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Abstract Today, data mining has become a rel-
evant topic in digital soil mapping. In this current 
study, prediction of some soil properties and their 
spatial distribution were examined by machine learn-
ing algorithms (Support Vector Machine, Artificial 
Neural Network) using reflectance values of Triplesat 
satellite image bands in Vezirköprü district of Sam-
sun province. The band data obtained from different 
wavelengths revealed positive correlations between 
the electrical conductivity and calcium carbonate 
equivalent contents of the soils. The support vector 
machine algorithm was the most successful to esti-
mate the textural fractions, organic matter, electri-
cal conductivity, and calcium carbonate equivalent 

contents of the soils using the bands obtained from 
satellite images. The mean absolute error for estimat-
ing sand, silt, and clay contents by support vector 
machine was 4.05%, 3.05%, and 3.66%, respectively. 
Texture classes were determined with an accuracy of 
82% with support vector machine and 60% with arti-
ficial neural network. In all estimations, the highest 
percentage of error was for calcium carbonate equiva-
lent content with very low estimation reliability. The 
mean absolute percentage of error values for this 
property are 101.13% and 51.61% for artificial neu-
ral network and support vector machine, respectively. 
Also, in both algorithms, the most successfully esti-
mated soil property was clay fraction of soils. It was 
also investigated the spatial distribution of actual and 
estimated values using various interpolation methods 
(Kriging, inverse distance weighting-, radial basis 
function). Considering the spatial distributions, it was 
determined that the most successful method was krig-
ing for sand, silt, and clay contents and inverse dis-
tance weighting for electrical conductivity, calcium 
carbonate equivalent, and organic matter contents. 
According to our findings, it is concluded that suc-
cessful estimations and spatial distributions can be 
made by the support vector machine algorithm using 
band data from different wavelengths.
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Introduction

Soil is a crucial natural environment for plant growth 
with the presence of three-dimensional layers located 
on the earth. Many physical, chemical, and biologi-
cal properties of soils impact their sustainability and 
productivity. In addition, soil properties play a criti-
cal role in not only terrestrial ecosystem services but 
also in erosion, irrigation, drainage management, land 
planning, soil improvement, and soil management 
(Wu et  al., 2018). Among the physical properties of 
soils, one of the most significant genetic properties is 
textural fractions. The textural properties of soils are 
the most frequently used parameter for developing 
pedotransfer functions (Alaboz & Işıldar, 2019), with 
a crucial role in all properties of soil, including water 
holding capacity, soil fertility, soil air, and drainage. 
Determining the spatial distributions for the textural 
fractions of soils is also important for plant produc-
tion (Shahriari et al., 2019; Wu et al., 2018). Moreo-
ver, organic matter content improves the physical and 
chemical properties of the soil, regulates the nutrient 
supply, affects soil fertility and sustainability, and is a 
critical property for the functioning of the ecosystem 
due to its impact on the global carbon cycle (Dong 
et  al., 2021). The EC and calcium carbonate equiva-
lent contents of soils are also some of the parameters 
that should be followed for the rehabilitation and man-
agement of problematic soils. Determining the unique 
properties of soils provides convenient manage-
ment and allows for efficient use of resources. Better  
decision-making about the use and management of 
natural resources depends on gathering accurate infor-
mation by identifying changes (Akinyemi et al., 2017; 
Aksoy & Kaptan, 2021; Feng et  al., 2020; Gharbia 
et al., 2016; Moradi et al., 2020). The soil maps that 
are produced to ensure the correct and sustainable use 
of land resources and to show the distribution areas 
of soils with different properties, and the reports that 
accompany these maps constitute a database for users 
(Dengiz et  al., 2012). High resolution maps provide 
convenience in agricultural production, forest manage-
ment, hydrological analysis, and environmental pro-
tection plans (Zhao et al., 2009).

In recent years, advances in technology have 
increased the interest in digital mapping. Geographi-
cal Information Systems and Remote Sensing applica-
tions have become increasingly widespread, which is 
of great significance in monitoring land use and land 

cover (LULC) on a spatial and temporal scale (Kesgin 
& Nurlu, 2009; Lu et al., 2011; Sünbül & Tonyaloğlu, 
2021). Satellite systems have different spatial and 
temporal coverage areas, high resolution imaging, 
and a better capacity for data collection, all of which 
have increased their use in monitoring LULC changes 
(Aksoy & Kaptan, 2021). Data from visible, near-
infrared, and short-wave infrared (SWIR) bands can 
be used to validate field-derived datasets that describe 
the correlations between quantitative soil proper-
ties and spatial and temporal information for large 
areas (Mulder et  al., 2011). Studies have revealed a 
very strong correlation between soil properties and 
multispectral remote sensing images (Gozdowski 
et al., 2015; Maselli et al., 2008; Mitran et al., 2019). 
Digitally soil maps consist of field observations and 
laboratory analyses combining numerical models 
with environmental variables to create a geo-based 
soil information system, then mapping the area and 
estimating many values based on certain variables. 
Generating soil maps using satellite images provides 
a synoptic view of the area (de Castro Padilha et al., 
2020; Grunwald et al., 2011; Mulder et al., 2011) and 
allows the examination of temporal changes in soil 
properties (Fathololoumi et al., 2020).

Today, machine learning algorithms are one of the 
most widely used estimation methods in digital soil 
mapping (Alaboz et  al., 2021; Wang et  al., 2021). 
Machine learning is the process of learning from data 
using the necessary algorithms and formulations and 
reaching a level to make a decision about the relevant 
issue (Öztemel, 2012). Researchs have shown that 
technological approaches like machine learning meth-
ods help obtain reliable results (Alaboz et al., 2021; 
Yamaç et al., 2020). Silva et al. (2020) reported suc-
cessful estimation of clay and sand contents of soils 
using support vector machine (SVM) and silt content 
using the random forest algorithm. Dong et al. (2021) 
stated that the Cubist method outperformed SVM 
and Artificial Neural Network (ANN) in estimating 
organic carbon content of soils.

In the current study, we aimed to: i-) determine the 
predictability of textural fractions (sand, silt, clay), 
organic matter, calcium carbonate equivalent, and 
electrical conductivity contents of soils by machine 
learning algorithms (SVM-ANN) using the reflec-
tance values of 5-band Triplesat satellite image and 
ii-) determine spatial distribution of observed and esti-
mated values using different interpolation techniques 
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to find the most suitable model. This study focuses on 
"I) determining the best interpolation model in spatial 
distribution maps for basic soil properties, II) evalu-
ating the predictive accuracy of soil properties with 
SVM and ANN algorithms, III) examining the distri-
bution pattern of maps created with predictive values".

Material and method

Description of the study area

The study area is located in Vezirköprü district of 
Samsun province located in the Central Black Sea 
Region and coordinated 41° 2.518’N—35° 32.986’E 
and 41° 10.234’N—35° 30.087’E (WGS84, Zone-36, 
UTM-m) (Fig. 1).

The study area size is about 111  km2, with an altitude 
of 240–750 m above the mean sea level (Fig. 2). The 
slope within the study area often ranges from flat-mild 

steep to moderately steep; the areas in the northeast and 
southeast have steep slopes. When the geological char-
acteristics of the study area are examined, it is seen that 
a large part consists of mudstone and limestone rocks. 
In addition, agglomerate tuff and andesite rocks are dis-
tributed in the southern parts of the area, while sand-
stone and occasionally alluvial deposits are found in the 
northern parts.

Regarding climatic conditions, Vezirköprü district 
has a distinct characteristic between the humid and 
temperate coastal climate and the continental climate 
in the interior regions, carrying some thermal and 
humid characteristics peculiar to the transition zone. 
The winters are colder than the coast, and the sum-
mers are warmer. Long term of meteorological data 
(1977–2019) show an annual average temperature of 
12.5 °C and a precipitation of 724.5 mm. Bölük (2016) 
reports that the study area is classified as “sub humid,” 
with a precipitation activity index of 57.94 points based 
on the macroclimate regions of Erinc in Turkey. In 

Fig. 1  Location map of the study area
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addition, Turan et al. (2018) indicated that Vezirköprü 
district has a climate that was expressed by C1B’2db’4 
that means sub humid, second-order mesothermal, 
no excess water, close to marine influence. Besides, 
according to the Newhall simulation model of the soils 
within Vezirköprü, the soil temperature is determined 
as Mesic, and the moisture regime as Xeric (in subgrup: 
Typic Xeric) (Turan et al., 2018; Van Wambeke, 2000). 
Intensive irrigated and dry agriculture have been car-
ried out over a large part of the study area, and a very 
small part is covered by pasture and forest areas.

Soil sampling and laboratory analyses

Soil samples of 0–30  cm depth from 657 points at 
400 m x 400 m intervals according to the grid system 
were collected (Fig.  3). Before the analysis, the soil 
samples were separated from coarse particles, passed 
through a 2 mm sieve in the laboratory. They were pre-
pared for physical and chemical analysis. Table 1 shows 
the protocols of soil physic-chemical analyses on the 
soil samples.

Satellite imaging and properties

In this study, it was used Triplesat satellite image and 
performed band separations. Table 2 shows the tech-
nical specifications of Triplesat satellite images.

The Triplesat satellite image is dated 04.06.2018. 
It has 5 bands, including panchromatic and multispec-
tral bands. These bands have spatial resolutions of 0.8 
and 3.2  m, respectively. The satellite images have a 
section width of 23.4  km and a temporal resolution 
of 97.7 min. The reflectance data for the sample areas 
were obtained in two steps. In the first step, the sat-
ellite image (Triplesat) was calibrated. In the second 
step, the reflectance values of the pixels were calcu-
lated according to the sample points. First, the Tri-
plesat satellite image was calibrated using the QGIS 
Desktop 3.8.1 software, making atmospheric correc-
tions. In this way, the reflectance values of all bands 
were obtained for the satellite image. The second step 
involves obtaining these data in accordance with the 
areas of the samples. For this, we transformed each 
band into a vector layer using the ArcGIS Desktop 
10.7.1 software. Then, we overlapped this vector layer 
and obtained the vector data that is suitable for the 
sample area. The reason for converting from raster to 
vector is that when the pixels are sectioned without 
converting according to the sample area, there may be 
gaps or excess areas remaining at the borders based 
on the spatial resolution. By converting to vector, we 
could make identical inferences according to the sam-
ple area and obtain data from all pixels correspond-
ing to the boundaries. Then, we converted the layer 
to raster data again, applied the zonal statistics com-
mand, and obtained the average reflectance values for 
each sample point.

Fig. 2  Elevation, slope and geology maps of the study area
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Estimation models (support vector 
machine‑regression and artificial neural network)

Support Vector Machine is a supervised machine 
learning algorithm that is used both in classifica-
tion and regression analyses. Depending on the 
type of data, Kernel functions are used during the 
operation of the algorithm; this way, both linear and 

nonlinear classifications are estimated. The purpose 
of using SVM modeling is to find the hyperplane 
that gives the maximum margin that separates the 
vector sets with one-category states on one side of 
the plane and other categorical states on the other 

Fig. 3  Soil sampling pat-
tern in the study area

Table 1  Soil analysis methods and their references

Analysis References

Soil texture (clay, silt, sand)  (%) Bouyoucos (1951)
Organic matter (%) Jackson (1958)
calcium carbonate equivalent (%) Soil Survey Staff (1993)
Electrical conductivity (µmhos  cm−1) Richards (1954)

Table 2  Technical properties of Triplesat satellite image

Bands Electromagnetic 
area

Wavelength 
(nm)

Spatial 
resolution 
(m)

B1 Blue (B) 440 – 510 3.2
B2 Green (G) 510 – 590 3.2
B3 Red (R) 600 – 670 3.2
B4 Near Infrared (NIR) 760 – 910 3.2
B5 Panchromatic - 0.8
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side (Cortes & Vapnik, 1995). SVM is a machine 
algorithm that finds the best separating hyperplane 
in an N-dimensional dataset. It draws a hyperplane 
according to the reference points and these points 
are the support vectors. SVM does not always pre-
sent a linear plane; it is much easier to find hyper-
planes in linear planes, and using such lines, clas-
sifications can be made (Smola & Schölkopf, 2004). 
When the plane is not linear, the data is given one 
more dimension to determine the hyperplane. The 
Kernel function can transform a nonlinear separa-
tion problem in the input space into a linear prob-
lem in the property space. Then, the nonlinear prob-
lem can be solved linearly in the property space. 
We used the support vector machine to model the 
complex correlations between soil properties and 
band data. Support Vector Regression is a popular 
machine learning tool with relatively high accuracy 
and low computational costs (Were et  al., 2015). 
Various soil modelling studies have shown that SVR 
is promising because of its capacity to handle non-
linear correlations and generalization (Pasolli et al., 
2011; Sihag et  al., 2018; Taghizadeh-Mehrjardi 
et  al., 2020). Though there are many Kernel func-
tions in the literature, the most frequently used ones 
are linear function, polynomial function, sigmoid 
function, and radial basis function (Kuzu & Yakut, 
2020). The system aims to find a hyperplane that 
separates the data points with the maximum margin. 
Equation (1) gives the basis of the SVM vector.

where φ (x) are non-linear, transformed training data, 
ω: weight vectors, b: bias stands for the distance of the 
hyperplane from the original. The coefficients ω and b 
are estimated by minimizing the regular risk function; 
to maximize this margin, ω must be minimized.

To arrange unsuitable groups, a C function is needed 
(Eqs. 2 and 3).

The equation is then written as Eqs. 4 and 5.

(1)f (x) = �.�(x) + b

(2)R(C) = Cn Σn i = 1 L𝜀(yi, f (xi))+12 ∥𝜔∥
2

(3)
L�(yi, f (xi)) = {|f (xi) − yi| − �,

for|f (xi) − yi| ≥ � (0, otherwise)

(4)CΣn i−1(𝜁 i, 𝜁∗i) + 12∥𝜔∥
2

where, ξi refers to the error made by that data, called 
a loose variable.

12‖ω‖2: the regulatory term that refers to the com-
plexity of the learning machine, and CnΣni = 1Lε(yi, 
f(xi)) is the empirical error. ζi and ζ*i: Slack variables 
are positive and negative errors at the ith point, respec-
tively. C is the penalty factor and ε is the loss function.

Optimization problems are solved using Lagrange 
and Karush–Kuhn–Tucker conditional methods (Eq. 6).

L stands for Lagrangian, and β, β*, a and a*: Lagrange  
factors.

Nonlinear Support Vector Regression functions are 
obtained using Eq. 7.

k(xi, x) is the Kernel function.
Here, we used a radial basis function as the Kernel 

function (Ballabio, 2009) (Eq. 8). Radial basis moves 
the sample to a higher dimensional space because it 
is nonlinear. It differs from other Kernel functions in 
that it is a more compressed Kernel, a valuable fea-
ture in model design, restricting the computational 
training process, and making it more convenient to 
improve the efficiency of generalization.

σ is the “spread” of the Kernel.
The data set was evaluated as 70% training and 30% 

testing. We used the” e1071″ and “Caret” packages in 
the R software (Cost:1, gamma:0.25, epsilon:0.1).

Secondly, we used multilayer feedforward back-
propagation networks (MLP). The multilayer sensors 
in artificial neural networks consist of one input layer, 
one or more intermediate layers, and one output layer 
(Çakır, 2019). The first layer is the input layer (the 
properties that will be used for estimation), the sec-
ond layer is hidden layers, and the third layer is the 
output layer (the properties that will be estimated). 

(5)
yi − (��(xi) + bi) ≤ � + � i (��(xi) + bi)

− yi ≤ � + � ∗ i � i, � ∗ i ≥ 0, i = 1, ⋅ ⋅ ⋅, n

(6)

L = CΣn i = 1(� i, � ∗ i) + 12 ∥ � ∥ 2 − Σn i

= ai(��(xi) + b − yi + � + � i) − Σn i

= 1 a ∗ i(yi − ��(xi) − b + � + � i ∗) − Σn i

= 1(�i� i + � ∗ i� ∗ i)

(7)
f (x) = �.�(x) + b = Σn i = 1 (ai, a ∗ i)k(xi, x) + b

(8)k(xi, x) = exp
(
� ∥ xi, x ∥2

)

1061   Page 6 of 21



Environ Monit Assess (2023) 195:1061

1 3
Vol.: (0123456789)

In multilayer artificial neural networks, the network 
architectures with the highest predictive power can 
be created by making changes in the number of hid-
den layers and the number of neurons. For creating 
the estimation with artificial neural networks, the 
Levenberg–Marquardt algorithm (LM) was used at 
the 5:10:1 architecture, using feedforward backprop-
agation. The "nntool" package program was used in 
MATLAB to obtain the ANN estimations. In artifi-
cial neural networks, 70% of the data set was used for 
model creation, 30% for validation and testing. For 
evaluating the models, the parameters of root mean 
square error (RMSE), mean absolute error (MAE), 
and mean absolute percentage error (MAPE) coef-
ficient of determination (R2) and Lin’s concord-
ance correlation coefficient (LCC)were used. These 
statistical indices were also used in similar studies 
(Mousavi et al., 2022; Rezaei et al., 2023).

Descriptive statistics, correlations, and estimations 
for soil properties were made on the "R" software. 
LCC and  R2 values are calculated using the "Desc-
Tools and MLmetrics " packages.

In order to evaluate the uncertainty of the model, 
the variance of the 50 predicted produced from each 
model was computed for soil properties. The square 
root of variance is calculated (Standard deviation) 
(Malone et  al., 2011; Sharififar, 2022). The impor-
tant variables in the models were determined as stated 
in Kaya et al. (2022) and FAO (2022).

Interpolation analysis and creating spatial 
distribution maps

Surface (0–30  cm) distribution maps were created 
based on the texture (sand, silt, clay), organic matter, 
calcium carbonate equivalent (CCE), and EC con-
tent analysis for each soil sample, with coordinates in 
the grid system at 400 m*400 m, using interpolation 
models. Intensive agriculture in the region will affect 
a sustainable management by knowing the basic soil 
characteristics. Therefore, the focus is on the predict-
ability of basic soil properties and the evaluation of 
distribution maps. Spatial distribution maps were 
created for each parameter and the values obtained 
from the estimation models using different interpola-
tion models in the GIS software ArcGIS. Before the 
mapping, the data that was not normally distributed 
were transformed according to the properties. The 

Kolmogorov–Smirnov test of normality was applied 
to soil properties. Kolmogorov–Smirnov test results 
that did not exhibit a normal distribution were trans-
formed using a logarithmic, root transformation. The 
skewness value is approximated to the normal distri-
bution by applying square root transformations if it is 
between 0.5 and 1.0, and logarithm transformations if 
it is > 1.0. For mapping, the Inverse Distance Weight-
ing (IDW), Radial Basis Function (RBF) called as 
deterministic approach and Kriging method defined 
as scholastic approach were used. Kriging methods 
are Ordinary, Simple, and Universal and their semi-
variogram models such as Spherical, Exponential, 
and Gaussian were evaluated in the present study. The 
pixel size of the distribution maps is 50 m*50 m. Var-
iogram parameters are indicated in Table 5. The most 
appropriate method was accepted to be the one that 
gave the lowest root mean square error.

Results and discussion

Soil properties and electromagnetic bands

Table  3 gives the basic descriptive statistics of soil 
properties. The sand, silt, and clay contents of the 
soils varied between 13.04–61.93%, 8.63–42.45%, and 
4.148–69.198%, respectively. The soils in the study 
area dominantly had heavy-textured clay (C). Of the 
sampling points, 14% were clay loam (CL), 5.78% 
sandy clay loam (SCL), 1.84% loam (L), 1.21% sandy 
clay (SC), 0.3% silty clay (SiC) and silty loam (SiL), 
0.15% was sandy loam (SL), and the remainder was 
clay (Fig. 4). The EC contents of the soils were non-
saline/slightly saline according to Doran and Jones 
(1996), and the organic matter content was between 
very low/high according to Hazelton and Murphy 
(2016). Calcium carbonate equivalent content ranged 
between 0.624–38.156%.

When the coefficients of variation of soil proper-
ties were examined, about 30% differentiations were 
found compared to the mean in the data set for the 
textural fractions, while this variation was found to 
be 40.93%, 64.0% and 68.83% for OM, EC and CCE. 
OM, EC, and CCE showed approximately 2 to 2.5 
times more variation compared to the other textural 
fractions. According to the coefficient of skewness, 
the textural fractions showed a distribution close 
to normal, and the property that was farthest from 
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normal was the EC content. This high value resulted 
from the low presence of slightly saline soil. Because 
positive skewness often results from lower than mean 
data. Most of the data set consists of non-saline soil. 
While CV alone is not sufficient to determine spatial 
variability in soil components, it is effective to detect 
variability in soil properties compared to other param-
eters like standard deviation (Zhang et al., 2007).

Figure 5 shows the correlations between soil prop-
erties and bands. A high correlation between the tex-
tural fractions is expected. Regarding the correlations 
between bands and soil properties, there were high-
level correlations due to CCE and EC contents of the 
soils, rather than due to the textural fractions. Demattê 
et al. (2018) reported that Bands 5 and 7 (Landsat 7) 
were the most significant in clay estimation (r > 0.70; 

p < 0.01). There were positive correlations between 
the bands coded as B1, B2, B3, and B5, and EC and 
CCE contents. The literature reports some differences 
in reflectance images based on the salt and CCE con-
tents of soils (Aydın et al., 2011). The low-level cor-
relation between band values and textural fractions 
may have stemmed from the fact that they were mostly 
from the same texture class. Khalil et  al. (2016) 
examined the correlations between Landsat 8 satel-
lite image reflectance values and soil properties and 
found significant correlations between silt and bands 
2 and 5  (R2 = 0.52) and between clay and bands 4 and 
6  (R2 = 0.40) (p < 0.05). Yue et al. (2019) reported that 
higher hydraulic conductivity and lower soil–water 
content showed higher reflectance in the band 8 
(Landsat-6). The hyperspectral data has been utilized, 

Table 3  Descriptive 
statistics of soil properties

OM Organic matter, EC 
Electrical conductivity, 
CCE calcium carbonate 
equivalent St.Dev Standard 
deviation, CV coefficient of 
variation, Min Minimum, 
Max Maximum

Variable Mean St.Dev CV Min. Max. Skewness Kurtosis

Sand (%) 31.716 9.000 28.38 13.043 61.933 0.75 0.50
Silt (%) 22.855 5.038 22.04 8.663 42.453 0.49 0.98
Clay (%) 45.428 9.173 20.19 4.148 69.198 -0.51 0.55
OM (%) 2.3807 0.9744 40.93 0.2700 6.2395 1.11 1.69
EC (µmhos  cm−1) 382.44 244.78 64.00 38.10 2300 3.54 16.81
CCE (%) 10.606 7.300 68.83 0.624 38.156 0.50 -0.16

Fig. 4  Soil texture class 
distributions. Sa sand, Si 
silt, CI clay, Lo loamy
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incorporating the spectral reflectance of soil and soil-
covered features that accurately represent the original 
pixels of satellite images (Bangelesa et al., 2020).

The CCE and EC content in the surface horizons of 
the soils impact the reflectance. As the carbonate min-
erals in the soils become quantitatively more concen-
trated, there will be more concentration of white color, 
making the radiometric reflectance of electromagnetic 
energy more intense. Basically, carbonate minerals 
and salts are light and white in color and they reflect 
the sun’s rays intensely. Besides, as the sand content of 
the soil increases, the electromagnetic reflectance also 
increases. Besides the grain diameter size of sands, 
they reflect most of the electromagnetic wave com-
ing from the sun, because they are often light in color 
(Özden & Altınbaş, 2005). Baumgardner et al. (1969) 
reported that organic matter affects the reflectance 
data of sunlight in locations where the organic matter 
content is more than 2%.

Evaluation of estimation models

In the study, all Triplesat satellite electromagnetic 
bands (B1, B2, B3, B4, B5) were used to evaluate the 
predictive accuracy of the models. Table 4 shows the 

rates of error for soil properties obtained using dif-
ferent bands during training and testing in SVM and 
ANN estimation values. The RMSE values for esti-
mating the sand content of the soils using the SVM 
algorithm were 4.91% and 5.01%; with the ANN 
algorithm, this was about 1.5 times higher. We found 
a similar variability for the MAE and MAPE values. 
The MAE values for estimating the silt content were 
very close at 3.07% and 3.05% in training and test-
ing, respectively, and they were 3.814% and 3.631% 
with ANN. Despite the lower rate of error in SVM, 
they both had estimations with close error levels. 
As with the sand content, more successful estima-
tions were obtained with SVM for silt content, and 
the estimation rate with ANN was nearly 1.5 times 
higher than SVM. The MAPE values for estimating 
the textural fractions of the soils were mostly similar 
among the algorithms. However, there were signifi-
cant differences in MAPE values for OM, CCE, and 
EC, and the lowest rate of error for these properties 
was determined for the SVM algorithm. Accord-
ing to Lewis (1982), a model is classified as highly 
accurate with a MAPE value below 10%, good with a 
value of 10–20%, acceptable- reasonable for 20–50%, 
and inaccurate or faulty for above 50%.

Fig. 5  Correlation coef-
ficients between soil proper-
ties and bands. S sand, Si 
silt, C clay, Lime calcium 
carbonate equivalent, 
OM organic matter, EC 
electrical conductivity; B1, 
B2, B3, B4, and B5, blue, 
green, red, near infrared, 
and panchromatic electro-
magnetic area

Page 9 of 21    1061



Environ Monit Assess (2023) 195:1061 

1 3
Vol:. (1234567890)

According to Lewis (1982), the SVM algorithm 
model is classified as good for estimating sand, 
silt, OM, and EC, very good for clay, and incorrect 
or faulty for CCE. The ANN model is classified as 
good for estimating sand, silt, and clay, acceptable 
for OM, and incorrect or faulty for EC and CCE. In 
our estimations, the most effective algorithm was 
found to be SVM. Considering the distribution of 
CCE contents, a positive skewness draws attention. 
A positive skewness in distribution is explained as 
mean > median > mode; therefore, the values are often 
lower than the mean. Overall, an estimation error 
of ± 3 units in values lower than the mean resulted in 
a high MAPE value. Also, for estimating the texture 
classes from the proportional distributions of the tex-
tural fractions, SVM had an 82% successful estima-
tion, and ANN had a 60% successful estimation. The 
higher rate of error in ANN may be due to the small 
number of properties in the input data, but the predic-
tive accuracy may change based on the algorithm and 
the number of neurons (Alaboz et al., 2021).

Rossel et al. (2016) state that a LCC value of 1 signi-
fies perfect agreement. An LCC value greater than 0.9 
indicates excellent agreement, and a value ranging from 
0.80 to 0.90 suggests good agreement. Moderate agree-
ment is achieved when LCC values fall between 0.65 
and 0.80, whereas values below 0.65 represent poor 

agreement. According to the LCC values, Clay, OM, 
EC are classified as "good", others as " "moderate" 
agreement by SVM algorithm. Only clay is classified as 
"good agreement" with ANN.  R2 values are determined 
at lower levels than LCC. Similarly, differences in  R2 
and LCC were found in Mousavi et al., 2022. Similar 
trends were observed in LCC and  R2, values.

Wu et al. (2018) found that SVM was more success-
ful than decision tree and ANN in estimating texture 
class by machine learning algorithms. Heung et  al. 
(2016) compared the effect of various machine learn-
ing algorithms for classification in digital soil mapping 
studies and reported that model selection greatly affects 
the outputs. Xing et al. (2018) reported that SVM was 
successful in estimating soil temperature, and Jiang 
et al. (2019) found that SVM was more effective than 
ANN in estimating soil salinity. Numerous studies 
support that SVM, a nonlinear estimation method, 
can successfully provide better estimation accuracy 
during the training and validation stages in terms of 
various criteria (Deiss et  al., 2020). Again, Lamorski 
et al. (2008) reported that a 3-parameter SVM estima-
tion was equally accurate with or more accurate than 
an eleven-parameter ANN. Panneerselvam et al. (2023) 
reported that, the artificial neural network model suc-
cessfully predicted both low and high-frequency soil 
chemical properties within satellite images.

Table 4  Predictive accuracy of models

SVM Support vector machine, ANN Artificial neural network, RMSE Root mean squared error, MAE Mean absolute error, MAPE 
Mean absolute percentage of error, R2  coefficient of determination, LCC Lin’s concordance correlation coefficient, EC Electrical 
conductivity OM Organic matter, CCE calcium carbonate equivalent

Model Properties Training Testing

RMSE MAE MAPE
%

R2 LCC RMSE MAE MAPE
%

R2 LCC

SVM Sand 5.01 4.18 14.3 0.65 0.77 4.91 4.05 12.86 0.68 0.79
Silt 3.84 3.07 14.27 0.44 0.60 3.84 3.05 14.36 0.55 0.67
Clay 5.53 4.65 9.66 0.77 0.83 4.549 3.66 8.64 0.75 0.85
OM 0.46 0.36 18.52 0.76 0.87 0.47 0.37 20.24 0.76 0.85
CCE 2.7 2.06 65.36 0.73 0.71 2.9 2.24 51.61 0.64 0.72
EC 44.18 34.87 13.01 0.72 0.78 44.74 35.77 11.63 0.86 0.88

ANN Sand 8.391 6.388 19.72 0.12 0.35 8.505 6.668 23.05 0.11 0.37
Silt 4.518 3.631 18.03 0.04 0.09 4.928 3.814 18.152 0.08 0.10
Clay 8.53 6.8 17.61 0.86 0.88 9.14 7.165 18.92 0.85 0.88
OM 0.90 0.674 36.16 0.10 0.20 0.91 0.683 36.51 0.10 0.22
CCE 6.78 5.77 99.98 0.11 0.26 6.85 5.54 101.13 0.11 0.22
EC 163.34 136.09 70.53 0.03 0.06 240.26 145.07 44.19 0.03 0.06
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Relative importance of bands

The relative importance % of the bands on the models 
are given in Fig. 6. The most effective band in the esti-
mation of the clay, silt organic matter contents and CCE 
contents was determined as near infrared (B4), and the 

relative importance % was determined as 33.8, 35.9, 35.5 
and, 48.8. respectively. The most effective band in esti-
mating EC contents was determined as panchromatic. 
B3 and B1 contributed models with similar weights. For 
Sand, the relative importance is determined in the highest 
red region (B3), while it is similar in B4 and B5.

Fig. 6  Relative importance 
of bands reflectance
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The stretching and bending of NH, OH, and CH 
groups are connected to the near-infrared (NIR) 
regions of the electromagnetic spectrum (Viscarra 
Rossel & Behrens, 2010). NIR wavelengths have 
identified as important for estimation of soil organic 
carbon (Miloš & Bensa, 2017). Keshavarzi et al. et al. 
(2022) reported that Landsat 8 OLI near infrared 
band is the most important environmental variable in 
the digital mapping of the soil particle fraction. Red 
and blue bands are used in the indices used for the 
prediction of soil properties. It is known that these 
bands are effective on the reflection characteristics of 
soils and the differences in reflection may be caused 
by physical properties (Kaya et al., 2022).

The lowest contribution rate for the CCE property 
was obtained with the B5 band. In the estimation of 
organic matter and clay properties, it was determined 
as the B3 band, which provided the lowest contribu-
tion rate. B2 band was determined for sand and silt. As 
in this study, Stamatiadis et al. (2005) also determined 
important relationships between soil surface reflec-
tion and soil properties. The blue and green bands 
exhibited higher associations with soil properties than 

the red and NIR bands. Linear correlation was found 
with soil water content, OM, K and P, blue and green 
bands. NIR band was found to be more effective in 
estimating clay from texture fractions, and Sørensen 
and Dalsgaard (2005) reported that NIR band could 
be used in clay and silt estimation. The NIR band pre-
dicts soil colour and water content. Studies related to 
the soil water content of the NIR band have been pre-
sented (Yin et al., 2013). Since the clay content is the 
most effective fraction on the soil water content, it is 
expected that the contribution rate of the B4 band is 
high. In a study by Shrestha (2006); The mid-infrared 
band and near-infrared were correlated with the EC 
values of the soil. Karavanova et  al. (2001) reported 
that water-soluble salts are negatively correlated with 
spectral reflectance, and carbonates are positively cor-
related. He stated that the dominant bands, which are 
highly correlated with salt content, will vary depend-
ing on the effects of environmental conditions.

Table 5  Preferred models 
and semivariogram 
models’ values for 
interpolation analysis

C0 nugget variance, C1 
partial sill, A range of 
influence (m), RMSE Root 
mean squared error for the 
theoretical semivariogram 
and crossvariogram models
a Variogram parameters are 
not obtained in the IDW 
method. CCE calcium 
carbonate equivalent, EC 
Electrical conductivity, OM 
Organic matter

Properties Determined model RMSE Lag size C0 A(m) C1

Sand Kriging-Ordinary-Exponential 8.05 201.30 47.48 1811.92 23.89
Sand-SVM Kriging-Simple-Exponential 5.58 815.70 0.78 4611.09 0.30
Sand-ANN Kriging-Simple-Spherical 3.49 887.89 0.91 6767.11 0.94
Silt Kriging-Simple-Spherical 4.72 317.54 0.76 2236.76 0.23
Silt-SVM Kriging-Simple-Exponential 2.62 1508.49 0.93 2748.80 0.18
Silt-ANN Kriging-Simple-Exponential 1.15 214.52 0.84 1901.40 0.09
Clay Kriging-Ordinary-Exponential 8.05 233.50 45.10 1865.21 30.18
Clay-SVM Kriging-Ordinary-Spherical 6.09 167.22 26.67 1147.24 12.10
Clay-ANN Kriging-Simple-Spherical 3.91 781.84 0.94 6867.02 0.11
OM IDW- 2.  Degreea 0.87
OM-SVM Kriging-Ordinary-Exponential 0.69 166.33 0.31 1803.86 0.21
OM-ANN Kriging-Simple-Exponential 0.33 542.36 0.93 5112.57 0.13
EC Kriging-Simple-Gaussian 242.44 798.59 1.13 5259.68 0.12
EC-SVM Kriging-Simple-Gaussian 232.09 773.59 0.77 5712.54 0.29
EC-ANN IDW- 1.  Degreea 43.45
CCE Kriging-Simple-Exponential 5.64 837.60 0.24 5337.96 0.65
CCE -SVM Kriging-Simple-Spherical 5.16 887.89 0.51 6696.86 0.48
CCE -ANN IDW- 2.  Degreea 2.40
Texture Kriging-Universal-Exponential 0.45 100.531 0.06 736.85 0.14
Texture SVM Kriging-Universal- Gaussian 0.38 1508.49 0.12 18,101.93 0.11
Texture ANN Kriging-Simple- Exponential 0.55 574.92 0.96 4864.14 0.01

Fig. 7  Sand, silt and clay maps (A: spatial distribution of the 
observed values, B: spatial distribution of the predicted values with 
SVM, C: spatial distribution of the predicted values with ANN)

◂
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Spatial distribution of soil properties 
and estimated models

Table  5 shows the most suitable interpolation meth-
ods and their RMSE values for the actual soil proper-
ties and for estimating these properties by both algo-
rithms. Among the interpolation methods, simple and 
ordinary kriging were more effective than IDW in the 
spatial distribution of soil properties. In the present 
study, for ANN estimates and distribution maps of 
organic matter, EC, and CCE contents, IDW was the 
most successful method. Gotway et al. (1996) reported 
that interpolation based on organic matter content 
gave more accurate results with the IDW method. In 
the IDW approach, the estimated value in the grid sys-
tem decreases with increasing distance from the cur-
rent point. Besides, in cases of a high coefficient of 
variation (CV), choosing a distance power as 1 gives 
the most accurate result, but this value is too weak for 
datasets with a low CV, so a distance power of 2 or 3 
can be chosen for these datasets (Gotway et al., 1996). 
Here, we determined the properties with higher CVs 
than textural fractions using OM, CCE, and EC. In the 
kriging method, the distance is determined using sem-
ivariograms. The weights are independently chosen to 
minimize the estimated mean squared error (Gotway  
et  al., 1996). Despite being difficult to estimate and 
model, the kriging semivariogram is a preferred 

geostatistical method that is found to be very useful by 
scientific research (Gotway et al., 1996). Mitran et al. 
(2019) reported that the RMSE values for the spatial 
variability of sand, silt, and clay contents were lower 
in Regression kriging compared to multilinear regres-
sion. Seyedmohammadi et  al. (2019) reported that, 
for a methodology that provides the spatial variation 
of soil texture using fuzzy logic and geostatistics, the 
accuracy of the distribution map produced by the krig-
ing method was acceptable.

For the estimation data of the soil properties and 
models among different interpolation approaches, it 
was selected the method with the lowest RMSE and 
created the distribution maps. Considering the actual 
distribution of sand of the soils and the spatial distri-
bution maps of SMV and ANN in Fig. 7, we see that 
the south-western and northern parts of the study area 
have higher sand content than the other areas, and the 
clay content is higher in the alluvial land part, with 
the decreasing slope from south to north.

Regarding the distribution maps of the tex-
ture classes, the distribution map of the actual data 
shows a loamy texture, with coarser characteristics, 

Fig. 8  Texture classes maps (C: Clay, CL: Clay loam, L: Loam, SiC: Silty clay, SC: Sandy clay) maps (A: spatial distribution of the 
observed values, B: spatial distribution of the predicted values with SVM, C: spatial distribution of the predicted values with ANN)

Fig. 9  Organic matter, EC and  CaCO3-CCE maps (A: spatial 
distribution of the observed values, B: spatial distribution of the 
predicted values with SVM, C: spatial distribution of the pre-
dicted values with ANN)

◂
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Fig. 10  Sand, silt and clay 
uncertainty maps (D: spatial 
distribution of the SVM 
model, E: spatial distribu-
tion of the ANN model)
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Fig. 11  Organic mat-
ter, EC and  CaCO3- CCE 
uncertainty maps (D: spatial 
distribution of the SVM 
model, E: spatial distribu-
tion of the ANN model)
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particularly in the northern part. Moreover, most of 
the area has a clay and clay loam structure. The map 
produced by SVM is largely similar to the distribution 
map produced with actual data. The distribution map 
obtained by SVM shows that clay texture dominates 
the central and north-western parts, but towards the 
south, the sand fractions increase, turning into loamy 
and clay loam (Fig. 8). Comparing the map produced 
by the estimations of ANN and the distribution map of 
the actual data, a low level of accuracy was obtained.

(Fig. 9) provides the actual values and spatial dis-
tribution maps by SMV and ANN for the organic 
matter, EC, and calcium carbonate equivalent (CCE) 
contents of the soils. For the OM distribution maps, 
the actual data and the distribution map obtained by 
SVM show a very similar pattern, although the esti-
mation obtained by ANN is quite low in accuracy. 
Looking at the OM distribution maps, we see that 
OM is high due to forest cover in the east, southeast, 
and rather smaller the north areas. The case is similar 
for EC and CCE, and the EC and CCE contents tend 
to increase towards the north.

In addition, the SVM accuracy was found to be 
much higher than the models used in the estimation 
of the texture class distribution of the soils, and the 
distribution maps created with SVM prediction values 
for the other examined properties in general showed 
closer results compared to the distribution maps cre-
ated with ANN prediction values.

The uncertainty maps obtained from the predicted 
values are given in Figs. 10 and 11. The lowest stand-
ard deviations in uncertainty maps were obtained with 
the SVM model.

When the uncertainty maps of the sand, silt, clay, 
calcium carbonate equivalent and EC prediction val-
ues of the soils are examined, it is seen that the stand-
ard deviation is generally high for the features with 
a high variation range. However, the standard devia-
tions were generally high for low-level estimates of 
organic matter. Organic matter contents are at lower 
levels compared to the other properties examined. 
This difference can be considered as an indication 
that the model makes predictions with higher error 
rates in estimating low values.

Conclusion

In this research, we correlated the reflectance values 
of Triplesat Satellite image bands with soil texture 

(sand, silt, and clay), organic matter, electrical con-
ductivity, and calcium carbonate equivalent contents 
in soils and determined their estimation accuracies 
using machine learning algorithms like support vec-
tor machine and artificial neural network. Positive 
correlations were found between the band reflectance 
values and the electrical conductivity, and calcium 
carbonate equivalent contents of the soils, suggesting 
that band data can be used to evaluate areas with high 
electrical conductivity, and calcium carbonate equiva-
lent content. For estimating basic soil properties with 
band data, we obtained more successful estimations 
with the support vector machine algorithm. Also, we 
observed the closest pattern to the spatial distribution 
of the actual values in the estimations obtained by 
support vector machine. It has been determined that 
near infrared and red bands are effective in the estima-
tion of basic soil properties. The present study find-
ings show that support vector machine was successful 
in estimating the correlations between band values and 
soil properties, indicating that it can be used safely for 
other studies. The maps obtained in this way can be 
used on both national and global scales and make sig-
nificant contributions in revealing the overall proper-
ties of soil. The soil maps obtained by support vector 
machine and band values can later be used as baseline 
information for preventing or mitigating significant 
negative impacts on agricultural productivity.
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