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Abstract Trihalomethanes (THMs) are the first 
disinfectant by-products in the drinking water dis-
tribution network and are classified as potential car-
cinogens. The presence of THMs in chlorinated water 
depends on the pH, water temperature, contact time 
between water and chlorine, type and dose of disin-
fection, bromide ion concentration, and type and con-
centration of natural organic materials (NOMs). In 
the present study, the formation of THMs was evalu-
ated by six simple and easy water quality parameters 
and modeled by an artificial neural network (ANN) 

approach through five water distribution networks 
(WDNs) and the Karoun River in Khuzestan prov-
ince. The results of this study that was conducted 
from October 2014 to September 2015 showed that 
THM concentration ranged in five WDNs, including 
Shoushtar, Ahvaz (2), Ahvaz (3), Mahshahr, Khor-
ramshahr, and total WDNs through N.D.–9.39 µg/L, 
7.12–28.60, 38.16–67.00, 17.15–90.46, 15.14–29.99, 
and N.D.–156, respectively. The concentration of 
THMs exceeded Iran and EPA standards in many 
cases in Mahshahr and Khorramshahr WDNs. Evalu-
ation of R2, MSE, and RMSE showed the appropriate 
correlation between measured and modeled THMs, 
indicating a reasonable ANN potential for estimating 
THM formation in water sources.

Keywords Trihalomethanes (THMs) · Water 
quality · Water distribution networks (WDNs) · 
Artificial neural network (ANN) · Karoun River

Introduction

Water-related epidemics have considerably decreased 
by using chlorine as disinfection for drinking water 
resources in 1904. Researchers have discovered a new 
compound called trihalomethanes (THMs) in chlo-
rinated disinfected water that forms within the reac-
tion of chlorine and NOM, both of which are known 
to be precursors of THMs. Due to the low molecular 
weight of these precursors, they do not eliminate by 
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conventional water treatment units (Garcia-Villanova 
et al., 1997; Kim & Yu, 2005; Liang & Singer, 2003). 
The type and concentration of THMs depend on sev-
eral factors, i.e., the type of chlorinated disinfectants, 
contact time, pH water, and concentration of added 
disinfectants, organic materials, remaining chlorine, 
and bromide ion (Khan et al., 2019; Xu et al., 2022).

Chloroform  CHCl3 is the most frequent com-
pound among other THMs over 70% of THM com-
pounds belong to chloroform in many cases that are 
classified as  B2 according to the international agency 
for research on cancer IARC. Effects of THMs on 
health are divided into acute and chronic effects. Skin 
lesions, allergic symptoms, and poisoning are acute 
complications, and cancer infection is a chronic com-
plication (Bull, 1991). Due to the health effects of 
THMs, USEPA in 1979 imposed regulatory controls 
on the amount of THMs in drinking water. Accord-
ingly, the maximum THM concentration in drinking 
water of 100 μg/l was considered the annual average, 
which was reduced to 80 µg/l in 1998 (EPA, 1998).

Researchers implement different models for the 
evaluation of variations of environmental pollut-
ants for the better management of environmental 
resources. The use of these models is very compli-
cated and requires a significant amount of field data 
for analysis. In addition, many of the statistical mod-
els consider the relationship between response and 
predicted variables as linear with normal distribu-
tion. However, evaluation of environmental issues is 
under influence of the numerous factors. Thus, the 
traditional models may not be practical and robust 
enough to solve the environmental issues. In other 
words, they have weak accuracy for nonlinear mode-
ling relationships with many different variables. Arti-
ficial neural network (ANN) is capable of evaluating 
the complex nonlinear relationships with high accu-
racy (Hong et al., 2020). At the same time, the ANN 
technique is flexible enough and can reveal the hid-
den relationships among data. Therefore, it facilitates 
the modeling of nonlinear behavior. ANN is modeled 
on the biology of the human brain, in which mil-
lions of neurons are linked together to process dif-
ferent complex information (Aleboyeh et  al., 2008). 
To model THM compounds, a suitable method is 
needed. The compounds that are affected by differ-
ent factors and standard mathematical models are not 
capable of analyzing them. Due to the simplicity and 
strangeness of ANN for simulation, prediction, and 

modeling, many researchers used it (Aleboyeh et al., 
2008; Elmolla & Chaudhuri, 2011). Recently, many 
scientific branches, including water engineering and 
biological and environmental sciences, used the neu-
ral network approach. For example, it is used to sim-
ulate and predict the concentration of different pol-
lutants in the air, water, and earth (Alimissis et  al., 
2018; Ghaedrahmat et al., 2019; Maleki et al., 2019; 
Tahmasbi, 2019; Takdastan et  al., 2019; Tinelli & 
Juran, 2019; Vasanthi & Kumar, 2019; Wu et  al., 
2011; Xu et al., 2022).

Recent studies showed that ANN is a vital tool 
for enhancing the performance of water resources 
management systems (Daosud et  al., 2005; Khan 
et al., 2019; Rizal et al., 2022). This approach also 
describes the behavior of water quality parameters 
with higher accuracy than other methods, e.g., lin-
ear regression (Tinelli & Juran, 2019). Since sur-
face water is one of the main drinking water sources 
in Iran, and the application of chlorination systems 
is the most frequent method of disinfection for 
drinking water, the formation of THM compounds 
increased in treated water. In recent years, drinking 
water resources in Khuzestan province, including 
Ahvaz (2), Ahvaz (3), Mahshahr, Khorramshahr, 
and Shoushtar water treatment plants and total 
WDNs confronted with a high level of pollution 
and water shortage crisis. Therefore, the potential 
of THMs formation is high during the water treat-
ment, and the necessity of momentary management 
of THMs with robust tools like ANN is vital. In this 
study, ANN is used to predict the concentration of 
THMs in WDNs by the influencing parameters.

Material and methods

Site selection

In this descriptive, analytical, and cross-sectional 
study, quantitative and qualitative levels of THMs 
and their precursors were evaluated and modeled at 
water withdrawal points of the Karoun River, includ-
ing Shoushtar, Ahvaz, Mahshahr, and Khorramshahr 
during 12  months of sampling from October 2014 
to September 2015. The map of Khuzestan province 
and the sampling points along the Karoun River are 
presented in Fig. 1.
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Water sampling procedure

The sampling points of the distribution networks 
were in three points of WDNs of Shoushtar, Ahvaz 
2, Ahvaz 3, Mahshahr, and Khorramshahr. The 
parameters of DOC, pH, water temp, UV254, 
chlorine demand, and bromide were measured 
and entered into the software. In every sampling, 
one sample was recorded from raw water before 
the water treatment plant, and three samples were 
taken through the first, middle, and end of WDN. 
Sampling was performed twice each month. Water 

temperature, pH, free residual chlorine free residual 
chlorine (FRC), and  UV254 were measured dur-
ing sampling. Water temperature (°C) was detected 
by a digital thermometer, made in Germany, with 
an accuracy of around ± 0.05. FRC and pH were 
observed by digital chlorine/pH meter, made in Pal-
intest company from England model Multi 1000. In 
this colorimetric method, red phenol and diethyl-p-
phenylenediamine DPD tablets are used as pH and 
FRC markers, respectively. Observing ranges of the 
devices are 0–5  mg/l and 6.8–8.4 for FRC and pH 
meters, respectively.

Fig. 1  The map of the studied locations
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The concentration of THMs was measured by an 
Agilent 6890 Gas Chromatograph USA with a micro-
electron capture detector µECD. All stages of the 
study, including sampling, sample preparation and 
stabilization, and measurements, were conducted 
according to USEPA standards EPA-METHOD 551.1 
in the hydrology laboratory of Ahvaz Water Treat-
ment Plant No. 2, Health Faculty of Ahvaz Jondis-
hapour University of Medical Sciences, and Iran Min-
eral Processing Research Center.

The samples taken by grab sampling were used to 
analyze dissolved organic carbon DOC and ultraviolet 
absorption at a wavelength of 254 nm. DOC samples 
were analyzed by a Shimadzu TOC Analyzer-VCSH 
Japan. The water samples collected for measuring bro-
mine ions were analyzed by a Waters Alliance 2695 
ion chromatography USA equipped with a Waters 
2465 electrochemical detector USA.

Modelling by ANN

The gathered water data were processed in Excel. Then, 
the artificial neural network for predicting THM con-
centration was built in MATLAB. The inputs of this 
network were six parameters including DOC, pH, water 
temperature,  UV254, bromide, and chlorine demand that 

affect THM formation, and its output was the concen-
tration of THMs in water.

An artificial neural network is a system of simple 
processing parameters called neurons that take a num-
ber of inputs, give them weights, add them together, 
and add errors to them. Finally, they use the output val-
ues as the only numerically valued function, while they 
are obtained at the output of the neurons. In general, the 
neural network creates a non-linear relationship by cre-
ating a non-linear mapping between a set of input and 
output data, which after creating this relationship can be 
used to simulate the output based on the values of other 
inputs. Figure 2 shows the architecture of a neural net-
work (Elmolla & Chaudhuri, 2011; Hong et  al., 2020; 
Kadali et al., 2014; Rizal et al., 2022; Ubah et al., 2021). 
As shown in Fig. 2, the neural network model includes 
the input values that are multiplied by a set of weights. 
The results are aggregated in the neurons of the middle 
layer, and finally, the outputs are calculated using Eq. 1 
(Maleki et al., 2019; Rizal et al., 2022; Ubah et al., 2021).

In this equation, y is the simulated output, WT
ij

 is 
the transpose of the weight of input i for neuron j, P is 
the input vector, and b is the bias.
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Fig. 2  Structural diagram of ANN
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Based on this model, the parameters involved in 
air pollution in this research at any time and previous 
times related to it are selected as input and the value 
of that parameter is considered as output in the fol-
lowing times. First, the neural network was trained for 
a portion of the data to determine the best values for 
its weights and biases, and then tested for the desired 
time period. In this research, a MATLAB neural net-
work toolbox is used to implement the network. Data 
preprocessing is necessary to improve neural net-
work training. Input and output data should be scaled 
between 0.1 and 0.9.

The architecture of the artificial neural network 
is determined by the number of layers and the num-
ber of neurons in each layer, which is an important 
step for the development of the model to determine 
this architecture. To determine the number of differ-
ent neurons in the hidden layer, the neural network is 
tested several times for different numbers of neurons 
(5–15 neurons in the hidden layer) and trained several 
times for each specific number of neurons, and the 
results were compared in terms of root-mean-square 
error (RMSE), mean squared error (MSE), and coef-
ficient of determination R2 as formulated in Eqs. 2–4. 
In these equations, N is the number of data items, Pi 
is the value predicted by the network, Oi is the value 
obtained from the experiments, and i is the subscript 
of data items (Rizal et al., 2022).

Sensitivity analysis for data

To determine the relative importance of each input 
variable for the solution, a sensitivity analysis was 
performed using Eq.  5, Garson’s equation (Elmolla 
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& Chaudhuri, 2011; Kadali et al., 2014; Rizal et al., 
2022).

In this equation, Ij is the relative importance of the 
jth input for the output; Ni and Nh are the numbers of 
input neurons and hidden neurons, respectively; Ws 
denotes the connection weights; i, h, and o are the 
subscripts for input, hidden, and output layers, and 
k, m, and n are the subscripts for input, hidden, and 
output neurons, respectively (Elmolla & Chaudhuri, 
2011; Maleki et al., 2019).

Results and discussion

THM concentration at the points of water withdrawal 
from Karoun River

Changes in THM concentration along Karoun River 
from Shoushtar to Khorramshahr in different seasons 
and the standard concentration of THMs in water are 
illustrated in Fig. 3. As Fig. 3 shows, the concentra-
tion of THMs in the Karoun River gradually increases 
as it flows from Shoushtar to Khorramshahr. The 
THM value of Karoun River in Ahvaz is almost twice 
that of Shoushtar. While passing through Ahvaz, the 
river receives significant amounts of municipal and 
industrial wastewater, which increase its DOC and, 
therefore, THM level. As a result, in Mahshahr, the 
river has on average 1.5 times more THM than when 
it arrives at Ahvaz. In Khorramshahr, the DOC level 
of Karoun River is even higher than in Mahshahr, fur-
ther increasing the potential for THM formation.

Both Mahshahr and Khorramshahr sections of the 
river are at risk of THM concentrations above the 
EPA standard. In all four points, the highest THM 
concentrations emerge during summer.

Variations and the relative importance of parameters 
affecting THM formation

The average values of six parameters affecting THM 
formation in the studied water samples DOC, pH, 
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water temperature,  UV254, bromide, and chlorine 
demand are provided in Table 1.

Table 2 shows the relative importance of the input 
parameters including DOC, pH, water temperature, 
 UV254, bromide, and chlorine demand for predicting 
the concentration of THMs based on Eq. 5. As is evi-
dent, among the considered inputs, the factors most 
greatly affecting the concentration of THMs in Ahvaz 
Water Treatment Plant No. 2, Ahvaz Water Treatment 
Plant No. 3, the Shoushtar section, the Mahshahr 

section, the Khorramshahr section, and Karoun River 
as a whole are DOC, DOC, water temperature, chlo-
rine demand, bromide, and DOC, respectively. The 
results of the present study are consistent with the 
results of other studies in terms of the most impor-
tant parameters affecting the concentration of trih-
alomethanes using artificial neural network. Xu et al. 
showed that 4 tap water parameters, i.e., temperature, 
 Cl2,  UVA254, and pH are the most important parame-
ters. Also, Hong et al. showed that the most important 

Fig. 3  Changes in THM 
concentration in the studied 
sites of Karoun River

Table 1  The concentration of parameters affecting the concentration of THMs in the studied sites

WDNs Parameters DOC (mg/L) pH Temp (°C) UV254 (1/cm) Br (µg/L) Cl demand (mg/L)

Ahvaz2 Mean (± SD) 1.14 ± 0.43 195 ± 18 0.016 ± 0.004 24.98 ± 5.75 7.92 ± 0.07 0.84 ± 0.15
Max 1.27 8.07 33.9 0.028 232 3.6
Min 0.57 7.81 15.5 0.01 156 2.4

Ahvaz3 Mean (± SD) 1.14 ± 0.26 252 ± 37 0.015 ± 0.003 23.58 ± 5.75 7.64 ± 0.13 0.97 ± 0.14
Max 1.66 7.95 35.6 0.026 321 4
Min 0.75 7.35 15 0.011 200 2.6

Khoramshahr Mean (± SD) 0.64 ± 0.27 292 ± 100 0.026 ± 0.009 25.04 ± 5.57 7.87 ± 0.14 1.44 ± 0.32
Max 2.21 8.18 34.7 0.048 552 3.5
Min 1.02 7.65 16 0.013 196 2.5

Mahshar Mean (± SD) 0.55 ± 0.23 283 ± 30 0.033 ± 0.003 24.29 ± 5.24 7.98 ± 0.12 2.11 ± 0.19
Max 2.58 8.19 36.1 0.043 350 4.5
Min 1.76 7.8 16.6 0.026 220 3.5

Shoushtar Mean (± SD) 1.39 ± 0.38 162 ± 17 0.003 ± 0.001 17.84 ± 2.28 7.43 ± 0.12 0.090
Max 0.135 7.72 24.6 0.004 210 1
Min 0.027 7.18 14 0.002 138 1

Total WDNs Mean (± SD) 1.87 ± 0.88 236.8 ± 71.4 0.02 ± 0.01 23.15 ± 5.57 7.77 ± 0.24 1.09 ± 0.69
Max 2.58 8.19 36.1 0.048 552 4.5
Min 0.027 7.18 14 0.002 138 1
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influencing parameters are pH, temperature, and 
 UVA254, followed by DOC and Br-, while  NH4+-N 
and  Cl2 residues played a very small role (Hong et al., 
2020; Xu et al., 2022).

The DOC level of Karoun River gradually 
increases from Shoushtar to Khorramshahr. The DOC 
level of Ahvaz is almost twice that of Shoushtar. 
Because of the discharge of municipal and industrial 
wastewater of Ahvaz into the Karoun River, the DOC 
level of the river almost doubles before it reaches the 
Mahshahr section. In Khorramshahr, the discharge of 
industrial wastewaters, particularly from soap-making 
plants and fish and shrimp farms, further increases 
the DOC water level. According to the results of 
Table 2 and the artificial neural network model, DOC 
is the factor with the most significant impact on THM 
concentration in Ahvaz water treatment plant nos. 
2 and 3 and Karoun River as a whole and is among 
the most important determinants of this parameter in 
other sections, particularly Mahshahr and Khorram-
shahr. Although the DOC level of Karoun is not high 
enough to justify control and removal strategies, the 
seasonal changes of the DOC level suggest that the 
river tends to exhibit higher average DOC levels dur-
ing summer, when river discharge is markedly lower. 
Examining the changes in the  UV254 absorbance of 
Karoun, it was found that this parameter rises and 
falls with the river’s DOC level. The results indicate 
that the only place where the amount of  UV254 has a 
significant effect on THM concentration is the Shu-
oshtar water distribution network, where the THM 
level is so low that no control measures are required.

The only place where pH significantly affects the 
concentration of THMs is Ahvaz water treatment 
plant no. 2. In general, THM concentration tends to 
increase with increasing pH. In a study by Kim et al., 
it was reported that the potential for THM forma-
tion increased with increasing pH, resulting in THM 

concentrations of 9.7, 20.7, and 41.6 μg/l at pH levels 
of 5.5, 7, and 7.9, respectively (Kim et al., 2003). A 
study by Liang and Singer has also shown that more 
THM tends to form at pH = 8 than at pH = 6 (Liang 
& Singer, 2003). Some studies have reported a linear 
relationship between pH and the formation of THMs 
(Garcia-Villanova et al., 1997). However, in our study, 
the effect of pH on the THMs concentration in the 
studied areas and Karoun River was not significant in 
general, which could be due to reasonably low varia-
tions in water pH over the length of Karoun River and 
during each year.

As shown in Fig.  3, the concentration of THMs 
in the drinking water of the studied networks usu-
ally exceeds the recommended level in summer and 
at the same time as the water temperature rises. Water 
temperature is an uncontrollable factor dictated by 
environmental conditions. Since rising temperature 
greatly accelerates the decrease of residual chlorine 
in water, it is challenging to maintain a specific chlo-
rine concentration in water distribution networks dur-
ing the hot months of the year. High doses of chlorine 
should be used to ensure sufficient residual chlorine 
in the water (Rodriguez & Serodes, 2001). According 
to Villanova et al. and Rodriguez et al., water temper-
ature is one of the factors that significantly affect the 
formation of THMs in water (Rodriguez & Serodes, 
2001; Uyak et al., 2005). One study reported that the 
total THM concentration in three water distribution 
systems was 34.2, 35.5, and 35.7 μg/l when water was 
more relaxed than 15 °C and increased to 64.2, 40.6, 
and 60.8 μg/l when the water had a temperature above 
15  °C (Rodriguez & Serodes, 2001). Our results 
showed that water temperature had a notable impact 
on the formation of THMs in the Shoushtar and Mah-
shahr water distribution networks.

Examining the bromide ion concentration along 
Karoun, it was observed that this parameter also 

Table 2  Relative 
importance 100% of the 
inputs of the artificial 
neural network model for 
the concentration of THMs 
in the studied sites

WDNs DOC pH Water Temp UV254 Bromide Chlorine Demand
Relative importance, %

Ahvaz2 18.81 18.75 14.34 17.87 11.52 18.69
Ahvaz3 30.09 16.03 9.05 8.62 13.46 22.72
Shoushtar 4.54 14.86 38.12 21.15 6.2 15.1
Mahshahr 23.63 5.85 23.08 11.55 5.5 30.36
Khorramshahr 19.33 14.46 10.25 10.63 23.84 21.46
Total WDNs 32.76 12.87 12.64 13.67 10.08 17.98
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gradually increases from Shoushtar to Khorramshahr. 
The results showed an increase in bromide ion levels 
due to a gradual increase in water EC throughout the 
river. This increase is much more pronounced in the 
Khorramshahr section, where the bromide ion concen-
tration increases an average of three times as much as 
in the Ahvaz region. According to the results, the only 
place where the bromide ion concentration signifi-
cantly affects THM concentration is the Khorramshahr 
water distribution network. One of the reasons for the 
high bromide concentration ion in the Khorramshahr 
segment of Karoun is its proximity to the Persian Gulf 
and the effects of the tides. Bromide ion is an inorganic 
precursor for the formation of disinfectant by-products. 
This ion is naturally present in the groundwater of 
coastal areas because of the seawater seepage. In chlo-
rinated water, bromide ions are oxidized by hypochlo-
rous acid HOCl, forming hypobromous acid HOBr, 
which reacts with natural organic matter to form dis-
infectant by-products. Many studies have shown that 
the simultaneous presence of bromide and chlorine in 
a drinking water source during the chlorination process 
can lead to bromine and bromochlorine by-products 
(Duong et  al., 2003; Kawamoto & Makihata, 2004; 
Westerhoff et al., 2004).

In a study by Kampioti et al. on the Greek coastal 
city of Heraclion, they observed high concentrations 
of bromide ions in raw water 4.0–4.2  mg/L. They 
reported that the bromine components of THMs 
were dominant over the chlorine components of dis-
infectant by-products in drinking water (Kampioti & 
Stephanou, 2002). In the present study, the amount 
of residual chlorine was found to be the factor with 
the most significant effect on THM concentration in 
the Mahshahr water distribution network and also 
an essential determinant of this parameter in other 
places, including Ahvaz water treatment plants (2) 
and (3), Khorramshahr, and Karoun River as a whole. 
The significance of the effect of free residual chlorine 
concentration on THM concentration in the studied 
water distribution networks is directly associated with 
the dose of chlorine used.

Modeling and prediction of THM concentration

In the present study, the optimal numbers of hid-
den neurons in the artificial neural network model 
for sampling sites were tested by examining 5 to 15 
neurons, and in each case, they were trained several 

times, and the results were compared in terms of 
MSE, RMSE, and R2.

Figure 4 shows the error of the models with differ-
ent numbers of neurons for each sampling point. The 
best neuron has the lowest MSE and RMSE while 
having an R2 of greater than 0.9. As can be seen, the 
network tries to find the best weights for the connec-
tions coming from every input and going into every 
neuron. At some point, the model has obtained the 
best possible weights, while producing worse results 
with more significant errors with any further change 
in the weight matrix (Maleki et al., 2019).

In this study, for all sampling points, the model 
inputs were six parameters affecting the concentra-
tion of THMs including DOC, water temperature, 
pH, bromide ion concentration,  UV254 absorbance, 
and chlorine demand content of water, and the model 
output was the concentration of THMs. Accordingly, 
the model was built with six neurons including six 
water parameters in the input layer and one neuron in 
the output layer simulate THM concentrations. The 
hidden neurons for the Shoushtar, Ahvaz (2), Ahvaz 
(3), Mahshahr, and Khorramshahr water distribution 
networks were 7, 13, 8, 7, and 7 neurons, respec-
tively (see Fig. 4). Neural network training was per-
formed with 70% of the database to determine the 
best weights and biases; then, 15% of the database 
was used to validate the model and the last 15% of 
the database was used to test the ability of the model 
to predict and to simulate THM concentrations. Rizal 
et  al. used three data sets to predict water quality 
parameters using ANN model; the percentages of data 
used for training, validation, and testing stages were 
70, 15, and 15%, respectively (Rizal et al., 2022).

The results of the testing of the developed arti-
ficial neural network for all sites are presented in 
Fig.  5. Figure  5a shows the relationship between 
predicted and measured THM concentrations at all 
sites. The THM concentration values predicted by 
the network for each site are incredibly close to and 
highly consistent with the measured THM concen-
trations at those points. Accordingly, no difference 
was observed between the predicted and measured 
THM concentrations. The matching of the meas-
ured and predicted concentrations by the model 
indicates the proper performance of the ANN 
model in predicting the THM concentration based 
on the input parameters (Ghaedrahmat et al., 2019; 
Xu et al., 2022).
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Fig. 4  Selection of the best number of hidden neurons in the ANN model for all sampling sites
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This consistency is shown more clearly in 
Fig. 5b, where the calculated error between the val-
ues of the simulated efficiencies and the measured 
efficiencies is displayed. The values simulated by 
the network are plotted against the measured val-
ues. In this diagram, most points are close to the 
bisector line representing R2 = 1, indicating that R2 
is more significant than 0.95 for all sites. This is 
a pretty desirable level of consistency for environ-
mental data.

Figure 5c shows the error of the simulated val-
ues relative to the measured concentrations. As 
can be seen, over 90% of the data have almost 
zero error, indicating a high level of accuracy. The 
high accuracy of the model is also reflected in of 
Fig.  5d, which shows the histogram of error val-
ues. As this diagram demonstrates, the error histo-
gram has a normal-like distribution, with the data 
points being more frequently located around the 
zero error (Ghaedrahmat et al., 2019; Maleki et al., 
2019; Takdastan et  al., 2019; Vasanthi & Kumar, 
2019). This indicates the excellent performance of 
the ANN in modeling and predicting the concen-
tration of THMs.

The results of Xu et  al. showed that RBF 
ANN (radial basis function ANN) models with 
a higher correlation coefficient (0.886–0.813) 
than linear regression models (LRM) with low R2 
(0.153 to 0.445) and low correlation coefficient 
(0.272–0.459) had better performance in predicting 
THMs. In Xu et  al. study, the performance of the 
RBF ANN with 4 input parameters was better than 
the RBF ANN with 3 input parameters (Xu et  al., 
2022). The lower percentage of error and the higher 
coefficient of the ANN method in the present study 
compared to the study of Xu et al. indicate the bet-
ter performance of the designed network and the 
more suitable selection of input parameters. There-
fore, the correct selection of the effective input 
parameters and the precise design of the network 
will have a significant impact on its model perfor-
mance (Rizal et  al., 2022; Ubah et  al., 2021; Xu 
et al., 2022).

Conclusion

The analysis of water samples taken from all points 
of water withdrawal from Karoun River between 
Shoushtar and Khorramshahr showed a gradual 
increase in the amount and concentration of water 
quality parameters that affect THM formation, includ-
ing water temperature, DOC, bromide ion, and con-
sequently a gradual increase in THM concentration in 
water distribution networks from Shoushtar to Khor-
ramshahr. All studied water distribution networks 
showed much higher THM concentrations in hot sea-
sons spring and summer than in cold seasons autumn 
and winter, with the difference being more pronounced 
in Ahvaz water treatment plant no. 3, the Mahshahr, 
and the Khorramshahr water distribution network. In 
the Shoushtar water distribution network, the concen-
tration of THMs and their components is much lower 
than the standard levels of Iran and WHO guidelines. 
However, in Ahvaz water treatment plants (2) and (3), 
the Mahshahr water distribution network, and the Khor-
ramshahr water distribution network, these concentra-
tions occasionally exceed Iranian and WHO standards 
in spring and summer. DOC and free residual chlorine 
were the most significant impact on THM formation in 
all studied sections and Karoun River as a whole. The 
presence of free chlorine remaining in the studied sec-
tions can be partly attributed to the excessive use of 
chlorine in high doses, especially in the warm seasons. 
While THM formation is typically influenced by water 
pH, the higher the pH, the higher the THM formation; 
in this study, water pH had little effect on THM levels 
in the studied water networks due to small pH changes 
along the river Karoun and during each year.

The results showed that the developed artificial 
neural network could produce acceptably accurate pre-
dictions of THM concentration in the studied water 
distribution networks. This model can be used with rea-
sonable accuracy to estimate THM concentrations, so 
it can help organizations and authorities to avoid costly 
THM measurements. Given the parameters included in 
the model, it can also facilitate the adoption of appropri-
ate strategies to control THMs. The modeling results of 
this study suggest that the majority of the studied water 
treatment plants will benefit from more aptly chosen 
DOC and chlorine dose control measures for controlling 
THMs, although further technical and economic assess-
ments are needed to decide which strategy would be 
more appropriate for and responsive to the situation.

Fig. 5  Testing stage performance of the developed artificial 
neural network for all sites. a The relationship between meas-
ured and predicted concentrations of THMs. b Scatterplots 
measured versus predicted concentrations. c The error values. 
d The histogram of error values

◂
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