capability of ICP-OES or ICP-MS. AFS has been 
used recently for Hg quantification in clams, mussels 
and oysters, and the analytical method exhibited LOD 
of 0.001–0.002 μg  g−1 for this element (Jin et al., 2023; 
Liu et al., 2022; Maanan, 2008; Noman et al., 2022).

EDXRF EDXRF spectroscopic method is a mul-
tielement technique where the sample is irradiated 
with X-ray photons and the emitted X-ray fluores-
cence, characteristic of atoms in the target, is detected. 

EDXRF spectrometry has notable advantages com-
pared to other techniques, namely the ability to meas-
ure both solid and liquid samples, nondestructive, 
and all the elements (with atomic numbers larger than 
eleven) present in the sample can be simultaneously 
determined without chemical pre-treatment of the 
dried tissue. Minimum sample treatment may involve 
homogenizing, pulverizing, or pelletizing. The main 
disadvantage of EDXRF which limits its application is 
that the technique is limited by its LOD of larger than 
1 ppm (Marguí et al., 2022; Navas et al., 2016; Santos 
et  al., 2014; Yao et  al., 2015). EDXRF, for example, 
was used by Santos et al. for the determination of HMs 
in soft tissue of mussels (Santos et al., 2014).

Chromatographic methods

HPLC HPLC, in general, is one of the most pow-
erful and widely used techniques for separation and 
quantitative determination of various analytes in 
solutions. It is based on the principle of affinity chro-
matography having a stationary and a liquid mobile 
phase. Molecules in the sample mixture separate as 
they travel the length of the column due to their differ-
ent chemical properties and retention on the stationary 
phase. Selecting the most appropriate stationary and 
mobile phases as well as instrumental parameters to 
solve an analytical problem are key issues for method 
developments (Moldoveanu & David, 2017). HPLC 
has capability for simultaneous multielement HM 
quantification in bivalves, however, it also has limita-
tions which prevent its widespread application in this 
field. If HPLC is used for the total HM analysis, HMs 
must be converted into mobile phase soluble metal 
complexes with an appropriate chelating reagent; the 
sample preparation is therefore complex and binding 
ligand properties strongly influence analytical per-
formances. For example, in the case of photometric 
detection of a metal chelate, the detection sensitivity 
is proportional to the molar absorptivity of the chelate. 
In contrast to ICP-OES and ICP-MS, HPLC columns 
don’t tolerate strongly acidic digests. Considering the 
equipment and running costs, however, HPLC can be 
more economical than ICP-OES/MS, therefore, simul-
taneous determination methods for various metals by 
HPLC have been developed. Ichinoki et al., for exam-
ple, developed a simple method for the simultaneous 
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determination of HMs at the ppm level in oyster tissue 
by reversed phase HPLC using hexamethyleneammo-
nium hexamethylenedithiocarbamate (HMA-HMDC) 
as chelating agent. The method is based on the consec-
utive steps of ashing the tissue, extracting the ash with 
dilute aq. HCl, neutralizing and buffering the extract, 
HMA-HMDC addition, extracting the HMs-HMA-
HMDC complexes with chloroform, and injecting the 
chloroform phase onto a reversed phase column (Ichi-
noki et al., 1984). In general, application of HPLC in 
speciation of HM compounds is more important than 
in total HM quantification.

GC GC utilizes a capillary column for the separa-
tion of gas-phase analyte molecules. Retention on 
the column depends on the column’s dimensions and 
phase properties, as well as on analyte properties and 
experimental conditions. Only compounds which can 
be vaporized on the GC column can be analyzed by 
GC. Many other compounds with low vapor pres-
sures, however, can be investigated if they are chemi-
cally derivatized (converted into a volatile derivative) 
(Gawale et  al., 2022; Laajimi et  al., 2022). Identifi-
cation of a particular molecule by GC is not possible 
using traditional detectors (e.g., flame ionization, 
flame photometric, thermal conductivity, electron-
capture, chemiluminescence); this challenge is best 
addressed by the coupled GC-MS technique (see 
below). Traditional GC techniques are not applied 
for HM quantification in bivalve tissue due to known 
limitations (limited number of volatile compounds, 
derivatization is not possible for all metals, lack of 
reference materials, lack of sensitive detectors for 
metal-organic compounds). Application of GC-MS in 
this field is discussed below.

Spectroscopy coupled with chromatography

HPLC‑ICP‑MS HPLC-ICP-MS is an emerging 
technique in HM speciation. The advantage of cou-
pling HPLC and ICP-MS is to combine an effective 
separation of the species under examination with a 
sensitive and versatile detector (Favilli et  al., 2022). 
The method can be used to quantify limited num-
ber of leachable compounds from bivalves’ soft tis-
sue, e.g., MeHg,  H3AsO3, or  H3AsO4 (Ferraris 
et al., 2021; Liao et al., 2020). Quantifying multiple 

elements simultaneously, like ICP-OES and ICP-MS, 
or identifying molecules, like MS, is not possible due 
to solubility issues of organometallic or metal-organic 
compounds in the HPLC mobile phase and the ina-
bility of the ICP-MS detector to provide a molecular 
message as compounds are atomized in the plasma. 
Application of this coupled technique is rather in spe-
ciation than in total HM determination in bivalves, 
as ICP-MS can fulfill the requirements of total HM 
quantitation, and both running and instrument costs 
are cheaper for ICP-MS than for HPLC-ICP-MS.

GC‑MS and GC‑ICP‑MS GC-MS combines the 
features of gas chromatography and mass spectrom-
etry and is generally considered a versatile analytical 
platform which offers robustness, high chromato-
graphic resolution, high sensitivity, selectivity, and 
reproducibility. It can be used to separate and identify 
volatile and low molecular weight (ca. 50–600  Da) 
compounds. The GC unit of the instrument is used to 
separate the volatile components of a sample and MS 
identifies separated analytes based on their mass and 
fragmentation patterns. MS is a specific detector of 
GC using most commonly electron impact or chemi-
cal ionization methods. There is a relatively large vari-
ability in combining the GC and MS units; GC-MS 
instruments may combine one or two GC columns 
or one or three tandem mass analyzers depending on 
application fields. The two-dimensional GC is a novel 
technique, and its combination with MS is very power-
ful for analyzing volatile and semi-volatile compounds 
(Bhavyasri et  al., 2022; Lakshmi HimaBindu et  al., 
2013; Upadhyay et al., 2023). Valsecchi et al. recently 
applied the static headspace GC-MS for MeHg quan-
tification in freshwater mussel tissue using internal 
standard isotope dilution quantification, after micro-
wave acid digestion and aqueous phase  NaBEt4 ethyla-
tion. An excellent LOD of 0.0007 μg  g−1 was achieved 
(Valsecchi et al., 2021).

GC-ICP-MS combines GC, ICP, and MS into one 
integrated system and allows even lower LOD and 
LOQ for HM quantification than GC-MS. Cavalheiro 
et al. compared the performance of GC-MS and GC-
ICP-MS in the quantification of organomercury and 
organotin compounds in certified bivalve reference 
samples using isotope dilution. Both techniques were 
found to exhibit excellent precision and linearity, but 
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LOQs determined for GC-MS were higher than those 
of GC-ICP-MS by a factor of nine. Although the 
higher sensitivity favors GC-ICP-MS, this technique is 
more expensive than GC-MS considering instrumental, 
operational, and maintenance costs (Cavalheiro et  al., 
2014). Combining GC-ICP-MS with preconcentration 
further increases the methods sensitivity; a LOD of 
0.000072 μg  g−1 (72 ppt) for MeHg quantification was 
achieved by Taylor et al. using this technique (Taylor 
et al., 2008).

Other methods

Neutron activation analysis NAA is a nondestruc-
tive multielement analytical technique that is based 
on nuclear reactions and measurement of γ-rays emit-
ted from a sample that was irradiated by neutrons. The 
method can be applied to the quantification of over 
sixty elements in a wide range of matrices. The two 
main steps of NAA, namely activation of the sample 
in a source of neutrons (e.g., in a reactor) and the γ-ray 
spectrometry, can be separated (by transferring irradi-
ated samples from the reactor to another laboratory). 
This latter is used to identify and quantify the induced 
activity which is proportional to the concentration of 
elements in the irradiated sample. The activity is com-
pared to known standards irradiated and counted under 
the same conditions. The advantages of NAA are the 
simultaneous detection of multiple elements, very 
low LOD, and ability to analyze solid samples with-
out chemical pre-treatment. The major disadvantage is 
that it requires a radioactive source, the measurement 
for long-lived isotopes may take several weeks, and 
the limitation for certain elements (e.g., Pb cannot be 
determined by this method) (Bezuidenhout et al., 2015; 
Hamidatou, 2019; Minc, 2008; Parry, 2019). NAA is 
rarely used for HM detection in bivalves due to radio-
active source requirements (examples are provided in 
Table 2 and Tables 4–6).

Electrochemical sensors The quantification of HMs 
in bivalves’ soft tissue is not a routine task, and requires 
proper laboratories, specialists, and the investment for 
purchasing and running expensive analytical instru-
ments. If currently used instruments could be replaced 
by fast, selective, reliable, and cheap analytical tools, 

HM analysis could become a cost effective and rou-
tine task, at least for a certain group of HMs. Elec-
trochemical sensors and lab-on-chip electrochemical 
devices may fulfill these requirements. In addition, 
these tools have the potential to be miniaturized, which 
could open the door for field applications by manu-
facturing portable instruments. An electrochemical 
sensor is an analytical tool that converts a chemical 
signal into quantifiable signal that can be monitored. 
A typical sensor contains three key elements, namely 
a receptor that directly interacts with and recognizes 
the analyte, a transducer that translates the physical or 
chemical change induced by the receptor-target inter-
action into measurable current, and a signal-processing 
unit. In principle, the variability of sensor platforms is 
extremely large, and the aim of the sensor research is 
to find the right sensor platform which fits the analyti-
cal purpose (Karthik et al., 2022; Krebsz et al., 2017; 
Pasinszki et  al., 2017; Simões & Xavier, 2017; Tung 
et  al., 2017). The application of ES for HM determi-
nation in bivalves, however, is currently in its infancy, 
and only a very limited number of applications are 
published to date. The challenges are finding the right 
receptor and transducer which can recognize and selec-
tively quantify large number of HMs simultaneously. It 
is important to note in this respect that Locatelli et al. 
applied differential pulse anodic stripping voltamme-
try in 1999 to simultaneously determine the Cd, Cu, 
Pb and Zn concentration in clam, mussel, and oys-
ter samples (Locatelli, 2000; Locatelli et  al., 1999). 
Pizarro et al. developed in 2020 an inexpensive ES for 
the quantification of Cd and Pb in clams at the trace 
level by using square wave anodic stripping voltamme-
try. The sensor was based on a glassy carbon electrode 
modified with graphene quantum dots and Nafion and 
showed very good results when compared with certi-
fied samples and the ICP-OES method (Pizarro et al., 
2020). Under optimized conditions, the sensor exhib-
ited a linearity range of 20–200 μg  L−1 with a LOD of 
11.30 μg   L−1 for Cd and 8.49 μg   L−1 for Pb, respec-
tively. Skriba et  al. developed in 2023 a rapid and 
inexpensive electrochemical sensor for the simultane-
ous quantification of Cd, Cu, Pb, and Zn in mussel tis-
sue based on anodic stripping voltammetry and using 
thick film modified graphite electrodes (Skiba et  al., 
2023). The sensor exhibited a LOD of 0.0005 and 
0.0040 μg  g−1 for Cd and Pb, respectively.
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Comparison of the performance of instrumental techniques

There is no doubt that the most widely used meth-
ods in the quantification of HMs in clams, mus-
sels, and oysters are AAS, ICP-OES and ICP-MS 
(see Tables 4–6) (Donati et al., 2017; Hill & Fisher, 
2017a, b; Wilschefski & Baxter, 2019). These meth-
ods are sensitive, although the detection sensitiv-
ity differs considerably according to the metal. As 
a rule of thumb, ICP-MS can detect HMs at the ppt 
and ICP-OES at the ppb levels. The sensitivity of 
AAS using electrothermal or cold vapor/hydride gen-
eration techniques is between those of ICP-OES and 
ICP-MS. LOD is higher for flame atomization AAS 
than that of ICP-OES (Wilschefski & Baxter, 2019). 
It is important to note that the performance of these 
instruments strongly depends on operating conditions. 
Although AAS methods, using cold vapor technique 
(typically for Hg), hydride generation method (e.g., 
for As and Se), flame or electrothermal atomization, 
are sensitive, the major disadvantage of AAS is that 
AAS only allows single-element determination at a 
specific wavelength, thus providing slow analytical 
performance if several elements are to be quantified. 
ICP-OES and ICP-MS, on the other hand, can simul-
taneously determine multiple elements. It may be 
considered by selecting the method that the running 
costs of ICP-OES/MS are higher than that of AAS. 
If only one element is the target of the analysis, the 
application of AAS is advantageous, as the through-
put for one element is faster than that of ICP-OES/
MS. Similarly, problematic elements for ICP methods 
can be determined by AAS. Mercury is well-known to 
cause memory effects for ICP methods, and in severe 
cases may prevent the quantification (Pasinszki et al., 
2020). Memory effects may be overcome by using 
strongly oxidizing solutions, or by adding Au to the 
sample at its final dilution stage before the analysis 
to obtain a gold-mercury amalgam. Ferraris et  al. 
reported recently that the optimized concentration of 
Au additive (100  μg   L−1) prevented mercury losses 
and memory effects (Ferraris et  al., 2021). None-
theless, it is important to note that several research 
groups are still using AAS for Hg determination and 
ICP-OES/MS for the simultaneous determination of 
all other HM elements (see Tables  4–6). ICP-MS is 
clearly the most sensitive technique and provides the 

isotope distribution of elements. The major drawback 
is the cost of the instrument (roughly two times higher 
than that of ICP-OES, which latter is more expensive 
than AAS instruments), high degree of maintenance 
requirement, and high level of staff expertise. ICP-
OES is more robust than ICP-MS, tolerate higher 
level of total dissolved solids or suspended solids, and 
as a simpler method, relative maintenance and opera-
tor skill requirements are lower. If the analyte concen-
tration is above about 10 ppb and the measurement of 
elemental isotope ratios, quantification of lanthanide 
and actinide elements, and speciation capability are 
not required, which are best addressed by ICP-MS, 
ICP-OES is the best option to use in routine analysis. 
A comparison of major advantages and disadvantages 
of instrumental techniques that have been used to date 
for HM quantification in clams, mussels and oysters 
is shown in Table 3.

Quality assurance and control

Quality and reliability of the final analytical results 
is of key importance for the credibility of measured 
HM contamination data; therefore, laboratories are 
required to use validated analytical protocols and 
methods for HM quantification (Lakshmi HimaBindu 
et al., 2013; Taverniers et al., 2004; Taverniers et al., 
2010). Several protocols have been published in the 
literature for HM quantification to date based on in-
house validation (see Tables 4–6) and/or using stand-
ardized methods approved by regulatory bodies (for 
example the U.S. Environmental Protection Agency 
or the Association of Official Analytical Chemists). 
If the laboratory is using a previously fully validated 
international protocol, extensive validation studies are 
not required, and the laboratory must verify only that 
it can reproduce the same performance characteristics 
as outlined in the validated protocol. In general, in-
house validation involves in this case the determina-
tion of performance characteristics such as accuracy 
(precision and bias), LOQ, LOD, sensitivity, speci-
ficity, reproducibility, stability, linearity of the opera-
tional range, and recovery of analytes, as well as the 
applicability of the method for the sample matrix. 
Certified reference materials (CRMs) from scientific 
bodies and certified standard solutions (CSSs) of 
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elements, both single and multi-element, from chemi-
cal suppliers are available on the market to assist in-
house validation. CSSs are also used as internal stand-
ards and matrix spikes. Measuring both matrix spike 
and laboratory control samples is important for quality 
assurance as the former demonstrate the applicability 
of the overall analytical method to the specific sample 
matrix and the latter prove that the analytical system is 
performing well in a matrix free of interferences from 
the sample. The determination of both performance 
characteristics and HM concentration in biota samples 
require sample replicates or split samples for reliable 
statistical data analysis. In practice, three replicates 
are typically used, but the number of replicates must 
be higher for samples which have high natural vari-
ability of the analyte. Instrument performance must 

be verified over the course of the instrumental run by 
including quality control standards in the sample anal-
ysis sequence, for example one after twenty samples 
(5% frequency). Sample set for example for ICP-MS 
and ICP-OES typically consists of reagent blank, neg-
ative control, positive control(s) and samples, as well 
as one quality control sample/twenty samples.

Conclusions

Heavy-metal pollution of the aquatic environment is a 
global problem, which creates environmental hazard 
and therefore requires continuous monitoring. Filter-
feeder bivalves such as clams, mussels and oysters 
have a natural tendency to accumulate heavy-metals 

Table 3  Comparison of instrumental techniques used for HM quantification in clams, mussels, and oysters

Method Advantage Disadvantage

ICP-OES Multiple element determination
More robust than ICP-MS
Large analytical range
High sample throughput

Less sensitive than ICP-MS (ppb)
High level of staff expertise

ICP-MS Multiple element determination
Isotope distribution of elements
Sensitive (low LOD, ppt)
Large analytical range
High sample throughput

Vulnerable instrument
Expensive
High maintenance requirement
High level of staff expertise

AAS Cost effective
Relatively simple operation
Low LOD for graphite furnace and cold vapor/hydride 

generation AAS
Relatively interference free

Single element determination
Low sample throughput
Limited analytical range
High LOD for flame AAS

AFS Sensitive (low LOD) if combined with laser source
Equipment cost of flame AFS

Single element determination
Limited analytical range
Expensive with laser sources
High LOD for flame AFS

HPLC Multiple element determination
Can be coupled with ICP-MS

HMs must be converted into mobile phase soluble metal 
complexes

GC Can be coupled with ICP-MS Only for volatile or derivatized volatile compounds of HMs
NAA Multiple element determination

Nondestructive
Chemical pre-treatment of samples is not necessary

Requires a radioactive source
Very long measurement time
Limitation for certain elements

EDXRF Multiple element determination
Nondestructive
Chemical pre-treatment of samples is not necessary

Limited by its LOD > 1 ppm

ES Cheap tool
Large variability of potential electrochemical methods and 

sensor platforms

Limited for multiple element determination
Field for HM quantification in bivalves is not developed yet
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in their soft tissue. This accumulation creates health 
risk for humans as HMs can be transferred via the 
food chain. HM accumulation in bivalves results in 
multi-HM-element profiles, reflecting their habi-
tat conditions, and can be used to monitor pollu-
tion in the environment where they reside. There is 
therefore a high demand, for both food security and 
environmental monitoring, to test bivalves for HMs. 
The determination of HMs in bivalves is, however, 
challenging because of their trace levels and com-
plex sample matrices. Several methods, including 
the digestion of the soft tissue and measuring the 
HM concentration in the digest, have been devel-
oped to date to screen for the presence of HMs in 
bivalves. Although these methods are sensitive and 
able to detect low concentrations of HMs in bivalves’ 
soft tissue (from the ppm down to ppt level), they 
are labour-intensive, time-consuming, and require 
laboratory facilities with well-trained technicians. 
Depending on the method, the HM quantification 
may take several days, including one to three days for 
preparing the tissue extract and additional half to two 
days for instrumental determination of HMs’ concen-
tration in the extract depending on the instrumental 
technique and analyte numbers. There is therefore a 
high demand to reduce analysis time and to increase 
sensitivity of the method.

Determination of total HMs and metal organic 
species in tissue are performed in two separate 
analysis as total HM determination allows the com-
plete dissolution of the sample matrix, whereas 
metal speciation requires mild conditions for not 
to break the metal-ligand bond. Previous studies, 
namely 96% of publications (Tables  4–6), have 
mainly focused on total metal content, and little 
was concerned on the metal-organic species, which 
latter may be more important for understanding the 
toxicity and metabolic characteristics of HMs than 
the total HM concentration. For total HM determi-
nation, the acid digestion is currently the method 
of choice and provides good recoveries for HMs. 
Microwave digestion is gradually replacing the 
conventional lengthy hot-plate digestion proce-
dures because it substantially shortens the diges-
tion time, prevents contamination as it is performed 
in a closed vessel, and reduces analyte loss due to 

volatilization. Bivalves contain large amounts of 
water, therefore, drying the tissue is required to 
reach low LOD. Drying, however, is time consum-
ing. Improving instrumental detection limit and/or 
applying preconcentration could help in leaving out 
the drying step and speeding up the process. Pre-
concentration, however, is still not routinely applied 
in laboratories for HM quantification in clams, mus-
sels, and oysters and might be a promising future 
direction. Similarly, if a relatively higher LOD is 
acceptable, due to relatively high concentration of 
HMs in tissue, the drying step may become unnec-
essary. Measuring HMs simultaneously provides a 
drastic reduction in analysis time, therefore instru-
ments able to perform simultaneous multielement 
analysis, namely ICP-OES and ICP-MS, are becom-
ing more and more popular. New development in 
this field, such as ICP-OES/MS with reduced argon 
consumption, contributes to decreasing instrument 
running costs. It is worth to note that if the num-
ber of target analytes is limited, AAS is expected 
to continue wide scale application in this field as it 
is highly sensitive and instrumental costs are lower 
than those of ICP-OES and ICP-MS. The develop-
ment of multielement AAS would certainly boost 
the application of this technique. AFS utilizing laser 
sources is an emerging technique due to its superior 
sensitivity. Recent developments and application of 
coupled techniques such as HPLC-ICP-MS, GC-
ICP-MS and GC-MS are pointing toward increasing 
interest in speciation of HMs in soft tissue. Consid-
ering cost-effectiveness, sensitivity, and analysis 
time, electrochemical sensors and the lab-on-chip 
concept are very attractive. It is expected that gaps 
in these technologies, such as simultaneous detec-
tion of large number of analytes, can be filled in the 
future. Research in this field is expected to move 
toward shorter multielement analysis, replacing the 
corrosive and toxic acids in digestion, and reduced 
instrumental running costs, as well as speciation of 
metal compounds in soft tissue. It is also reasonable 
to expect that manual sample preparation methods 
will be replaced by automatic systems, as well as 
the coupling of these systems with analytical instru-
ments to improve reproducibility, decrease analysis 
time, and reduce labor.
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Table 5  Determination of heavy metal (HM) content of mussel’s soft tissue

Mussel1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

Mytella guyanensis Freeze-dried; ultrasound 
(15 min) + centrifugation 
(30 min), dilute HCl, 
 HNO3 and  CH3COOH, 
25–30 °C

ICP-OES4 Cd, Cu, Mn, Zn
(Ca, K, Mg, Na, Sr)

(dos Santos et al., 2010)

Mytella guyanensis Freeze-dried; microwave, 
cc  HNO3, cc  H2SO4, cc 
 H2O2, 30 min, 90–220 °C

ICP-OES As, Cd, Pb, Zn (Se) (Costa et al., 2009)

Mytella guyanensis Freeze-dried; microwave, 
cc  HNO3 + cc  H2O2

ICP-OES As, Cd, Co, Cr, Cu, Fe, 
Mn, Ni, Pb, Zn (Ba)

(Santos & Boehs, 2021)

Mytilus galloprovincialis Drying at 70 °C, 24 h; 
mineralization at 450 °C 
for 48 h; dissolved in aq. 
 HNO3

ICP-OES Cd, Co, Cr, Cu, Fe, Mn, 
Mo, Ni, Pb, V, Zn (Al, 
B, Ba, Ca, K, Li, Mg, 
Na, Sr)

(Lozano-Bilbao et al., 2018)

Mytilus galloprovincialis
Mytilus edulis

Microwave, cc  HNO3 + cc 
 H2O2, 200 °C, 50 min

ICP-OES As, Cd, Hg, Pb (Lehel et al., 2018)

Mytilus galloprovincialis Freeze-dried for 48 h; 
 HNO3 at 70 °C, ashing 
at 450 °C for 24 h, 
 HNO3 + HCl at 80 °C

ICP-OES Cu, Cr, Mn, Ni, Zn (Peake et al., 2006)

Mytilus galloprovincialis Freeze-dried for 48 h; cc 
 HNO3 + cc  H2O2

ICP-OES Cr, Cd, Hg, Pb (Se) (Santos et al., 2014)

Mytilus edulis Dried at 60–80 °C; 
microwave, cc HCl + cc 
 HNO3, 30 min

ICP-OES Cd, Cu, Pb, Zn (Bray et al., 2015)

Perna perna
Choromytilus meridionalis

Air dried; microwave, 
cc  HNO3 + cc  H2O2, 
200 °C, 70 min

ICP-OES Cd, Co, Cr, Cu, Fe, Mn, 
Ni, Pb, Zn (Al)

(Dahms et al., 2014)

Anodonta grandis Microwave, cc  HNO3 ICP-OES Cd, Cu, Zn (Couillard et al., 1993)
n.a. cc  HNO3 overnight, then 

boiling
ICP-OES Cd, Cr, Cu, Ni, Pb, Zn (Grant & Ellis, 1988)

Brachidontes pharaonis Microwave,  HNO3 ICP-OES Cd, Cu, Pb, Zn (Telahigue et al., 2022)
Perna viridis Microwave, cc  HNO3 + cc 

 HClO4, 200 °C, 40 min
ICP-OES5 Co, Cu, Fe, Mn, Ni, Pb, Zn (Chinnadurai et al., 2022)

Perna perna Dried at 60 °C; cc  HNO3 ICP-OES Cd, Cr, Cu, Fe, Mn, Ni, 
Pb, Zn

(Ferreira et al., 2004)

Perna perna Dried at 60 °C; n.a. ICP-MS6 As, Cd, Cr, Cu, Fe, Ni, 
Pb, Zn

(de Souza et al., 2021)

Perna viridis Dried at 60 °C; cc  HNO3, 
100 °C, 8 h

ICP-MS Cd, Cu, Pb, Zn (Sheng et al., 2021)

Perna viridis Dried at 105 °C for 
24 h; cc  HNO3 at r.t., 
cc  HNO3 + cc  H2O2 at 
180 °C

ICP-MS7 As, Cd, Cr, Cu, Pb, Zn (Liu et al., 2022)

Perna canaliculus Dried overnight at 60 °C; 
microwave, cc  HNO3 + cc 
 H2O2, 180 °C, 70 min

ICP-MS As, Cd, Co, Cr, Cu, Fe, 
Hg, Ni, Pb, Zn

(McDougall et al., 2020)
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Table 5  (continued)

Mussel1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

Species n.a. Freeze-drying; microwave, 
cc  H2O2 + cc  HNO3, 
70–180 °C, 1 h; SPE 
using MGO@SiO2-
APTES-IL

ICP-MS8 Cd, Cu, Pb (Dong et al., 2021)

Mytilus galloprovincialis
Mytilus edulis
Modiolus barbatus

Microwave, cc  HNO3 + cc 
 H2O2 + cc HF

ICP-MS9 Cd, Hg, Pb (Barchiesi et al., 2020)

Mytilus edulis Freeze-dried; cc  HNO3 
overnight at r.t., + cc 
 H2O2, microwave for 
1.5 h

ICP-MS10 As, Cd, Cr, Cu, Ni, Pb, Zn (Chen et al., 2022)

Mytilus galloprovincialis Microwave, cc  HNO3 + cc 
 H2O2, 120–190 °C, 
60 min

ICP-MS11 Cd, Hg, Pb (Miedico et al., 2015)

Mytilus galloprovincialis Microwave, cc  HNO3 + cc 
 H2O2,

ICP-MS12 Cd, Pb (Pastorelli et al., 2012)

Mytilus galloprovincialis Dried at 120 °C for 24 h; 
cc  HNO3 at 90 °C for 2 h 
and at 130 °C for other 
4 h

ICP-MS Pb (Maanan, 2008)

Mytilus galloprovincialis Wet sample, cc  HNO3 + cc 
HCl

ICP-MS As, Cd, Co, Cr, Cu, Fe, 
Hg, Mn, Mo, Ni, Pb, Sn, 
Zn (Al, Ba, Se)

(Bezuidenhout et al., 2015)

Anodonta woodiana Freeze-dried; microwave, 
cc  HNO3 + cc  H2O2, 
120–190 °C, 1 h

ICP-MS Cr, Mn, Fe, Co, Ni, Cu, 
Zn, As, Cd, Pb

(Jia et al., 2018)

Mytilus galloprovincialis cc  HNO3 at r.t. for 8 h + at 
85 °C for 8 h

ICP-MS13 As, Cd, Hg, Pb (Falco et al., 2006)

Mytilaster lineatus Microwave, cc  HNO3 ICP-MS Cd, Cu, Hg, Pb, Zn (Bat et al., 2019)
Mytilus edulis Freeze-drying; hot cc 

 HNO3, cc  HNO3 + cc 
 H2O2; anion exchange 
chromatography

ICP-MS Cd, Pb, Zn (Shiel et al., 2012)

Mytilus edulis Microwave, cc  HNO3 + cc 
 H2O2, 240 °C, 33 min

ICP-MS As, Cd, Cu, Fe, Hg, Ni, 
Pb, Zn (Ca, I, Se)

(Ferraris et al., 2021)

Mytilus edulis Microwave, cc  HNO3 at 
195 °C for 20 min

ICP-MS14 As, Cd, Cr, Hg, Ni, Pb (Pan & Han, 2023)

n.a. Freeze-dried; microwave, 
4 M  HNO3, 55 °C 
overnight; microwave, cc 
 HNO3, 150 °C, 30 min

ICP-MS Zn, As, Se, Cd, Hg, Pb (Taylor et al., 2008)

Dreissena polymorpha Freeze-dried for 24 h; 
microwave, cc  HNO3, 
17 min

AAS Cd, Co, Cr, Cu, Hg, Ni, 
Pb, Zn

(Camusso et al., 2001)

Perna perna Wet sample; cc  H2SO4 + cc 
 H2O2 (1:4) at ca. 100 °C 
for 40–60 min

AAS Cd, Cr, Cu, Pb, Zn (Avelar et al., 2000)

Perna perna Dried; cc  HNO3 at 
70–90 °C, +  H2O2 at 
135 °C

AAS Cd, Cu, Fe, Mn, Hg, Zn (Otchere, 2022)
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Table 5  (continued)

Mussel1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

Perna viridis Freeze-dried for 72 h; cc 
 HNO3 +  H2O2, heating

AAS Cd, Cr, Cu, Pb, Zn (Meng et al., 2014)

Perna viridis Drying at 70–80 °C; cc. 
 HNO3, overnight at r.t., 
reflux at 130 °C, 6 h

AAS Cd, Cr, Cu, Fe, Pb, Ni, Zn (de Astudillol et al., 2005)

Perna viridis cc.  HNO3, overnight at r.t., 
reflux at 130 °C, 3 h; 
 H2SO4, HCl, reflux, 3 h; 
 KMnO4

AAS Hg (de Astudillol et al., 2005)

n.a. aq.  K2Cr2O7 + cc  H2SO4, 
180 °C for 60 min;  H2O 
added, boiling for 30 min

AAS Hg (Locatelli et al., 1999)

Mytilus galloprovincialis Drying at 45 °C for 24 h; 
aq.  K2Cr2O7 + cc  H2SO4, 
180 °C for 60 min;  H2O 
added, boiling for 30 min

AAS Hg (Locatelli, 2000)

Mytilus galloprovincialis Microwave, cc  HNO3 + cc 
 H2O2

AAS15 Hg (Pastorelli et al., 2012)

Mytella strigata
Megalana bilineata
Perna perna

Sun-dried;  HNO3 
(35%) +  HClO4 
(70%) +  H2SO4 (98%), 
heated at 60 °C

AAS Cd, Cr, Cu, Pb, Zn (Anagha et al., 2022)

Mytilus edulis Drying at 85 °C; hot cc 
 HNO3

AAS Cd, Cu, Zn (Amiard-Triquet et al., 1998)

Mytilus edulis Freeze-dried; cc  HNO3 AAS Cr, Fe, Mn (Hursthouse et al., 2003)
Elliptio complanata Dried at 105 °C; cc 

 HNO3 overnight at r.t.; 
evaporated; cc  H2O2 at 
85 °C for 6 h

AAS Cu, Fe, Mn, Pb, Zn (Tessier et al., 1984)

n.a. cc  HNO3 overnight, then 
boiling

AAS Cd, Cr, Cu, Ni, Pb, Zn (Grant & Ellis, 1988)

Perna viridis Freeze-dried; microwave, 
cc  HNO3

AAS Cd, Cu, Pb (Yusof et al., 1994)

Mytilus galloprovincialis Freeze-dried for 18 h; 
microwave, aq.  H3PO4/
KH2PO4 buffer, SDS, 
Triton X-100 surfactant

AAS16 Cd, Co, Cr, Ni, Pb (Hernandez-Martinez et al., 
2016)

Mytilus galloprovincialis Dried at 120 °C for 24 h; 
cc  HNO3 at 90 °C for 2 h 
and at 130 °C for other 
4 h

AAS Cd, Cr, Cu, Mn, Zn, Ni (Maanan, 2008)

Mytilus galloprovincialis Dried at 120 °C for 24 h; 
cc  HNO3 at 90 °C for 2 h 
and at 130 °C for other 
4 h

AFS Hg (Maanan, 2008)

Perna viridis Dried at 105 °C; cc 
 HNO3 + cc  HClO4

AFS17 Hg (Liu et al., 2022)

Mytilus edulis 2-mercaptoethanol, 
L-cysteine, aq. HCl, 
ultrasonicated at 40 °C 
for 30 min

HPLC-ICP-MS MeHg (Ferraris et al., 2021)
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Table 5  (continued)

Mussel1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

Mytilus edulis Diluted aq.  HNO3 +  H2O2, 
standing overnight; 
heating at 95 °C for 1 h

HPLC-ICP-MS H3AsO3/H3AsO4 (Ferraris et al., 2021)

Mytilus edulis Microwave, 1 M HCl, 
70 °C, 3 min; ethylation

GC-MS MeHg (Valsecchi et al., 2021)

n.a. Freeze-dried; microwave, 
4 M  HNO3, 55 °C 
overnight; purge and trap 
preconcentration

GC-ICP-MS MeHg (Taylor et al., 2008)

Perna viridis Freeze-dried; microwave, 
cc  HNO3; buffered, 
eluted on a Chelex-100 
resin

NNA As, Co, Cr, Hg, Sb, Zn (Yusof et al., 1994)

Anodonta anatine
Anodonta marginate
Anodonta implicata

Dried at 60 °C for 36 h; cc 
 HNO3 + cc  HClO4

NAA As, Cr, Co, Fe, Lu, Mn, 
La, Sb, Sm, Th, Zn, U

(Ba, K, Na, Rb, Sc, Y)

(Katsallah et al., 2013)

Mytilus galloprovincialis Dried at 40 °C; no 
chemical pretreatment

NAA As, Ag, Co, Cr, Fe, Mn, 
Mo, Sb, Th, U, V, Zn

(Ba, Br, Ca, Cl, Cs, I, Na, 
Mg, K, Rb, Se, Sr)

(Bezuidenhout et al., 2015)

Mytilus galloprovincialis Freeze-dried for 48 h; 
pressed into pellet, no 
chemical pretreatment

EDXRF As, Fe, Cu, Zn,
(K, Ca, Sr)

(Santos et al., 2014)

n.a. cc  HNO3 + cc  H2SO4, 
150 °C for 4 h

ES Cu, Cd, Pb, Zn (Locatelli et al., 1999)

Mytilus galloprovincialis Dried at 45 °C for 24 h; 
cc  HNO3 + cc  H2SO4, 
140 °C for 3 h

ES Cu, Cd, Pb, Zn (Locatelli, 2000)

1  n.a. = not available; 2 non-heavy-metals are in parenthesis; 3 LOD in μg  g−1 (ppm): 4 0.012–2.62 μg  g−1; 5 0.00033–0.01518 μg  g−1; 
6 0.0038–0.0461 μg   g−1; 7 0.03–1.66 μg   g−1; 8 0.00242–0.00375 μg   L−1; 9 0.0015–0.0076 μg   g−1; 10 0.01–3.67 μg   g−1; 11 0.001–
0.004 μg  g−1; 12 0.02–0.05 μg  g−1; 13 0.02–0.05 μg  g−1; 14 0.0003–0.005 μg  g−1; 15 0.5 μg  g−1; 16 0.02–0.05 μg  g−1, 17 0.002 μg  g−1
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Table 6  Determination of heavy metal (HM) content of oyster’s soft tissue

Oyster1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

Crassostrea angulata Freeze-dried; 65%  HNO3, 
200 °C

ICP-OES Cu, Zn, Pb, Cd, As (Chen et al., 2014)

Crassostrea virginica Freeze-dried;  HNO3,  HClO4, 
 H2SO4; wet sample with 
hot acid

ICP-OES As, Cd, Cr, Cu, Fe, Hg, Mn, 
Mo, Ni, Pb, Zn

(Sajwan et al., 2008)

Crassostrea virginica Drying at 115 °C, 24 h; 
microwave, cc  HNO3, 7 min

ICP-OES Cd, Cr, Cu, Fe, Pb, Zn (Siva et al., 2010)

Crassostrea belcheri Drying at 60 °C, 72 h; 
microwave, cc  HNO3 + cc 
 H2O2, 21 min

ICP-OES Cd, Hg, Pb (Intawongse et al., 2012)

Crassostrea gasar
Crassostrea rhizophorae

Freeze-dried; microwave, cc 
 HNO3 + cc  H2O2

ICP-OES As, Cd, Co, Cr, Cu, Fe, Mn, 
Ni, Pb, Zn (Ba)

(Santos & Boehs, 2021)

Crassostrea rhizophorae Drying at 80 °C; cc  HNO3, 
100 °C

ICP-OES Cd, Cr, Cu, Pb, Ni, Zn (Senez-Mello et al., 2020)

Crassostrea rhizophora Freeze-dried; ultrasound 
(15 min) + centrifugation 
(30 min), dilute HCl,  HNO3 
and  CH3COOH, 25–30 °C

ICP-OES4 Cd, Cu, Mn, Zn
(Ca, K, Mg, Na, Sr)

(dos Santos et al., 2010)

Crassostrea rhizophora Freeze-dried; microwave, 
cc  HNO3 + cc  H2O2, 
90–180 °C, 30 min

ICP-OES Cd, Cu, Mn, Zn
(Ca, K, Mg, Na, Sr)

(dos Santos et al., 2010)

Crassostrea rhizophora Freeze-dried; microwave, cc 
 HNO3, cc  H2SO4, cc  H2O2, 
30 min, 90–220 °C

ICP-OES As, Cd, Pb, Zn (Se) (Costa et al., 2009)

Crassostrea gigas Dried at 60–80 °C; 
microwave, cc HCl + cc 
 HNO3, 30 min

ICP-OES Cd, Cu, Pb, Zn (Bray et al., 2015)

Crassostrea gigas Drying at 80 °C; cc  HNO3, 
150 °C, 10 h

ICP-OES Cd (Zheng et al., 2021)

Crassostrea gigas Freeze-dried; cc  HNO3, reflux 
for 1 h, + cc  HClO4, reflux, 
0.5 h or +  H2SO4, reflux, 1 h

ICP-OES As, Cd, Cr, Cu, Ni, Pb, Zn (Lin et al., 2004)

Ostrea equestris Drying at 60 °C; cc  HNO3 ICP-OES Cd, Cr, Cu, Fe, Mn, Ni, Pb, 
Zn

(Ferreira et al., 2005)

Saccostrea cucullata Dried at 50 °C; cc  HNO3 + cc 
 HClO4

ICP-OES Cd, Cr, Cu, Pb, Zn (Mtanga & Machiwa, 2007)

Crassostrea gigas
Crassostrea angulata

Microwave, cc  HNO3 + cc 
 H2O2, 200 °C, 50 min

ICP-OES As, Cd, Hg, Pb (Lehel et al., 2018)

Crassostrea rhizophorae Dried at 60 °C for 48 h; 
microwave, cc  HNO3 + cc 
 H2O2

ICP-OES5 Cd, Cu, Zn (Wanick et al., 2012)

n.a. cc  HNO3 overnight, then 
boiling

ICP-OES Cd, Cr, Cu, Ni, Pb, Zn (Grant & Ellis, 1988)

Crassostrea madrasessis Microwave, cc  HNO3 + cc 
 HClO4, 200 °C, 40 min

ICP-OES6 Co, Cu, Fe, Mn, Ni, Pb, Zn (Chinnadurai et al., 2022)

n.a. Dilute  HNO3, MIC, 20 min; 
CPE, DDPP + Triton X-114

ICP-OES7 As, Bi, Cd, Pb (dos Santos Depoi et al., 2012)

n.a. Freeze-dried; Microwave, 
cc  HNO3 + cc  H2O2, 
100–140 °C, 50 min

ICP-OES8 As, Cd, Co, Cr, Cu, Hg, Fe, 
Mn, Mo, Ni, Pb, Zn

(Al, Mg, Se, Sr)

(Zheng & Yan, 2011)

n.a. Microwave, cc  HNO3, 
125–155 °C, 1 h

ICP-OES9

ICP-MS10
As. Cd, Pb (Sheppard et al., 1994)
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Table 6  (continued)

Oyster1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

n.a. Freeze-dried; microwave, 
cc  H2O2 + cc  HNO3, 
70–180 °C, 1 h; SPE using 
MGO@SiO2-APTES-IL

ICP-MS11 Cd, Cu, Pb (Dong et al., 2021)

n.a. Freeze-dried; cc  HNO3 for 
6 h, + cc  H2O2, microwave, 
180 °C, 30 min

ICP-MS12 As, Cd, Cr, Cu, Hg,
Pb, Ni, Zn

(Liao et al., 2020)

n.a. Dried; Microwave, cc 
 HNO3 + cc  H2O2 + aq. HF, 
180 °C, 20 min

ICP-MS Cu, Zn, As, Cr, Cd, Pb (Zhang et al., 2022)

Crassostrea gigas Dried at 120 °C for 24 h; cc 
 HNO3 at 90 °C for 2 h and 
at 130 °C for other 4 h

ICP-MS Pb (Maanan, 2008)

Crassostrea gigas Freeze-dried; microwave, cc 
 HNO3, 120–180 °C, 85 min

ICP-MS As, Cd, Cr, Cu, Ni, Pb, Zn (Liu, Lv, et al., 2022)

Crassostrea gigas Microwave, cc  HNO3 at 
195 °C for 20 min

ICP-MS13 As, Cd, Cr, Hg, Ni, Pb (Pan & Han, 2023)

Crassostrea gigas
Crassostrea virginica
Ostrea sandvicensis

Freeze-dried; hot cc  HNO3, 
cc  HNO3 + cc  H2O2; anion 
exchange chromatography

ICP-MS Cd, Pb, Zn (Shiel et al., 2012)

Crassostrea virginica Microwave, cc  HNO3 ICP-MS Cd, Pb (Matos et al., 2021)
Ostrea edulis Microwave, cc  HNO3 + cc 

 H2O2, 120–190 °C, 1 h
ICP-MS14 Cd, Hg, Pb (Miedico et al., 2015)

Saccostrea glomerata Microwave, cc  HNO3 + cc 
 H2O2, 46 min

ICP-MS As, Cd, Hg, Pb Dang et al., 2022

Saccostrea cucullata Freeze-drying for 24 h; 
microwave, cc  H2SO4 + cc 
 HNO3 + cc  H2O2, 90 °C, 
30 min

ICP-MS As, Cd, Co, Cr, Cu, Fe, Mo, 
Mn, Ni, Pb, Sb, Zn (Al)

(Jahromi et al., 2021)

n.a. Freeze-dried; microwave, 4 M 
 HNO3, 55 °C overnight; 
microwave, cc  HNO3, 
150 °C, 30 min

ICP-MS Zn, As, Cd, Hg, Pb (Se) (Taylor et al., 2008)

n.a. Freeze-dried; cc  HNO3 
overnight at r.t., + cc  H2O2, 
microwave for 1.5 h

ICP-MS15 As, Cd, Cr, Cu, Ni, Pb, Zn (Chen et al., 2022)

Ostrea edulis
Crassostrea gigas
Crassostrea angulata

Microwave, cc  HNO3 + cc 
 H2O2 + cc HF

ICP-MS16 Cd, Hg, Pb (Barchiesi et al., 2020)

Ostrea rivularis Gould Dried at 105 °C for 24 h; cc 
 HNO3 at r.t., cc  HNO3 + cc 
 H2O2 at 180 °C

ICP-MS17 As, Cd, Cr, Cu, Pb, Zn (Liu et al., 2022)

Crassostrea rhizophorae Dried at 60 °C; n.a. ICP-MS18 As, Cd, Cr, Cu, Fe, Ni, Pb, Zn (de Souza et al., 2021)
Crassostrea iridescens Dried at 70–80 °C; cc.  HNO3 AAS Cd, Cr, Cu, Fe, Mn, Ni, Pb, 

Zn
(Soto-Jimenez et al., 2001)

Crassostrea rhizophorae
Crassostrea virginica

Dried at 70–80 °C; cc.  HNO3, 
overnight at r.t., reflux at 
130 °C, 6 h

AAS Cd, Cr, Cu, Fe, Pb, Ni, Zn (de Astudillol et al., 2005)

Crassostrea rhizophorae
Crassostrea virginica

cc.  HNO3, overnight at r.t., 
reflux at 130 °C, 3 h; 
 H2SO4, HCl, reflux, 3 h; 
 KMnO4

AAS Hg (de Astudillol et al., 2005)

Crassostrea rhizophorae Dried at 60 °C; cc.  HNO3, 
100 °C

AAS Ag, Cd, Cr, Cu, Fe, Mn, Ni, 
Pb, Zn

(Silva et al., 2001)
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Table 6  (continued)

Oyster1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

Crassostrea rhizophorae Freeze-drying for 48 h; 
 HNO3 +  H2O2 at room 
temp.; microwave, 10 min, 
180 °C

AAS Hg (Araujo et al., 2019)

n.a. aq.  K2Cr2O7 + cc  H2SO4, 
180 °C for 60 min;  H2O 
added, boiling for 30 min

AAS Hg (Locatelli et al., 1999)

n.a. Drying at 45 °C for 24 h; 
aq.  K2Cr2O7 + cc  H2SO4, 
180 °C for 60 min;  H2O 
added, boiling for 30 min

AAS Hg (Locatelli, 2000)

Crassostrea iredalei cc.  HNO3, overnight at r.t., 
reflux at 130 °C, 3 h; cc 
 H2SO4, cc HCl, reflux, 3 h; 
 KMnO4

AAS Hg (Pakingking et al., 2022)

Crassostrea iredalei Dried at 105 °C for 72 h; cc 
 HNO3 + cc HCl at 40 °C 
for 1 h and at 140 °C for 
other 3 h

AAS Cd, Cr, Cu, Pb, Zn (Pakingking et al., 2022)

Crassostrea tulipa Dried; cc  HNO3 at 70–90 °C, 
+  H2O2 at 135 °C

AAS Cd, Cu, Fe, Mn, Hg, Zn (Otchere, 2022)

n.a. cc  HNO3 overnight, then 
boiling

AAS Cd, Cr, Cu, Ni, Pb, Zn (Grant & Ellis, 1988)

Saccostrea cucullata Dried at 105 °C; hot cc 
 HNO3 +  HClO4

AAS Cd, Cu, Pb, Zn (Shirneshan et al., 2013)

Saccostrea cucullata Freeze-dried; aqua regia at 
90 °C

AAS Hg (Jahromi et al., 2021)

Saccostrea cucullata cc  HNO3 + cc 
 H2SO4 +  HClO4, 170 °C, 
30 min

AAS Hg (Mtanga & Machiwa, 2007)

n.a. Freeze-dried;  HNO3 +  HClO4; 
Silk Fibroin-Fe3O4-EDTA 
nano-adsorbent

AAS Ni (Benvidi et al., 2020)

n.a. Freeze-dried at −40 °C, 
11 h; cc  HNO3 +  HClO4; 
GO-Fe3O4-humic acid

AAS19 Pb (Yekrangi et al., 2021)

Crassostrea rivularis Dried in oven for 72 h; ashed 
around 450 °C; digested in 
cc  HNO3 + cc  H2O2

AAS As, Cd, Cu, Hg, Pb, Zn (Wang et al., 2022)

Crassostrea madrasensis Dried at 60 °C; soaking in cc 
 HNO3 overnight, heating 
at 80 °C

AAS Pb (Shenai-Tirodkar et al., 2017)

Crassostrea gigas Freeze-dried; cc  HNO3 at 
80 °C

AAS Hg (Lin et al., 2004)

Crassostrea gigas Dried at 120 °C for 24 h; cc 
 HNO3 at 90 °C for 2 h and 
at 130 °C for other 4 h

AAS Cd, Cr, Cu, Mn, Zn, Ni (Maanan, 2008)

Crassostrea gigas Dried at 85 °C; hot cc  HNO3 AAS Cd, Cu, Zn (Amiard-Triquet et al., 1998)
Crassostrea gigas Wet sample; cc  HNO3 + cc 

 H2O2, microwave for 46 min
AAS20 As, Cd, Cu, Hg, Se, Pb, Zn (Garcia-Rico et al., 2001)

Crassostrea gigas Dried; ashing at 450 °C for 
3 h; dissolved in aq.  HNO3 
(1:1); SPE using sulfur-NP/
alumina

AAS Cd, Cu, Pb, Zn (Ghanemi et al., 2011)

Page 31 of 40    1066



Environ Monit Assess (2023) 195:1066 

1 3
Vol:. (1234567890)

Author contribution Tibor Pasinszki was responsible for 
conceptualization, methodology, data collection, interpreta-
tion of data, writing the original draft, and editing. Shilvee S. 
Prasad was responsible for data collection, interpretation of 
data, review, and editing. Melinda Krebsz was responsible for 
data collection, interpretation of data, review, and editing.

Data availability The data used in this study are available in 
the main body of the article, in appendices, and in referenced 
articles.

Declarations 

Ethics statement All authors have read, understood, and have 
complied as applicable with the statement on “Ethical respon-
sibilities of Authors” as found in the Instructions for Authors.

Competing interests The authors declare no competing interests.

References

Akagi, H., & Nishimura, H. (1991). Speciation of mercury in the 
environment. In T. Suzuki, N. Imura, & T. W. Clarkson 
(Eds.), Advances in mercury toxicology, Rochester series 

on environmental toxicity (pp. 53–76). Springer. https:// doi. 
org/ 10. 1007/ 978-1- 4757- 9071-9_3

Amiard-Triquet, C., Altmann, S., Amiard, J. C., Ballan-Dufrancais, 
C., Baumard, P., Budzinski, H., Crouzet, C., Garrigues, P., 
His, E., Jeantet, A. Y., Menasria, R., Mora, P., Mouneyrac, 
C., Narbonne, J. F., & Pavillon, J. F. (1998). Fate and 
effects of micropollutants in the Gironde estuary, France: A 
multidisciplinary approach. Hydrobiologia, 373/374, 259–
279. https:// doi. org/ 10. 1023/A: 10170 55118 218

Anagha, B., Athira, P. S., Anisha, P., Charles, P. E., Anandkumar, 
A., & Rajaram, R. (2022). Biomonitoring of heavy metals 
accumulation in molluscs and echinoderms collected from 
southern coastal India. Marine Pollution Bulletin, 184, 
114169. https:// doi. org/ 10. 1016/j. marpo lbul. 2022. 114169

Andrade-Rivas, F., Afshari, R., Yassi, A., Mardani, A., Taft, 
S., Guttmann, M., Rao, A. S., Thomas, S., Takaro, T., & 
Spiegel, J. M. (2022). Industrialization and food safety 
for the Tsleil-Waututh nation: An analysis of chemi-
cal levels in shellfish in Burrard inlet. Environmental 
Research, 206, 112575. https:// doi. org/ 10. 1016/j. envres. 
2021. 112575

ANZ-FSC. (2021). Australia New Zealand Food Standards 
Code – Schedule 19 - Maximum levels of contaminants 
and natural toxicants, Food Standards Australia New 
Zealand, 2021. Federal Register of Legislation https:// 
www. legis lation. gov. au/ Detai ls/ F2021 C00628

Araujo, P. R. M., Biondi, C. M., Araujo do Nascimento, C. 
W., Vieira da Silva, F. B., & Alvarez, A. M. (2019). 

Table 6  (continued)

Oyster1 Extraction and digestion 
method

HM  Determination2 Ref.

Method3 HM monitored

Crassostrea gigas Dried at 120 °C for 24 h; cc 
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GC-ICP-MS MeHg (Taylor et al., 2008)
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for 4 h

ES Cu, Cd, Pb, Zn (Locatelli et al., 1999)

n.a. Dried at 45 °C for 24 h; cc 
 HNO3 + cc  H2SO4, 140 °C 
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ES Cu, Cd, Pb, Zn (Locatelli, 2000)
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0.0076 μg  g−1; 17 0.03–1.66 μg  g−1; 18 0.0038–0.0461 μg  g−1; 19 0.07 μg  L−1; 20 0.01–0.12 μg  g−1; 21 0.002 μg  g−1; 22 0.0083 and 
0.0052 μg  L−1
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