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Abstract The Kyrgyz Republic (Kyrgyzstan) is one 
of the countries most vulnerable to the adverse effects 
of climate change in Central Asia. The land use, land 
use change, and forestry (LULUCF) sector is criti-
cal in climate change mitigation in Kyrgyzstan and 
is integral to national greenhouse gas (GHG) inven-
tories. However, consistent, complete, and updated 
activity data is required for the LULUCF sector to 
develop a transparent GHG inventory. Collect Earth 
(CE), developed by the Food and Agriculture Organi-
zation of the United Nations (FAO), is a free, user-
friendly, and open-source tool for collecting activity 
data for the LULUCF sector. CE assists countries in 
developing GHG inventories by providing consist-
ent and complete land representation. This article 
reports an estimate of land use and land-use change 
dynamics in Kyrgyzstan, based on analyzing 13,414 
1-hectare (ha) sampling units through an augmented 
visual interpretation approach using satellite imagery 

at the very high spatial and temporal resolution avail-
able through the Google Earth platform. The results 
show that in 2019, forests covered 1.36 million ha or 
6.83% of the total land with a 6.23% uncertainty. This 
estimate was 5 to 16% higher than previous estimates, 
detecting an additional 63,024 to 188,164  ha of 
forestland that had not been reported previously. The 
new estimates suggest an average increase of 10.4% 
in the current forestlands of Kyrgyzstan.

Keywords Collect Earth · Google Earth · LULUCF · 
GHG inventory · Climate change · Kyrgyzstan

Introduction

Kyrgyzstan is one of Central Asia’s most vulnerable 
countries to the adverse effects of climate change due 
to its arid climate, sensitive environment, and natural 
ecosystems (Lioubimtseva et al., 2005). The country 
recognizes the urgency of climate change. Kyrgyzstan 
is taking necessary measures and actions to achieve 
sustainable development goals, ensure sustainable 
forest management (SFM), and tackle climate change 
according to its national conditions to contribute to 
the global objectives of the United Nations Frame-
work Convention on Climate Change (UNFCCC) and 
the Paris Agreement.

Kyrgyzstan reports GHG inventories through 
national communications and biennial update reports. 
Base year total GHG emissions from all sectors have 
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decreased from 28,290.68 giga ton carbon diox-
ide equivalent (Gg  tCO2e) to 17,858.41 Gg  tCO2e 
between 1990 and 2018.

The LULUCF sector is one of the five key eco-
nomic sectors and focuses on the reporting and 
removal of human-induced GHG emissions as set out 
in the Intergovernmental Panel on Climate Change 
(IPCC) classification (Tzamtzis et  al., 2019). These 
land-use types in the IPCC report include forestlands, 
croplands, grasslands, wetlands, settlements, and 
other lands.

LULUCF is integral to national GHG invento-
ries and mitigation actions and critical to carbon 
sequestration and storage in Kyrgyzstan. Total GHG 
removals in forestry and other land-use sectors were 
10,273.53 Gg  tCO2e in 1990 and 10,941.37 Gg  tCO2e 
in 2018 (NIR, 2022). The LULUCF sector is the 
only sink sector reducing the overall GHG emissions 
in the country. GHG removals from this sector have 
increased by 6.5% between 1990 and 2018 thanks to 
implementing SFM practices, such as afforestation 
and forest restoration.

As stated in the first Nationally Determined Con-
tributions (NDC), total GHG emissions would reach 
46,302 Gg  tCO2e, and GHG removals would be 
11,759 Gg  tCO2e in the LULUCF sector by 2050 
under the business-as-usual (BAU) scenario. As 
a developing, lower middle-income country, Kyr-
gyzstan has set targets to reduce GHG emissions by 
15.97% (27,986 Gg  tCO2e; − 12,532 Gg  tCO2e from 
the LULUCF sector) under the BAU scenario and by 
43.62% (17,552 Gg  tCO2e; − 12,159 Gg  tCO2e from 
the LULUCF sector) if international support is mobi-
lized (NDC, 2021).

The NDC document considered mitigation actions 
in all relevant sectors in the country, such as energy, 
agriculture, forestry, and other land-use sectors. The 
mitigation targets in the forestry and other land-use 
sectors will be achieved through expanding carbon 
sinks and planting perennial vegetation, strengthening 
the national measurement, reporting, and verification 
(MRV) system, and introducing new technologies for 
low-carbon development (NDC, 2021).

LULUCF activities can support the achievement of 
the mitigation goals in NDC, ensure sustainable land 
and forest management, increase GHG removals from 
the atmosphere, enhance carbon stocks in carbon pools, 

contribute to national development goals, and provide 
economic, social, and environmental co-benefits.

Forest ecosystems have high priority in the 
LULUCF sector because of their carbon sequestra-
tion and storage capacity. Nevertheless, Kyrgyzstan 
is among the countries that have a low forest cover. 
Forestlands in Kyrgyzstan covered 1.29 million ha in 
2019 (FAO, 2020). However, according to national sta-
tistics, the total state forest fund area is over 2.6 million 
ha (NC3, 2016), of which 1.17 million ha is covered by 
forests as of 2019 (GoK, 2022). The per capita forest 
area is 0.2 ha, mostly unevenly distributed across the 
country. Around 90% of forests are located between 
700 and 3600 m in elevation (Jia et al., 2019; SAEPF, 
2015). Nevertheless, forests face some issues, such 
as anthropogenic forest degradation due to overharvest-
ing for logging,  fuelwood and buildings, unregulated 
livestock grazing, an increasing population that puts 
more pressure on forestlands, and inadequate financial 
resources. These problems result in the unsustainable 
use of forest resources and reduce the carbon seques-
tration and storage capacity by forests.

Continuous monitoring of LULUCF is essential for 
efficient reporting and verification of carbon stocks 
and changes to meet the international commitments 
of Kyrgyzstan in this sector. GHG inventory in the 
LULUCF sector requires consistent, transparent, com-
plete, and up-to-date activity data. In contrast to pixel-
based maps, sample-based area estimation allows the 
correction of systematic errors and provides confi-
dence intervals based on sampling errors required 
by the Paris Agreement. Therefore, the countries do 
not only accurately measure and report GHG emis-
sions but also they assess the uncertainties embedded 
in their calculations (Sandker et al., 2021). Addition-
ally, periodic monitoring of lands is essential to esti-
mate the total extent and changes over time, support 
policy and strategy development, facilitate decision-
making, improve the planning process (Khadka et al., 
2020; Romero-Sanchez & Ponce-Hernandez, 2017), 
and evaluate human interventions and impact on 
land resources (Li & Shao, 2014). Moreover, it sup-
ports categorizing land-use types and sub-classes and 
achieves highly accurate land-use change estimates 
(Maniatis et al., 2021), ensures sustainable land/forest 
management, and promotes the sustainable provision 
of ecosystem services in production landscapes.
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In this context, Open Foris Collect Earth (CE), 
developed by FAO, supports countries for efficient, 
low-cost monitoring of lands and generates relevant 
data and information for reporting purposes (Bey 
et al., 2016; Maniatis et al., 2021; Reytar et al., 2021; 
Tzamtzis et al., 2019).

CE has been widely used in recent studies to 
develop forest cover maps (Schepaschenko et  al., 
2015), estimate the global extent of tree cover and 
forest cover in dryland biomes (Bastin et  al., 2017), 
report land use and land use changes (García-Montero 
et al., 2021a; Martín-Ortega et al., 2018), and monitor 
trees outside forests (García-Montero et  al., 2021b). 
CE also supports countries by providing consistent 
and complete land representation to calculate car-
bon stocks and changes based on IPCC guidelines 
(Tzamtzis et al., 2019).

Several studies have been conducted in Kyrgyzstan 
using remote sensing techniques or CE at local lev-
els. For example, Jia et  al. (2019) prepared a forest 
cover map with a hybrid approach, combining land 
cover, geographical features, and classifier products. 
The forest cover was estimated as 472,369 ha or 2.4% 
of the country’s land area. Piroton et al. (2020) moni-
tored landslides and identified triggering factors in 
the Mailuu-Suu Valley, showing that long-term land 
degradation and small-scale displacement, heavy 
rainfall events, and rapid snow melt trigger landslides. 
In another study, Nazarkulov et al. (2021) conducted 
a geohazard inventory, detected hazards in 3500 plots, 
and developed geohazard maps by interpreting 85,000 
sample plots in the Uzgen region.

On the other hand, De Simone et  al. (2021) 
detected 41,400 ha of forest cover loss in mountain-
ous areas by monitoring Mountain Green Cover Index 
between 2015 and 2018. Finally, Isaev et  al. (2023) 
monitored walnut forests in the western Tien Shan 
using the normalized difference vegetation index 
(NDVI) and vegetation condition index (VCI) cal-
culated based on the Sentinel-2 satellite and drone 
images.

While each of the studies focused on different 
aspects of land monitoring at different levels, an 
updated national dataset for the LULUCF is lack-
ing in Kyrgyzstan to monitor land use and land use 
change trends and to support developing a com-
prehensive GHG inventory. A scientifically sound 
assessment is needed to provide an updated LULUCF 
sector report and reveal the spatiotemporal change 

in Kyrgyzstan. To this end, the present study aims 
to systematically monitor land use dynamics in Kyr-
gyzstan using a state-of-the-art remote sensing tool 
(i.e., CE) based on the national grid system.

Materials and methods

Study area

The study area is Kyrgyzstan at the national level 
(Fig.  1). With its seven regions, Kyrgyzstan is 
located within the Tien Shan and Pamir-Alai Moun-
tain ranges, where less than 20% of this territory has 
comfortable living conditions due to the mountainous 
topography. The country has a continental and mainly 
arid climate, divided into four climate zones based on 
elevation above sea level (NC3, 2016).

The country has an area of 19.90 million ha1 with 
2.66 million ha of state forest land (GoK, 2022). 
According to the FAO, the country’s total land area is 
19.18 million ha,2 and forestlands cover almost 1.29 
million ha. The area of forestlands has increased by 
14.14% between 1990 and 2019 (FAO, 2020).

Collect Earth software

CE, a free and publicly accessible software, collects 
current and historical data on forestlands, croplands, 
grasslands, wetlands, settlements, and other lands 
using the Google Earth platform and a Java- and 
HTML-based data entry form (Makinta et  al., 2015). 
Users can visually interpret moderate to very high spa-
tial and temporal resolution satellite images, archives, 
and databases in Google Earth, Bing Maps, Yandex, 
Google Earth Engine, Google Earth Engine Code Edi-
tor, DigitalGlobe, SPOT, Sentinel-2, Landsat, MODIS, 
and Planet data (Bey et  al., 2016; Maniatis et  al., 
2021). Moreover, Google Earth Engine automatically 
generates NDVI data and graphics for selected sample 
plots using MODIS data since 2000 and Landsat and 
Sentinel data at all available dates without cloud cover 
(Schepaschenko et al., 2019).

1 The total area (19,905,183  ha) of Kyrgyzstan is created by 
CE (extracted from areas_per_attribute.csv) and could differ 
from the official statistics (19,995,100 ha).
2 The total area (19,180,000  ha) of Kyrgyzstan by FAO and 
could differ from the official statistics (19,995,100 ha).
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The data entry forms in CE contain IPCC and 
national-consistent land use categories, sub-categories, 
and sub-divisions. The data entry forms may be custom-
ized in CE, as was done in this study for Kyrgyzstan-
specific classification schemes consistent with the 
guidelines of the IPCC and FAO.

Users can collect information for each sample plot, 
including the latest satellite images, vegetation types, 
vegetation density, infrastructure elements and cover, 
water bodies, disturbances such as floods, landslides, 
overgrazing, fires, and year of land conversion. The 
“Collect” database automatically saves the data entered 
in CE, and Saiku Server uses this data for analyses. 
Users can analyze and assess historical and current data 
through the publicly available web-based Saiku soft-
ware. Saiku provides the outputs in tabular or graphic 
formats that can be exported as XLS, CSV, PDF, PNG, 
or JPG files (CE, 2023; Makinta et al., 2015).

Sampling design

Grid design

The sampling design for the 2019  LULUCF assess-
ment was based on the 2015 LULUCF assessment. A 
regular, systematic grid measuring 0.04° × 0.04° was 
established nationwide with 13,414 sample plots. The 
grid from 2015 was reproduced from the.csv file used 
in that assessment to maintain the same ID for com-
parison. It was transformed into a vector file (.shp) 
and uploaded to Google Earth Engine to add new var-
iables due to the requirements of the updated survey. 
These attributes were later used in the final grid.

Due to a decrease in longitude values towards 
the north direction, longitude distances between 
sampling points in the grid are greater in the south 
than in the north. Because latitude is not affected 

Fig. 1  Map of the study area (UN, 2011)
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by this effect, the distance in latitude between plots 
remains equal.

• Maximum longitude and latitude distances 
between sampling points in the northernmost part 
of the grid: Long: 3.25 km; Lat: 4.44 km.

• Minimum longitude and latitude distances between 
sampling points in the southernmost part of the grid: 
Long: 3.45 km; Lat: 4.44 km (Fig. 2).

Sampling design

Square sample plots with an area of 1 ha (100 m × 100 m) 
were systematically distributed to the entire study area 
(Fig. 3). However, this sampling size (i.e., 1 ha) contrasts 
with the national definition of forest in Kyrgyzstan, which 
was recently adopted right after the 2015 LULUCF 
assessment. In Kyrgyzstan, a “forest” is defined as land 
spanning at least 0.2 ha with trees and shrubs higher than 
1.9  m and 0.5  m, respectively, and a canopy cover of 
more than 10%, minimum width of 25 m, and minimum 
stand density of 0.1 (GoK, 2015). Following the national 
forest definition, a forest was considered the land cover-
ing a minimum of 10% of the sample plot with trees or 
shrubs, with a minimum 25 m distance between the trees 
(GoK, 2015) in this study.

Area calculation (expansion factors)

CE automatically calculates the expansion factors, 
the area representing a plot using the IPCC guide-
lines (IPCC, 2006). We calculated the expansion 
factor with the extent of 7 regions in Kyrgyzstan. In 
this regard, the expansion factor (F) was calculated 
through Eq. 1 for all plots across the country.

where Fc is the expansion factor of a plot in the coun-
try, Ac is the country’s total area (extracted from 
areas_per_attribute.csv), and Nc is the number of 
plots within the country.

Table  1 shows the equivalence of area per plot 
after applying the expansion factors.

The areas of the country and provinces (.shp for-
mat) were extracted using a Google Earth Engine 
(GEE) script developed by FAO. According to this 

(1)Fc = Ac∕Nc

dataset, the country’s total area is 19.90 million ha, 
extracted from areas_per_attribute.csv. Province 
areas were extracted from the Global Administrative 
Unit Layers (GAUL) dataset and correspond to areas 
shown in Table 1.

Survey design

Use of Open Foris Collect for survey design

The survey used in Kyrgyzstan’s Mapathon focused 
on collecting LULUCF data. The survey was designed 
using Open Foris Collect. It was cloned from a recent 
survey designed to conduct assessments in several 
African countries (Africa DEAL 2019 v.3.2.cep). 
Africa DEAL 2019 v.3.2 resulted from many years of 
improvement following feedback from several assess-
ments carried out worldwide. It incorporates internal 
calculations and rules of validation to avoid mistakes 
in assessing sample plots. Finally, it was intended to 
be a standard survey used for the whole African con-
tinent and, therefore, a comparable survey for Africa 
and worldwide to carry out LULUCF assessments.

The main changes in the original survey were related 
to national classifications (land use sub-categories and 
sub-divisions) and the addition of elements commonly 
observed in high-resolution images, such as glaciers. 
An additional tab was designed to evaluate erosion, a 
significant driver and threat of land degradation, and 
a barrier to sustainable land management and devel-
opment in the country (Khan et al., 2018; Wang et al., 
2020). The final survey, which was available in English, 
has a total of 7 tabs (Fig. 4).

The first four tabs, “Imagery,” “Erosion,” 
“Description,” and “Attributes,” are descriptive tabs 
where the interpreter has to choose between different 
options (imagery and erosion) and count which ele-
ments are present inside the plot (description, attrib-
utes). In the description and attributes tabs, the user 
must count the number of dots (the plot has 49 dots, 
and the central one is painted red) that fall on top of 
each element. Each dot represents a 2% cover. The 
tabs “LU2019” and “LULUC” describe the land use 
observed in the plot following IPCC rules and also 
temporal changes, if any. Finally, the “Comments” 
tab allows operators to provide any additional com-
ments which could not be reflected in the survey.



 Environ Monit Assess (2023) 195:977

1 3

977 Page 6 of 17

Vol:. (1234567890)

Fig. 2  The systematic, regular grid for Kyrgyzstan with 13,414 sample plots. A Distance between points in longitude distances is 
lower in high latitudes than in lower latitudes. B A zoomed square in red is shown in the northern part



Environ Monit Assess (2023) 195:977 

1 3

Page 7 of 17 977

Vol.: (0123456789)

Reference labeling protocol

The six main land-use categories used in this study 
were proposed by Chapter 3 of the 2006 IPCC Guide-
lines for National GHG Inventories: forestlands, crop-
lands, grasslands, wetlands, settlements, and other 
lands (IPCC, 2006). Each sample plot was assigned to 
one of the six main land-use categories. In addition, 
land-use sub-categories and national sub-divisions 
were used (Fig. 5).

Hierarchy for the classification of land use in the plot

Martínez and Mollicone (2012) developed hierarchi-
cal rules to classify land use categories based on land 
cover and forest definition of FAO. Table 2 provides 
hierarchical rules and thresholds for all land catego-
ries. A plot with 30% of tree/shrub cover is classified 
as forestland unless it has more than 20% of settle-
ments or croplands. Once the primary land use was 
determined, the operators classified the land for sub-
categories and sub-divisions using the land repre-
sentation scheme described in Fig. 5. This hierarchy 
allows classifying a plot with a single-use class in 
case there is a mixture of different land uses within 
the plot.

Data collection

A 10-day “Capacity Development Training on LULUCF 
Assessment Training” was conducted in Bishkek/Kyr-
gyzstan between 15 and 25 April 2019 to undertake 
LULUCF assessment through CE. During the first 
3  days, the operators were trained to perform CE and 
interpret high-resolution images to assess land use trends 
and land use change in Kyrgyzstan. During the remaining 

Fig. 3  An example of a 
1-ha sampling unit

Table 1  The number of plots, area of the different regions, 
and equivalent area of each plot

Province Area of the region 
(ha)

Equivalent 
area per plot 
(ha)

Batken 1,669,178 1,529.95
Chuy 1,999,006 1,484.04
Jalal-Abad 3,341,600 1,481.86
Naryn 4,529,919 1,487.16
Osh 2,932,652 1,510.89
Talas 1,140,848 1,455.16
Ysyk-Kol 4,291,980 1,468.34
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Fig. 4  An example of data collection forms
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Fig. 5  IPCC’s land representation scheme
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days of the Mapathon, the operators assessed LULUCF 
information visually on individually assigned batches of 
sample plots through CE.

The sampling design for the LULUCF assessment was 
conducted using free, open-source, high-resolution image 
repositories and optical datasets available on Google Earth, 
Bing Maps, Google Earth Engine Explorer, and Code Edi-
tor (i.e., Annual Greenest-Pixel, 32-Day, and 8-Day Top 
of Atmosphere Reflectance Composites from Landsat 7 
and 8). Google Earth Engine also enabled visualization of 
false color composites using bands 4, 5, and 3 of Landsat 7 
images and bands 5, 6, and 4 of Landsat 8 images.

Data check and validation

Plots assessed during the training were checked and 
validated for consistency. Not all plots could be vali-
dated or reviewed due to time and resource constraints. 
For those plots that could not be entirely reviewed, 
descriptive interpretations in the form of tables and fig-
ures were provided. Other plots, due to their importance 
for the assessment (forestland and plots with observed 
changes), were reviewed more thoroughly:

• All plots classified as forestlands were consistently 
reviewed one by one. This decision was made due 
to the significant role of trees and shrubs as carbon 
stocks. The number of forest plots was initially 956; 
however, it decreased to 911 after revision.

• All plots classified with observed changes were 
also checked for consistency because of the nature 
of the LULUCF assessment. The number of plots 
with observed changes was initially 56, but it 
decreased to 22 after revision.

Results and discussion

Comparison between LULUCF 2015 and LULUCF 2019

The study updated the previous LULUCF assess-
ment by correcting overestimations. The compari-
son between LULUCF assessments 2015 and 2019 
is presented in Table  3. The main differences were 
in grassland, at 9.21%, and other lands, at − 4.72%. 
These differences may be related to misclassifications 
of land use classes between the periods. Another sig-
nificant difference was found in the forest class with 
a − 2.37%, probably due to an overestimation in the 
2015 assessment.

The new results showed that forestlands in Kyr-
gyzstan cover 1.36 million ha or 6.83% of the total 
land with a 6.23% sampling error. According to Jia 
et al. (2019), forestlands covered 472,369 ha in 2010, 
approximately 2.4% of the country. However, the for-
est definition could explain the low estimation of for-
est area since a 40% tree cover threshold value was 
used in the study. Yin et al. (2017) reported that for-
ests covered 3.3% of the total land in Kyrgyzstan from 
2009 to 2011. Tomaszewska and Henebry (2021) 
estimated that croplands covered less than 10% of 
and forests covered around 5% from 2001 to 2017 
in Kyrgyzstan. The differences in forest area can be 
explained by distinct reporting periods and the vary-
ing forest definitions authors used.

In our study, the forest area estimate is 5 to 16% 
higher than previous estimates (FAO, 2020; GoK, 
2022), equal to 63,024 to 188,164 ha of forest that has 
never been reported. The new estimate increases cur-
rent forestlands by 10.4% on average in Kyrgyzstan. 

Table 2  Hierarchy to classify IPCC land use classes

Category Minimum 
land cover

Settlements 20%
Croplands 20%
Forestlands 30%
Grasslands 20%
Wetlands 20%
Other lands  > 20%

Table 3  Differences between LULUCF 2015 and LULUCF 2019

Settlements Forests Wetlands Croplands Other lands Grasslands

% Area IPCC 2019 1.77 6.83 4.05 8.64 24.19 54.51
% Area IPCC 2015 1.48 9.20 4.38 10.20 28.91 45.30
The difference in % 2019–2015 0.29 −2.37 −0.33 −1.56 −4.72 9.21
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However, according to the first national forest inven-
tory (2008–2010), forests have decreased from 1.42 
to 1.39 million ha between 1990 and 2010 (NC3, 
2016). Ann inconsistency is apparent between NC3 
(2016) and GoK (2022).

Land use and land use change

The assessment shows that land use change has been 
minimum from 2000 to 2019 in Kyrgyzstan (Fig. 6). 
The total land use change produced across all land 
types is 1.44% (assessed plots with detected changes 
are 22/13,414 = 0.16%).

Similarly, Klein et  al. (2012) developed land use 
change maps for Central Asia using MODIS time 
series from 2001 to 2009. Chen et  al. (2013) also 
developed land cover/land use change maps for Cen-
tral Asia between 1990 and 2009 with three different 
datasets. Both studies detected land use changes (i.e., 
deforestation, a decrease of croplands) over time at 
the regional level and provided some insights at the 
country level. However, they either used different 
land use classifications or provided quantitative data 
at the regional level. Likewise, Hu and Hu (2019) 

reported that grasslands and bare lands (other lands) 
covered 71.7% and 7.1% in 2017, which is compatible 
with our findings. The difference between the esti-
mates could be explained by the reporting period and 
the difficulty distinguishing between the grasslands 
and other lands.

Regarding the changes among six land use types, 
Kyrgyzstan experienced land use change and area 
increase mainly in settlements and grasslands. An 
area increase follows this in other lands and forest-
lands. On the other hand, the area of croplands and 
wetlands has decreased considerably (Tables 4 and 5).

The greatest loss discovered for 2000 was due to 
the conversion of croplands, followed by wetlands. 
Croplands were converted mainly into settlements 
(− 0.43%) and some into grasslands (− 0.17%). Grass-
lands (− 0.12%), forestlands (− 0.11%), and other 
lands (− 0.06%) were lost to a lesser extent. Higher 
gains in 2019 correspond to settlements (+ 0.47%) 
which have only gains from other land use types and 
can be interpreted as urban expansion. Grasslands 
also showed an increase (+ 0.46%). Forestlands expe-
rienced an increase of 0.21%, followed by other lands 
(0.20%) and croplands (0.09%) to a lesser extent.

Fig. 6  IPCC land propor-
tions for 2000 and 2019

Table 4  Land use change matrix for 2000–2019 (the units are in ha)

Land use (2019) Land use 2000

Forest Cropland Grassland Wetland Settlement Other lands

Forest 1,355,660.61 0.00 3,017.12 1,487.17 0.00 0.00
Cropland 0.00 1,712,958.42 2,950.21 0.00 0.00 3,040.85
Grassland 1,454.88 2,963.73 10,845,141.04 1,481.86 0.00 0.00
Wetland 0.00 0.00 0.00 807,075.22 0.00 0.00
Settlement 0.00 7,445.71 4,391.62 0.00 341,104.33 0.00
Otherland 0.00 0.00 2,963.73 1,455.16 0.00 4,810,591.02
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Net changes in land use are shown in Fig. 7. Between 
2000 and 2019, net losses were found in wetlands and 
croplands, whereas forestlands, other lands, grasslands, 
and settlements increased in ascending order.

The results of this study support the decline of 
croplands in the country with a decrease of − 0.51%. 
This trend has a direct impact not only on forest 
conservation but also on the increase of forestlands 
(0.10%) and grasslands (0.34%). Most forests are 
naturally protected because of the insignificant agri-
cultural pressure and because they are located in 
areas with low accessibility due to high altitudes and 
slopes with poor roads and railway networks. Moreo-
ver, forests in the country are also protected as natural 
areas. Describing trends in the amount of land allo-
cated to agricultural use is vital to understanding land 
use change, primarily because agriculture has been 
viewed as the primary driver of deforestation world-
wide (Khan et al., 2018).

Forest loss from 2000 to 2019 represents only 
1454.88  ha due to transformations from hardwood 
plantations into grasslands for grazing, the leading 
driver for forest disturbance. Most of the area gained 
(4504.29 ha) corresponds to newly established spruce 
and pistachio plantations and recurrently flooded 
floodplains colonized by willow species. This net 
increase in forest area was 0.22% (Fig. 8).

Although our study showed a total net for-
est increase of 3049.4  ha, FAO (2020) provided a 
total net forest increase of 116,240  ha from 2000 
to 2019. Likewise, national statistics (GoK, 2022) 
show a total net forest increase of 10,900  ha from 
2011 to 2019. The methodology and forest defini-
tion could explain the most remarkable difference 
between the findings. However, a more detailed 

Table 5  Land use change matrix showing the percentage of different land use classes

Land use (2019) Land use 2000

Forest Cropland Grassland Wetland Settlement Other lands Gain 2000–2019

Forest 99.89 0.00 0.03 0.18 0.00 0.00 + 0.21
Cropland 0.00 99.40 0.03 0.00 0.00 0.06 + 0.09
Grassland 0.11 0.17 99.88 0.18 0.00 0.00 + 0.46
Wetland 0.00 0.00 0.00 99.45 0.00 0.00 + 0.00
Settlement 0.00 0.43 0.04 0.00 100.00 0.00 + 0.47
Otherland 0.00 0.00 0.03 0.18 0.00 99.94 + 0.20
Loss 2000–2019 −0.11 −0.60 −0.12 −0.55 0.00 −0.06

Fig. 7  Net gains and losses in land use categories from 2000 
to 2019

Fig. 8  The total area gained and lost owing to deforestation or 
afforestation practices from 2000 to 2019 (ha)
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LULUCF assessment can be conducted to improve 
the quality of the work. On the other hand, Hansen 
et  al. (2013) reported 30,000  ha of tree cover loss 
for Kyrgyzstan based on the results from a time-
series analysis with Landsat imagery by character-
izing global tree cover extent and change. Similarly, 
De Simone et al. (2021) detected 41,400 ha of forest 
cover loss in mountain areas by monitoring Moun-
tain Green Cover Index between 2015 and 2018. 
The difference in this study could be explained by 
the reporting years, forest definition, or the method-
ology applied.

Based on the uncertainty analyses, there may 
not be an actual change in forest area in Kyrgyzstan 
because the difference in forest area from 2000 to 
2019 is within the confidence interval. In other 
words, the change in the forest area is smaller than 
the confidence interval; hence, we found that no 
significant change occurred in Kyrgyzstan (Fig.  9) 
for these 19 years.

Current land use sub-divisions and their changes were 
detailed in Tables 6, 7, 8, and 9. The tables describe the 
current land subdivision in 2019 in rows, and the previ-
ous land use sub-division in 2000 in columns, allowing 
tracking the conversion more effectively.

Changes in land use occur evenly spaced in time 
with no particular event associated with them except 
for settlements which seem to be centered from 2011 
to 2016.

The reasons behind the small land use changes 
observed in Kyrgyzstan between 2000 and 2019 are 
complex and seem to combine numerous factors. 
Some of the reasons directly related to land use and 
physical peculiarities have been investigated in the 
country. All these should be interpreted together 
along with socioeconomic and political factors.

This study developed a land use map for Kyr-
gyzstan to show the distribution of different land use 
categories across the country (Fig. 10).

Sampling uncertainties in Kyrgyzstan

Confidence intervals were calculated for the collected 
data. Confidence intervals reflect the robustness of 
the sample design adopted in Kyrgyzstan, indicating 
whether the sample is sufficiently representative of the 
land uses. The standard error (ha) of an area estimate 
was obtained from IPCC (2006). The following equa-
tion calculates the standard error of an area estimate:

(2)A

√

(pi ∗
(

1 − pi
)

)∕(n − 1),

Fig. 9  Uncertainties 
associated with changes in 
forest and non-forest lands

Table 6  Forestland sub-division categories, ha

Forest Land use subdivision 
2000

Land use subdivision 2019 Pasture River with 
permanent 
runoff

Natural Floodplains-Willows – 1,487.17
Planted Forest Coniferous-Spruce 1,487.17 –
Planted Forest Hardwood-

Pistachios (almonds)
1,529.95 –

Table 7  Cropland sub-division categories, ha

Cropland Land use subdivision 2000

Land use 
subdivision 
2019

Annual 
crops

Perennial 
crops

Pasture Rocky 
territory

Annual 
crops

– 1,454.88 1,481.86 1,529.95

Perennial 
crops

2,984.83 – 1,468.35 1,510.90
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Table 8  Settlement sub-division categories, ha

Settlement Land use subdivision 2000

Land use subdivision 2019 Annual crops Perennial crops Pasture Gardens/orchards Pasture 
with 
shrubbery

City/village 5,958.54 – – 1,454.88
Industrial/transport/energy lands – – 1,454.88 1,481.86
Gardens/orchards – 1,487.17 1,454.88 – –

Table 9  Other land sub-
division categories, ha

Otherland Land use subdivision 2000

Land use subdivision 2019 Pasture Sands Pond

Rocky territory – 1,510.90 –
Sands 1,481.86 – –
Ravines 1,481.86 – –
Clay surfaces – – 1,455.16

Fig. 10  Land use distribu-
tion in Kyrgyzstan at 30-m 
resolution

Table 10  Uncertainty 
estimates for Kyrgyzstan 
for 2019

Current land use 2019 Sample size Area Confidence intervals (ha) Uncertainty %

Forest 911 1,360,165 ± 84,755.4 ± 6.23%
Cropland 1,163 1,718,949 ± 94,793.1 ± 5.51%
Grassland 7,307 10,851,042 ± 167,758.5 ± 1.55%
Otherland 3,247 4,815,010 ± 144,290.8 ± 3.00%
Wetland 548 807,075 ± 66,682.7 ± 8.26%
Settlement 238 352,942 ± 44,471.4 ± 12.60%
Total 13,414 19,905,183
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where pi is the proportion of sampling units in the 
particular land-use category i ; A is the known total 
area, and n is the total number of sampling units. The 
95% confidence interval for Ai, the estimated area 
of land-use category i, was given approximately ± 2 
times the standard error (Tables 10 and 11).

Table  10 shows lower uncertainties in 2019, 
with ± 1.55% and ± 3.00% for grasslands and other 
lands, followed by croplands (± 5.51%), forestlands 
(± 6.24%), and wetlands (± 8.26%). The settlements 
show the highest value of uncertainty (± 12.60%), 
which indicates that an increase in sample size will 
result in a decrease in uncertainty. Because land use 
change was minimal, uncertainties for the initial year 
2000 show minimum changes (Table 11).

Conclusions

The primary goal of the LULUCF assessment was 
to update the current and historical activity data in 
the LULUCF sector, monitor land use and land use 
change trends, and support national GHG inventory.

We used CE to demonstrate its efficiency in 
monitoring land use change, allowing Kyrgyzstan to 
update the land use activity data in the LULUCF sec-
tor to develop a robust and transparent national GHG 
inventory and reporting under the UNFCCC.

Open source, free use of very high-resolution 
imagery supported Kyrgyzstan to monitor the trends in 
all land-use categories where available data is outdated, 
overestimated, and field accessibility is limited.

The LULUCF assessment indicated that the total 
land use change is 1.44%. When comparing the 2000 
and 2019 land use and land use change dynamics, 
Kyrgyzstan has experienced relatively minor land 

use changes in all land use types. There were minor 
increases observed in forests (0.10%), other lands 
(0.14%), grasslands (0.34%), and settlements (0.47%). 
On the contrary, minor decreases were observed in 
wetlands (0.55%) and croplands (0.51%). The primary 
drivers of land conversion in croplands were urbaniza-
tion and grassland transformation. The settlement class 
experienced the most significant relative gain with 
11,837 ha or a 3.4% increase from 2000 to 2019.

Forestlands in Kyrgyzstan covered 1.36 million 
ha or 6.83% of the total land, with a 6.23% uncer-
tainty in 2019. The new forest area estimation was 
5 to 16% higher than previous estimates, corre-
sponding to an additional 63,024 to 188,164  ha of 
forestland that was not reported previously. The 
new LULUCF assessment increases the forest area 
by 10.4% in Kyrgyzstan. This study acknowledges 
the different forest extent estimates by other studies 
since the forest definition, country area, methodol-
ogy, or reporting period could differ from our study.

Our study showed that CE is a time and cost-
efficient software to generate accurate and consist-
ent LULUCF data at various levels within a short 
period, particularly in lands where access is limited 
and the land-use information is outdated or non-
existent. In light of the fact that spatially explicit 
LULUCF assessment previously overestimated 
the land extent, particularly forestlands, the new 
LULUCF data developed in this study provided reli-
able, accurate, and up-to-date activity data to sup-
port GHG inventory under the UNFCCC.
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