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Abstract  Groundwater plays a crucial role in sustain-
ing industrial and agricultural production and meeting 
the water demands of the growing population in the 
semi-arid Guanzhong Basin of China. The objective 
of this study was to evaluate the groundwater potential 
of the region through the use of GIS-based ensemble 
learning models. Fourteen factors, including landform, 
slope, slope aspect, curvature, precipitation, evapotran-
spiration, distance to fault, distance to river, road den-
sity, topographic wetness index, soil type, lithology, 
land cover, and normalized difference vegetation index, 

were considered. Three ensemble learning models, 
namely random forest (RF), extreme gradient boost-
ing (XGB), and local cascade ensemble (LCE), were 
trained and cross-validated using 205 sets of samples. 
The models were then applied to predict groundwater 
potential in the region. The XGB model was found to 
be the best, with an area under the curve (AUC) value 
of 0.874, followed by the RF model with an AUC of 
0.859, and the LCE model with an AUC of 0.810. The 
XGB and LCE models were more effective than the RF 
model in discriminating between areas of high and low 
groundwater potential. This is because most of the RF 
model’s prediction outcomes were concentrated in mod-
erate groundwater potential areas, indicating that RF is 
less decisive when it comes to binary classification. In 
areas predicted to have very high and high groundwa-
ter potential, the proportions of samples with abundant 
groundwater were 33.6%, 69.31%, and 52.45% for RF, 
XGB, and LCE, respectively. In contrast, in areas pre-
dicted to have very low and low groundwater potential, 
the proportions of samples without groundwater were 
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57.14%, 66.67%, and 74.29% for RF, XGB, and LCE, 
respectively. The XGB model required the least amount 
of computational resources and achieved the highest 
accuracy, making it the most practical option for pre-
dicting groundwater potential. The results can be useful 
for policymakers and water resource managers in pro-
moting the sustainable use of groundwater in the Guan-
zhong Basin and other similar regions.

Keywords  Groundwater potential assessment · 
Ensemble learning · Guanzhong Basin · Geographic 
information system (GIS)

Introduction

Groundwater is a vital resource that supports resi-
dential life, agricultural and industrial activities, and 
ecosystem sustainability (Anand et  al., 2021; Cui & 
Shao, 2005). Nearly a quarter of the world’s freshwa-
ter resources come from groundwater, according to 
statistics (Panahi et  al., 2020). In arid and semi-arid 
regions, the proportion of groundwater can be even 
higher due to the scarcity of surface water resources. 
In Northwest China, which is a typical arid and semi-
arid region, the population represents only 7.3% of the 
country, while groundwater reserves account for 1/8 
of the country’s total (Chen, 1986; Wang et al., 2008). 
Effective utilization of groundwater can help allevi-
ate freshwater scarcity in these regions (Arabameri 
et al., 2019). However, the availability of groundwater 
is currently threatened by over-exploitation, climate 
change, and land-use changes. In semi-arid regions 
like China’s Guanzhong Basin, where groundwater 
resources are limited and coupled with high popula-
tion density and rapid economic development, demand 
for groundwater resources has intensified (Kong et al., 
2019). Therefore, it is crucial to conduct accurate 
assessments of groundwater potential to promote sus-
tainable groundwater management in these areas.

The assessment of groundwater potential aims to 
identify areas with a high likelihood of containing 
groundwater resources (Jhariya et  al., 2021). This 
assessment is crucial for optimizing the placement 
of groundwater wells, estimating the potential yield 
of groundwater, and promoting sustainable use of 
groundwater resources (Tegegne, 2022). Typically, 
the assessment involves the use of geological, hydro-
logical, and environmental information to identify 

favorable zones for groundwater development (Farhat 
et  al., 2023). However, traditional methods for 
determining groundwater potential, such as pump-
ing tests and borehole drilling, are time-consuming 
and expensive. To overcome this challenge, more 
researchers have been turning to advanced technolo-
gies such as geographic information systems (GIS) 
(Bera et al., 2021), remote sensing (Shamsudduha & 
Taylor, 2020; Sun et al., 2019), and drones (Jansen, 
2019) to predict and assess the potential of ground-
water (Wang et al., 2022). The biggest advantage of 
using these methods is their ability to analyze the 
entire study area by combining satellite images with 
regional geographic or geological information. How-
ever, one disadvantage of these methods is that the 
results obtained are not always directly related to the 
groundwater itself, but are relatively related, which 
can make them less efficient and reliable than drill-
ing or pumping tests. In order to tackle this issue, 
researchers have developed several assessment and 
evaluation techniques to analyze the data. Two main 
approaches have emerged for assessing groundwater 
potential. The first approach involves weighing the 
various factors that affect groundwater and overlay-
ing them (Singh et  al., 2019). Weight-based meth-
ods include the analytic hierarchy process (Ahmad 
et al., 2023; Arefin, 2020), which depends on human 
intervention and expert ratings and entropy weight 
(Al-Abadi et  al., 2016; Zhang et  al., 2021) which 
considers the distribution characteristics of the fac-
tors. Although these methods are more interpretable 
during the calculation process, their final results 
often do not meet expectations. The second method 
involves dividing the research area into multiple 
points and then scoring or ranking each point using 
methods such as the technique for order of preference 
by similarity to ideal solution (TOPSIS) (Zaree et al., 
2019) or compressing the factor features of these 
points into a one-dimensional vector using principal 
component analysis (Sun et  al., 2021). Point-based 
methods usually produce more accurate results than 
weight-based methods. The two types of methods 
can also be combined, such as the entropy-TOPSIS 
method (Li et  al., 2019), to statistically determine 
the distribution of groundwater potential. However, 
another problem arises that these methods are diffi-
cult to integrate with hydrogeology itself, and some 
valuable drilling or pumping test data have not been 
used accurately enough.
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In recent decades, the rapid development of machine 
learning algorithms has integrated them into various 
industries (Kaur & Sood, 2020; Reichstein et al., 2019), 
including hydrogeology. Machine learning is used in 
various areas of hydrology, such as hydrogeological 
modeling (Sun et al., 2019), model parameter inversion 
(Mo et al., 2020; Zhou et al., 2014), groundwater pollu-
tion source identification (Han et al., 2020), and ground-
water potential assessment. The machine learning 
approach combines the factors that affect groundwater 
potential with borehole data or field survey site informa-
tion. By utilizing the factors as machine learning features 
and borehole data as results, machine learning can deter-
mine potential non-linear associations between different 
features and build complex black box models (Wang 
et al., 2022). One advantage of using machine learning 
for groundwater potential assessment is that the drill-
ing and pumping test data can be used for verification to 
ensure the reliability of the prediction results. Common 
machine learning models, such as decision trees (Duan 
et al., 2016), linear regression, support vector machines 
(Panahi et  al., 2020), k-nearest neighbors, and Bayes 
models (Pham et al., 2021), as well as integrated models 
such as random forests (RF) (Wang et al., 2022), adap-
tive boosting (Rizeei et al., 2019), and extreme gradient 
boosting (XGB) (Ibrahem Ahmed Osman et al., 2021), 
are widely used for groundwater potential assessments. 
Ensemble models enhance the accuracy and usability of 
machine learning, compared to single base learner mod-
els (Arabameri et al., 2021). In most cases, the predic-
tion of groundwater potential using ensemble learning 
models are more accurate (Pham et al., 2021). However, 
the complexity of the geological environment introduces 
variations in the model’s performance and feature engi-
neering, which can differ greatly in different study areas. 
Therefore, it is necessary to investigate and find the most 
suitable machine learning model to predict groundwater 
potential, while keeping in mind the importance of inte-
grating and validating these models with the reality of 
the area being studied.

The Guanzhong Basin is a semi-arid region heavily 
reliant on groundwater resources for agricultural prac-
tices and other human activities (Zhang et  al., 2022). 
As a region experiencing rapid urbanization and eco-
nomic growth, the local water supply faces an increas-
ing demand for water resources, which poses significant 
challenges. Thus, assessing the groundwater potential 
of the Guanzhong Basin is crucial to ensure sustainable 
water resource management in the area. In this study,  

we collected factors that influence groundwater poten-
tial in the Guanzhong Basin and used three ensemble 
learning models, RF, XGB, and local cascade ensem-
ble (LCE) to predict the groundwater potential. We 
conducted multiple calculations and cross-validation to 
determine the most suitable parameter sets enabling us 
to provide a comprehensive and accurate assessment 
of the groundwater potential of the Guanzhong Basin, 
using GIS-based ensemble learning models. The results 
allow for the identification of groundwater enrichment 
areas while minimizing costs. This information can pro-
vide valuable guidance for subsequent drilling and other 
related activities. Furthermore, this study can also serve 
as a reference for other semi-arid regions that share simi-
lar characteristics with the Guanzhong Basin.

Data and data processing

Description of the study area

The Guanzhong Basin is a large geological basin 
located in the central part of China (Fig.  1), cover-
ing an area of approximately 20,722.63 km2 (Zhang 
et  al., 2022). Its longitude and latitude range are 
107°–110°30′E and 35°10′–34°N, with an altitude 
range of about 200–2000  m. The basin is an impor-
tant agricultural and industrial region, which is home 
to several large cities, including Xi’an, the capital of 
Shaanxi Province. The geology of the Guanzhong 
Basin is dominated by a thick layer of sedimentary 
rock that was deposited during the Mesozoic Era (Xu 
et  al., 2019). The climate of the Guanzhong Basin is 
temperate, with four distinct seasons. The area has an 
average annual temperature of 12–13.6℃ and an aver-
age annual rainfall of about 500–800  mm, mainly in 
summer, but it is prone to droughts and water shortages 
(Ren et  al., 2021). The annual average evaporation is 
800–1200 mm (Bei et al., 2016). The main river in the 
Guanzhong Plain is the Weihe River, which is the larg-
est tributary of the Yellow River. The Weihe River is 
an important source of water for the basin, which has 
close interactions with the groundwater in the basin 
(Kong et  al., 2019). Given its importance as a center 
of agriculture and industry, as well as its vulnerability 
to water scarcity, accurate assessments of groundwater 
potential in the Guanzhong Basin are critical for sus-
tainable development and management of the region’s 
water resources.
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Borehole datasets

The accuracy of machine learning models used for 
groundwater potential assessment is largely depend-
ent on the quality of training data (Chen et al., 2019a; 
Panahi et al., 2020). The borehole datasets utilized in 
this study were collected from two sources, namely 
GeoCloud (http://​geosc​ience.​cn) and field observa-
tions. In total, 205 sets of borehole data were collected 
and analyzed. The distribution of these boreholes is 
illustrated in Fig.  1. To facilitate model training and 
testing, the borehole data was divided into two catego-
ries based on the water pumping rate, with a threshold 
of 5 t/h used to distinguish between enriched ground-
water (> 5 t/h) and lack of groundwater (≤ 5t/h). Sub-
sequently, the data for enriched groundwater and lack 
of groundwater were randomly partitioned into train-
ing and test sets in the ratio of 0.7:0.3 (Panahi et al., 
2020). The training data was utilized for model cali-
bration, while the test set was used to assess the accu-
racy of the model. It is worth noting that the partition-
ing of the data was performed randomly to ensure that 
the training and test sets were representative of the 
entire dataset (Wang et al., 2022).

Database of conditioning factors

The selection of indicators that influence groundwater 
potential is critical to accurately assess the potential 
for groundwater in a given area (Zaree et  al., 2019). 

These indicators are variables that can affect the 
recharge and availability of groundwater. By identify-
ing and analyzing these factors, it is possible to map 
the groundwater potential of a region, which can aid 
in groundwater management, water resources plan-
ning, and sustainable development. Based on the 
characteristics of semi-arid areas (Arabameri et  al., 
2019) and previous literature reviews (Díaz-Alcaide & 
Martínez-Santos, 2019), this study selected 14 factors 
as features for ensemble learning, including landform, 
slope, slope aspect, curvature, precipitation, evapo-
transpiration, distance to fault, distance to river, road 
density, topographic wetness index (TWI), soil type, 
lithology, land cover, and normalized difference veg-
etation index (NDVI) (Figs. 2–4).

Landform is a crucial factor in groundwater poten-
tial assessment since it determines the surface water 
recharge (Razandi et  al., 2015). In this study, land-
form was classified into five categories: floodplain, 
hill, mountain, plain, and plateau (Fig. 2a). Generally, 
high groundwater levels are common in floodplain 
areas near rivers and streams, while hills and moun-
tains have lower groundwater potential due to steep 
slopes and limited surface water recharge.

Slope is another critical factor that influences 
groundwater potential. The slope of a land surface 
affects the rate of water infiltration and runoff, which 
ultimately impacts groundwater recharge (Doke et al., 
2021). In the Guanzhong Basin, slopes were calcu-
lated using a digital elevation model (DEM) with a 
30 m resolution (obtained from https://​www.​gsclo​ud.​

Fig 1   a Location of study area in China. b Location of the samples and groundwater pumping rate.

http://geoscience.cn
https://www.gscloud.cn
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cn) and ranged from 0 to 74.88° (Fig. 2b). In general, 
concave slopes have higher groundwater recharge 
than flat or convex slopes. Slope aspect also affects 
groundwater potential, as it determines the amount of 
solar radiation and wind exposure a surface receives 
(Naghibi et al., 2015b). Flat slopes are more likely to 
be recharged due to their even exposure to solar radia-
tion and wind. The slope aspect was also computed 
from the DEM (Wang et al., 2020) and classified into 
ten categories based on the angle of the slope aspect: 
flat, north, northeast, east, southeast, south, south-
west, west, northwest, and north (Fig. 2c). Curvature, 
defined as the rate of change of slope along a contour 
line, can also affect groundwater flow and recharge by 
influencing the direction and velocity of water move-
ment (Arabameri et al., 2019). We classified the factor 
into three types — concave, flat, and convex — based 

on the size of its value (Fig. 2d). Concave areas exhibit 
negative curvature, suggesting lower slope angles in 
the center and higher angles on the periphery. Such 
areas accelerate the convergence of surface water 
bodies and augment their interaction with ground-
water (Chen et  al., 2019b). Conversely, convex areas 
featuring higher slope angles in the center and lower 
angles on the periphery often promote the divergence 
of surface water bodies, preventing their interaction 
with groundwater. Flat areas, characterized by zero 
curvature and a uniform slope, serve a role somewhere 
between concave and convex areas.

Precipitation and evapotranspiration are two additional 
factors that affect groundwater potential. Precipitation 
provides the source of water for groundwater recharge, 
while evapotranspiration limits the amount of water 
available for recharge (Jia et al., 2011; Jin et al., 2013). 

Fig. 2   Conditioning factors in the groundwater potential assessment: a Landform. b Slope (°). c Curvature. d Slope aspect. e Pre-
cipitation (mm). f Evapotranspiration (mm)

https://www.gscloud.cn
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Therefore, areas with high precipitation and low evapo-
transpiration have higher groundwater potential. In this 
study, precipitation data were obtained from WorldClim2 
(Fick & Hijmans, 2017), with a range of 500–757 mm 
(Fig.  2e), while evapotranspiration data (obtained 
from https://​data.​cma.​cn/) ranged from 794–1277  mm 
(Fig. 2f). It is evident that the overall evapotranspiration 
of the Guanzhong Basin is slightly higher than the rain-
fall, indicating that it is a typical semi-arid area.

Fault zones can serve as pathways for ground-
water to interact with surface water (Ahmad et  al., 
2021), while rivers and streams serve as surface water  
sources (Golkarian et  al., 2018). In this study, the 
distance to faults was divided into five categories: 1, 
5, 10, 20, and 50 km (Fig. 3a), while the distance to 
rivers was divided into six categories: 1, 2, 5, 10, 20, 
and 50 km (Fig. 3b). Road density is defined as the 
length of road per unit area and is calculated from 
the road network data (Velis et al., 2017). High road 
density can lead to increased surface runoff, reducing 
infiltration and groundwater recharge. In this study, 
we calculated the road density ranging from 0 to 2.29 
in the Guanzhong Basin (Fig. 3c).

TWI is an important factor that indicates the 
degree of land surface wetness, which is used to 
estimate the spatial distribution of soil moisture and 

potential groundwater recharge (Sørensen & Seibert, 
2007). TWI is calculated based on the slope and con-
tributing area of each pixel in the DEM (Wang et al., 
2022). The calculation method assumes that water 
accumulates in areas with low slope and high contrib-
uting area. The TWI is computed using the following 
formula (Wang et al., 2022):

where a is the specific catchment area and β is the local 
slope. The specific catchment area (a) is defined as the 
upslope contributing area per unit contour length. α is 
the local flow direction, and S is the local slope. The 
local flow direction and slope are calculated from the 
DEM. The TWI values range from negative to positive 
infinity, with higher values indicating areas with higher 
potential for groundwater recharge. In Guanzhong 
Basin, the TWI ranges from 5.44 to 30.56 (Fig. 3d).

Soil type and lithology are important factors in 
assessing groundwater potential. Soil types affect 
water infiltration and storage, while lithology affects 

(1)TWI = ln

(
a

tan�

)

(2)a =
tana

S
+ 1

Fig. 3   Conditioning factors in the groundwater potential assessment: a Distance to fault (km). b Road density (km/km2). c Distance 
to river (km). d TWI

https://data.cma.cn/
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subsurface permeability and porosity (Arabameri et al., 
2021). In the Guanzhong Basin, soil types were catego-
rized into seven types: paddy soils, brown earths, cin-
namon soils, fluvo-aquic soils, dark loessial soils, cul-
tivated loessial soils, and gray-cinnamon soils (Fig. 4a). 
Lithology was divided into seven categories: intrusive 
rock, Lower Quaternary, Upper Quaternary, Tertiary, 
Paleozoic, Proterozoic, and Archean (Fig. 4b).

Land cover is another factor that influences 
groundwater potential. The Guanzhong Basin has 
different land use types, including cropland, forest,  
grassland, shrub, wetland, aquatic, artificial sur-
face, and bareland (Fig.  4c) (data from http://​www.​
globa​lland​cover.​com/). Changes in land use can sig-
nificantly affect groundwater recharge and discharge, 
affecting groundwater potential. For example, defor-
estation can reduce groundwater recharge by decreas-
ing the interception and infiltration of precipitation. 
Conversely, land use types like wetlands and grass-
lands can enhance groundwater recharge by increas-
ing infiltration and reducing surface runoff.

NDVI is a remote sensing-based conditioning 
factor that measures the density of green vegetation 
cover. NDVI is calculated using the spectral reflec-
tance values of the red and near-infrared bands of 
remote sensing data. NDVI values range from − 1  

to 1, with higher values indicating denser vegeta-
tion cover (Han et  al., 2021). Vegetation cover can  
influence groundwater recharge by reducing surface 
runoff and increasing infiltration. In the Guanzhong 
Basin, the NDVI ranges from 0.18 to 0.90 (Fig. 4d) 
(data from https://​www.​resdc.​cn/).

Methodology

In this study, we began by dividing the study area into 
230,224 points based on a size of 300 × 300  m. The 
values corresponding to the 14 factors influencing 
groundwater potential in the Guanzhong Basin were 
extracted, resulting in a database of conditioning factors 
with a specification of 230,224 × 14. A sample dataset 
of 205 × 15, including a column of result values, was 
created and used to train and validate the RF, XGB, 
and LCE algorithms. The loop and cross-validation 
techniques were employed to obtain optimal predic-
tion parameters. These three models were then applied 
to the database of 230,224 points, and the results were 
converted into raster data (Wang et al., 2022). The best 
model was identified by comparing the model results. 
Figure 5 shows the multi-phase methodological frame-
work employed in this study.

Fig. 4   Conditioning factors in the groundwater potential assessment: a Soil type. b Lithology. c Land cover. d NDVI

http://www.globallandcover.com/
http://www.globallandcover.com/
https://www.resdc.cn/
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Random forest (RF)

RF is a powerful machine learning algorithm used 
for various tasks such as classification and regression 
(Breiman, 2001). It is an ensemble learning method 
that combines multiple decision trees to create a more 
robust and accurate model (Paul et al., 2018). The basic 
principle of the RF algorithm is to build multiple deci-
sion trees on randomly sampled subsets of the training 
data and combine their predictions. This randomness 
ensures that the trees are diverse and not overfitting 
to the training data. The calculation process of the RF 
algorithm involves several steps (Breiman, 2001):

Step 1: Randomly select a subset of the training 
data (with replacement) to build a decision tree. This 
subset is known as the bootstrap sample.

Step 2: At each node in the decision tree, randomly 
select a subset of features to use for splitting. This 
subset is known as the random feature subset.

Step 3: Repeat steps 1 and 2 to create multiple 
decision trees.

Step 4: To make a prediction for a new instance, pass 
it through each decision tree in the forest and take the 
majority vote of the predictions. For regression tasks, the 
average of the predictions is taken.

The RF algorithm is a highly flexible and versatile tool 
that finds application in various fields, including finance, 
medicine, and environmental science (Gislason et  al., 
2006; Wang et al., 2020). Its capabilities have also been 
leveraged in groundwater potential prediction (Naghibi 
et al., 2015a).

Extreme gradient boosting (XGB)

XGB is a machine learning algorithm that uses a tree 
learning algorithm and a linear model learning to do 
parallel computation on a single machine (Chen & 
Guestrin, 2016). It is faster than other gradient boosting 
algorithms because it has a block structure for parallel 
learning. It also uses a distributed weighted quantile 
sketch algorithm to handle weighted data. XGB mini-
mizes an objective function that consists of a loss func-
tion and a regularization term. The objective function 
can be written as (Ibrahem Ahmed Osman et al., 2021):

where θ is the set of model parameters, l is a differ-
entiable convex loss function that measures how well 
the model fits the data, Ω is a regularization term that 
controls the complexity of each tree fk, and K is the 
number of trees. The regularization term Ω(fk) can be 
defined as:

where T is the number of leaves in tree fk, w is a vec-
tor of leaf scores, γ is a parameter that penalizes the 
number of leaves, and λ is a parameter that penalizes 
large leaf scores.

The loss function measures how well the model 
fits the data, and the regularization term controls the 

(3)obj(�) =

n∑

i=1

l
(
Yi, Ŷi

)
+
∑

k = 1
KΩ

(
fk
)

(4)Ω
(
fk
)
= �T +

1

2
�|w|2

Fig. 5   Flow chart of the research
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complexity of the model. XGB uses gradient descent 
to update the model parameters based on the gradi-
ents of the objective function. The gradient descent 
update rule can be written as:

where t is an iteration index, η is a learning rate, and  
g(t) is a vector of partial derivatives of objective func-
tion with respect to each element in θ. In XGB, each 
element in θ corresponds to a leaf score in one tree. 
XGB grows trees sequentially, adding one tree at a 
time that fits the current pseudo-residuals (the nega-
tive gradients of objective function. Each tree is a 
weak learner that makes a small improvement over 
the previous prediction. The final prediction is a 
weighted sum of all the trees.

XGB is a popular and efficient ensemble model 
that has been applied to various domains (Rasool 
et al., 2022). Following the RF, we used XGB to pre-
dict groundwater potential in the Guanzhong Basin.

Local cascade ensemble (LCE)

The LCE algorithm is a new machine learning 
method that enhances the prediction performance 
of Random Forest and XGB by combining their 
strengths and adopting a complementary diversifica-
tion approach (Fauvel et al., 2022). It can be used for 
classification and regression tasks. The LCE algo-
rithm consists of two main steps: first, it trains a RF 
model on the original dataset and obtains its predic-
tions as new features for each instance. Second, it 
trains an XGB model on a subset of instances that 
are selected based on their proximity to the decision 
boundary of the RF. The proximity is measured by 
a score function that depends on the number of trees 
that agree on the predicted class for each instance. 
The final prediction of LCE is obtained by combining 
the predictions of both models using a weighted aver-
age scheme. The calculation formula for LCE is given 
by (Fauvel et al., 2022):

where ŷ is the final prediction, ŷRF is the prediction 
of random forest, ŷXGB is the prediction of XGB, 
and α is a weight parameter that controls the balance 
between both models.

(5)�(t+1) = �(t) − �g(t)

(6)ŷ = aŷRF + (1 − a)̂yXGB

Results and discussion

Application of the three models

To ensure that the models are as accurate as possible 
and to avoid potential overfitting risks, we utilized 
multiple calculations to identify the performance of 
three models, namely RF, XGB, and LCE, by select-
ing different parameters. Since each model has doz-
ens of parameters, not all of them can have a signifi-
cant impact on the accuracy of the model. Thus, we 
selected key parameters that have a greater impact on 
the model for identification. For the RF model, the key 
parameters are n estimators, max depth, min samples 
split, and max feature (Breiman, 2001). For the XGB 
model, the key parameters are n estimators, learning 
rate, max depth, and subsample (Chen & Guestrin, 
2016). For the LCE model, the key parameters are n 
estimator and max depth (Fauvel et al., 2022). Within 
a reasonable range of these parameters, we trained the 
training set gradually according to a certain interval 
and obtained the accuracy score of the model by veri-
fying on the test set. Using this approach, the param-
eter ranges were obtained for high `accuracy scores. 
Based on this range, cross-validation and grid search 
can significantly increase the computational efficiency 
of the model and improve its accuracy (Pedregosa 
et al., 2011). The parameter tests of the three models 
are shown in Figs. 6–8.

The term “n estimators” of the RF refers to the 
number of decision trees. Increasing the number of 
decision trees can enhance the generalization abil-
ity of the RF model, but it also raises computational  
costs and the risk of overfitting (Sexton & Laake, 
2009). In this study, we observed that the accuracy of 
the RF model increased rapidly as the number of deci-
sion trees increased, and the accuracy reached a peak 
when the number of trees reached about 150, after 
which the accuracy rate gradually declined (Fig. 6a). 
Therefore, we set the “n estimators” range of RF to 
100–150. The parameter “max depth” determines the 
maximum depth of each tree. If the value is too small, 
the model cannot capture the details of the data, and 
if the value is too large, the generalization ability of 
the model will decrease. In this study, we found that 
the accuracy of the RF model did not change after the 
“max depth” reached 10 (Fig.  6b). Thus, to reduce 
computational cost, we set max depth to 10–12. The 
“min samples split” parameter specifies the minimum 
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number of samples required for each node split. As 
shown in Fig.  6c, the min samples split of the RF 
model is between 2 and 6, and the accuracy rate grad-
ually decreases. Thus, we choose 2 as the value of this 
hyperparameter. The “max features” refers to the num-
ber of predictors that the model examines at each split. 
The size of this parameter affects the diversity and 
accuracy of the tree. In this study, the performance 
of “sqrt” and “log2” was basically the same (Fig. 6d). 
Thus, we chose both as candidates for grid search.

The n estimators parameter of the XGB model rep-
resents the number of boosting trees (Chen & Guestrin, 
2016). As with the RF model, the n estimators range 
for XGB should not be too large or too small. We per-
formed sequential calculations for the model from 30 
to 800 with a step size of 1 and determined the range 
of this parameter to be 250–350 based on the results 
shown in Fig. 7a. The learning rate controls the weight 
of new trees added to the model. Generally, a smaller 
learning rate leads to a higher accuracy rate but requires 
more trees and longer training time. Figure  7b shows 

that after the learning rate reaches 0.2, the accuracy 
rate gradually stabilizes. Therefore, we selected the 
learning rate range of 0.2–0.4. The max depth param-
eter controls the depth of the boosting tree. Figure 7c 
indicates that the accuracy rate reaches its peak at max 
depth values of 6 and 7 and does not change after reach-
ing 10. We therefore chose a range of 5–8 for adjust-
ing the max depth of the XGB model. The subsample 
parameter controls the proportion of random sampling 
during each training, which can reduce the risk of over-
fitting. However, too little sampling will reduce accu-
racy by affecting the training samples of the model. 
Therefore, we selected the hyperparameter selection 
range of 0.4–0.8.

As the LCE model is a hybrid ensemble method, 
it encompasses nearly all the parameters in both the 
RF and XGB models (Fauvel et al., 2022). However, 
the two hyperparameters that have the most signifi-
cant impact are n estimators and max depth. The n 
estimators parameter denotes the number of base 
learners for each division of LCE. As depicted in 

Fig. 6   The parameters of RF: a n estimators. b max depth. c min sample split. d max features 
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Fig. 8a, it is challenging to significantly improve the 
model’s accuracy beyond 10 base learners, and there 
are significant fluctuations. Thus, we chose the range 
of 9–12 for adjusting this parameter. The max depth 
parameter controls the maximum depth of the base 
learners. Based on Fig. 8b, we determined the range 
of 6–10 for this parameter.

Based on the provided information, we screened 
out the parameter selection range for three models, 
cross-validated the training data, and performed a 
grid search on the hyperparameters to find the opti-
mal parameter combination for each model. The 
optimal hyperparameter values for the RF model 
were 123, 10, 2, and log2; for the XGB model, they 
were 304, 0.38, 6, and 0.77; and for the LCE model, 
they were 10 and 8. Using these hyperparameters, 
the three models were constructed and imported 
230,224 groups of points to be predicted into the 
model for calculation one by one. The results were 
converted into raster data and split into 5 categories 
with an interval of 0.2 for easy comparison: very 

low [0.0–0.2), low [0.2–0.4), moderate [0.4–0.6), 
high [0.6–0.8), and very high [0.8–1.0). The result-
ing prediction map is shown in Fig. 9.

Based on the results presented in Fig.  9, it can be 
observed that the three models provide relatively simi-
lar spatial distribution of groundwater potential in the 
Guanzhong Basin. Specifically, the central and south-
ern parts of the model are characterized by high and  
very high groundwater potential, while the northeastern 
and northwestern parts of the model are associated with 
low and very low groundwater potential. This spatial 
distribution of groundwater potential seems reasonable 
given that the central part of the model corresponds to 
Xi’an, the most densely populated area in the region. 
In addition, higher groundwater potential tends to be 
distributed on both sides of the Weihe River and its 
tributary, the Bahe River. The RF model seems to have 
a larger uncertainty in the assessment of groundwater 
potential since the distribution of very low and very 
high groundwater potential is small, and the prediction 
results are mainly centered on moderate groundwater 

Fig. 7   The parameters of XGB: a n estimators. b learning rate. c max depth. d subsample 
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potential. This could limit the help to decision-makers 
in formulating next-step water resource management 
policies. On the other hand, XGB and LCE models 
tend to predict more clearly either very high or very 
low groundwater potential, which could provide more 
insights into the regional groundwater potential.

Validation of groundwater potential maps

To better assess the impact of predicting groundwater 
potential in the Guanzhong Basin, we utilized ROC 
(receiver operating characteristic) and AUC (area 
under the curve) metrics to evaluate the accuracy of 

Fig. 8   The parameters of LCE: a n estimators. b max depth 

Fig. 9   Groundwater potential assessment using: a RF, b XGB, and c LCE
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the three models (Arabameri et al., 2021). ROC-AUC 
are measures commonly used in evaluating the perfor-
mance of binary classification models. The ROC curve 
plots the true positive rate (sensitivity) against the false 
positive rate (1—specificity) for different classifica-
tion thresholds, while AUC measures the area under 
the ROC curve (Chen et al., 2019b; Wang et al., 2020). 
A perfect classification model would have an AUC of 
1, indicating that it can perfectly distinguish between 
the two classes. On the other hand, a model with an 
AUC of 0.5 would perform as well as random guess-
ing, while a model with an AUC below 0.5 would per-
form worse than random guessing. Given that the train-
ing set accuracies of all three models were high (either 
close to or reaching 1), we primarily conducted ROC-
AUC analysis on the test set, as shown in Fig. 10.

Based on Fig.  10, the XGB model achieved the 
highest accuracy (0.874), followed by RF (0.859) and 
LCE (0.810), as measured by the size of AUC. The 
superiority of the XGB model could be attributed to 
its ability to prune unimportant features and reduce 
model complexity, as opposed to the RF model, which 
randomly selected a subset of features without prun-
ing. Additionally, gradient boosting could better fit  
the data distribution and loss function, while avoiding 
the risk of overfitting. Although the LCE model inte-
grated the XGB and RF models, it failed to improve 
accuracy and instead increases computational load, 
as shown in Table 1. The LCE model required 7.7 s, 
11m10.7  s, and 64m32.6  s to run 1, 100, and 1000 
times, respectively, while the XGB model required 
0.1  s, 18.1  s, and 2m45.3  s, and the RF model took 
0.1 s, 20.8 s, and 9m6.3 s, respectively. Since the LCE 
model’s computational time increases considerably as 

the sample size grows, it can put a heavy burden on the 
entire calculation process. The LCE model took much 
longer to calculate than the other two models because 
it trained two layers of base learners, with RF in the 
first layer and XGB in the second, increasing the com-
putational cost and time. Furthermore, the LCE model 
made multiple predictions per sample with different 
base learner subsets and requires parameter tuning for 
each base learner. Therefore, in general, we do not rec-
ommend using the LCE model to predict groundwater 
potential. Conversely, the XGB model calculated the 
gain of each boosting tree in parallel, speeding up the 
training process, while the RF model only calculated 
each decision tree in parallel. In conclusion, the XGB 
was the best model for predicting groundwater poten-
tial in the Guanzhong Basin.

Figure  11 illustrates the data distribution from 
230,224 predicted points using three models. The blue 
histogram displayed the ratio of each groundwater poten-
tial category to the total number of rasters. The clarity of 
the model’s prediction result on the presence of ground-
water in the area depended on the proportion of very 
low and very high groundwater potential. Conversely, a 
higher proportion of moderate groundwater potential led 
to a more ambiguous direction of the prediction result 
of the model. The figure showed that RF’s predictions 
about the groundwater potential of the Guanzhong Basin 
mostly fall into the moderate, low, and high categories, 
accounting for 96.81% of the study area, while only 3.2% 
was predicted as very low or very high groundwater 
potential. The results indicate that the predicted ground-
water potential by the RF model is centered around 0.5. 
Notably, a value of 0.5 is the threshold that distinguishes 
the test set label into enriched groundwater (labeled as 
1) or lack of groundwater (labeled as 0). The predicted 
probabilities of the two types classified by the RF model 
are extremely similar. Consequently, the model is not 
sufficiently reliable in dividing the testing set. The XGB 
model predicted that 61.18% of the study area has very 
high or very low groundwater potential, while the LCE Fig. 10   ROC-AUC for the three algorithms

Table 1   The time consumed of the three models by 1, 100 and 
1000 times

Model 1 time 100 times 1000 times AUC​

RF 0.1 s 20.8 s 9m6.3 s 0.859
XGB 0.1 s 18.1 s 2m45.3 s 0.874
LCE 7.7 s 11m10.7 s 64m32.6 s 0.810
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model predicted 46.85%. This suggested that the XGB 
and LCE models are more directional in determining the 
groundwater potential of the basin.

The green and red histograms in the figure indicated 
the distribution of the 205 sample groups in different 
groundwater potential zones across the Guanzhong 
Basin. The green histogram represented the samples 
with scarce groundwater, and the more it accounts 
for in the very low and low groundwater potential 
areas, the more accurate the model’s prediction of low 
groundwater potential. The red histogram represented 
the samples with enriched groundwater, and the more 
it accounts for in very high and high groundwater 

potential areas, the more accurate the model’s predic-
tion of high groundwater potential. Among the RF, 
XGB, and LCE models, the proportions of samples 
with scarce groundwater were 57.14%, 66.67%, and 
74.29% for areas predicted to have very low and low 
groundwater potential, respectively. In contrast, for 
areas predicted to have very high and high groundwa-
ter potential, the proportions of samples with enriched 
groundwater were 33.66%, 69.31%, and 52.45%, 
respectively. Overall, the LCE model was more accu-
rate in predicting low groundwater potential, while 
the XGB model was more accurate in predicting high 
groundwater potential. As a result, the credibility of the 

Fig. 11   Raster distributions of groundwater potential of different classes: a RF, b XGB, and c LCE
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RF output is questionable because the probability val-
ues for distinguishing between enriched groundwater 
and the lack of groundwater are nearly identical, result-
ing in inconclusive findings.

Of the three ensemble models used to assess 
groundwater potential in the Guanzhong Basin, the 
XGB model demonstrated the highest accuracy and 
required the least amount of computation time. While 
the LCE model was better at predicting low ground-
water potential, its overall score was lower, and its 
computation time was 7–30 times longer than the 
XGB model. The RF model had moderate accuracy 
and computation performance but provided more 
vague results, mostly within the moderate grade. In 
conclusion, the XGB model is the most suitable for 
evaluating and predicting groundwater potential in 
the study area.

Conclusion

The present study aimed to assess the groundwater 
potential in the Guanzhong Basin, China, using GIS-
based ensemble learning models. To achieve this, 
fourteen influencing factors were considered, includ-
ing landform, slope, slope aspect, curvature, precipi-
tation, evapotranspiration, distance to fault, distance 
to river, road density, TWI, soil type, lithology, land 
cover, and NDVI. The values of these factors were 
extracted into 205 sets of samples and 230,224 points 
discretized from the study area. To train and validate 
the models, the 205 groups of samples were divided 
into training and test sets using a ratio of 0.7:0.3. The 
three ensemble models, RF, XGB, and LCE, were 
trained and cross-validated using the samples, and 
their hyperparameters were tuned to obtain the best 
models. The three models were then applied to the 
230,224 points to predict the groundwater potential 
of the Guanzhong Basin. The results showed that the 
AUC values of the RF, XGB, and LCE models were 
0.859, 0.874, and 0.810, respectively. The RF model’s 
predictions were primarily focused on the areas with 
moderate groundwater potential, indicating that it 
has some uncertainty in predicting the test set label. 
In contrast, the XGB and LCE models performed bet-
ter in identifying and distinguishing the areas with 
very high and very low groundwater potential in the 
study area. Out of the three models, the proportion 

of samples without groundwater in areas predicted to 
have very low and low groundwater potential were 
57.14%, 66.67%, and 74.29%, respectively. On the 
other hand, in areas predicted to have very high and 
high groundwater potential, the proportion of sam-
ples with abundant groundwater was 33.66%, 69.31%, 
and 52.45% for RF, XGB, and LCE, respectively. In 
terms of computational load, LCE required the most 
time and resources, while the XGB model required the 
least. Hence, based on the results, the XGB model was 
found to be the best for predicting the groundwater 
potential of the Guanzhong Basin. This study provides 
valuable insights into groundwater potential assess-
ment using GIS-based ensemble learning models. 
The results can be useful for policymakers and water 
resource management authorities for sustainable man-
agement of groundwater resources in the Guanzhong 
Basin and similar regions.
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