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Abstract Accurate and reliable flow estimations 
are of great importance for hydroelectric power gen-
eration, flood and drought risk management, and the 
effective use of water resources. This research car-
ries out a comprehensive study on the application of 
gated recurrent unit (GRU) neural network, recurrent 
neural network (RNN), and long short-term mem-
ory (LSTM) to predict with river flows at three dif-
ferent streamflow observation stations in Erzincan, 

Bayburt, and Gümüshane. Monthly streamflow time 
series covering the years 1978 to 2015 were used to 
set up artificial intelligence models. During the mod-
eling phase, 70% of the data was divided into train-
ing (October 1978–April 2004), 15% validation (May 
2004–September 2009), and 15% test set (October 
2010–September 2015). Model performances were 
made according to the correlation coefficient, root 
mean square error, the ratio of RMSE to the standard 
deviation, Nash–Sutcliffe efficiency coefficient, index 
of agreement, and volumetric efficiency values. The 
calculation results show that GRU leads efficient esti-
mation results for estimating streamflow and can also 
be used in allied water resources.

Keywords Streamflow forecasting · Gated recurrent 
unit · Long short-term memory · Recurrent neural 
network

Introduction

Effective estimation of streamflow data, one of the 
basic parameters of the hydrological cycle, is one 
of the basic steps of effective management of water 
resources and disaster reduction, early warning, and 
management (Sharma and Machiwal, 2021). Daily and 
hourly flow forecasts are of great importance for flood 
management systems, while monthly and annual flow 
forecasts are valuable for reservoir operation, irriga-
tion system management, and hydroelectric generation 
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(Yaseen et al., 2015; Wegayehu and Muluneh, 2022). 
However, flow data depend on many meteorological 
parameters such as precipitation, temperature, evapo-
ration, ground moisture, and infiltration, making esti-
mating flow data difficult. Therefore, artificial intel-
ligence technologies that can easily model nonlinear 
relationships for flow prediction have been in vogue 
recently (Zhang et al., 2018a, 2018b).

In recent years, many studies have been carried 
out in many different disciplines about data modeling 
through artificial neural networks. Many artificial neu-
ral networks are used mainly in modeling the hydro-
logical and hydrometeorological data. Quite a few 
artificial neural networks (ANN) types such as feed 
forward neural networks (FFNN), generalized regres-
sion neural networks (GRNN), radial basis neural 
networks (RBNN), and Levenberg–Marquardt (LM) 
algorithms have been used in modeling many hydro-
meteorological data especially like streamflow, pre-
cipitation, and evaporation. On the other hand, the 
modeling technique through recurrent artificial neural 
networks has been applied frequently in recent years in 
polyphonic music, sound and video models, in mod-
eling the signals of speaking, in language models, and 
in modeling the sequential time series types, and lately 
this technique has become recommended thanks to the 
successful results widely that it has led (Sattari et al., 
2012; Bahdanau et al., 2014; Cho et al., 2014; Chung 
et al., 2014; Shoaib et al., 2016; Xiao et al., 2017).

Elman demonstrated the recurrent neural network 
technique for the first time (1990). Elman applied 
this technique to divide the sentence structures into 
noun and verb categories and achieved successful 
results. Connor et  al. (1994) applied this technique 
to modeling nonlinear load time series and achieved 
successful results by integrating the robust learning 
algorithm into recurrent neural networks. Coulibaly 
et al. (2000) studied the effect of climatic trends on 
forecasting the annual flow values using the RNN 
approach. They used wavelet transform when decid-
ing the climatic patterns. They showed that this 
modeling technique could successfully model the 
climatic trend effect. Kumar et  al. (2004) applied 
two different networks, feed forward, and recur-
rent, and demonstrated the use of ANNs to forecast 
monthly river flows. Coulibaly and Baldwin (2005) 
used the dynamic RNN technique in forecasting the 
non-stationary hydrological time series. They com-
pared the results of the RNN-based model with the 

multivariate adaptive regression splines (MARS) 
model and found that the RNN-based model per-
formed better than MARS. Cheng et  al. (2008) 
proposed a three-stage indirect multi-step-ahead 
prediction model for long-term hydrologic forecast-
ing. Banerjee et  al. (2011) evaluate the prospect of 
(ANN) simulation over mathematical modeling in 
estimating safe pumping rates to maintain ground-
water salinity in island aquifers. Chandra and Zhang 
(2012) suggested the ANN technique and the use 
of an alternative approach, real-time recurrent 
learning (RTRL). They produced various synthetic 
time series and operated auto-regressive (AR) and 
moving average (MA) models. Then, they com-
pared RTRL and other models and found that the 
RTRL model proved more successful results. Sat-
tari et  al. (2012) evaluated the performance of the 
time lag recurrent neural networks (TLRN) model 
to predict the daily inflow into the Elevian reser-
voir. Prasad and Prasad (2014) studied the ability 
of deep networks to extract high-level features and 
recurrent networks to perform time series inference. 
Shoaib et al. (2016) explored the potential of wave-
lets for the first time and they modeled river flows 
by using coupled time-lagged recurrent neural net-
work (TLRNN). Chang et  al. (2018) proposed a 
deep learning-based model named memory time 
series networks which is used for time series mod-
eling and prediction. Che et al. (2018) suggested the 
GRU model, which is a new deep learning approach 
to model the missing patterns much better. They 
applied this model to clinic data sets and found that 
it gave more successful results, especially in mod-
elling the missing patterns. Alizadeh et  al. (2021) 
GRU, LSTM, and SAINA-LSTM methods were 
compared in four different basins in the USA. As a 
result of this study, it was seen that SAINA-LSTM 
gave promising results for the region. In addition, it 
was stated that LSTM and GRU models performed 
better than RNN. Hu et  al. (2018) used ANN and 
LSTM network models to model the precipitation-
runoff relationship in the Fen River basin. Zhang 
et al., (2018a, 2018b) aimed to predict and simulate 
the water level in combined sewer overflow struc-
tures using four different neural network models 
such as MLP, WNN, LSTM, and GRU. Zhao et al., 
(2021a, 2021b) combined the gray wolf optimizer 
(IGWO) and GRU method to estimate flow data. 
The model evaluated the success of the LSSVM 
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and ELM methods with the model results obtained. 
Wegayehu and Muluneh (2022) employed stacked-
LSTM (S-LSTM), bidirectional LSTM (Bi-LSTM), 
and GRU with the classical multilayer perceptron 
(MLP) network for the prediction of daily stream-
flow in Awash river basin. MLP and GRU models 
showed better prediction results than other models.

The present study aims to test and model the per-
formance of recurrent neural network algorithms in 
terms of high variability. For this purpose, three flow 
observation stations with a high coefficient of vari-
ation of the algorithm were used to avoid the disap-
pearing gradient problem. Model performances were 
evaluated with various statistical parameters and 
graphical methods.

Material and method

Study area and data

In the present study, the data belonging to the 
water years between 1978 and 2015 were obtained 
from three current observation stations, numbered 
E23A004, E14A022, and E21A019, located in 
Erzincan, Bayburt, and Gümüshane provinces were 
used. Data statistics and station details are given in 
Table  1. These three selected gauging stations have 
approximately the same climatic conditions. And, the 
schematic view of the locations of these stations are 
shown in Fig. 1.

Recurrent neural networks (RNN)

To understand the RNN, it is advisable to remember 
the artificial neural networks that work feed forward. 
The operating logic of these two techniques is similar. 
In other words, it can be said that they are two struc-
tures that produce outputs by applying a set of math-
ematical operations to the information that comes to 

the neurons in the networks (Coulibaly & Baldwin, 
2005; Coulibaly et al., 2000; Kumar et al., 2004).

The information in the feed forward network is 
processed forward only and cannot be returned back 
to any point. In this structure, input data is sim-
ply passed through the network and output data is 
obtained. Feed forward neural network structure is 
shown below in Fig. 2.

Also, as shown in Fig. 3, besides the input, the con-
tent units that refer to the previous output also affect 
the network in a RNN structure. For example, the deci-
sion for the information at (t-1) also affects the deci-
sion to be made at t. In a word, the inputs in such net-
works produce outputs by combining the existing and 
the previous information (Chandra & Zhang, 2012; 
Connor et al., 1994; Coulibaly et al., 2000; Donate & 
Cortez, 2014; Elman, 1990; Prasad & Prasad, 2014).

The main aim of recurrent neural networks is to use 
sequential information. The main reason for naming it 
“recurrent” is that the output always depends on the 
previous calculation steps. In other words, the RNNs 
store and make use of information about the steps that 
are so far calculated. Therefore, they work like a mem-
ory (Chang et al., 2002; Cheng et al., 2008; Bahdanau 
et al., 2014; Smith & Yin 2014; Che et al., 2018).

Gated recurrent neural networks

Long short‑term memory unit

LSTM is a RNN structure that remembers the val-
ues at random intervals. This specific RNN type can 
learn long-term dependencies and is widely used and 
applied to various problems of many different dis-
ciplines. LSTM, considering the unknown size and 
time delays between important events, is a very con-
venient method to sort, process, and foresee the time 
series. Moreover, LSTM’s relative insensitivity to gap 
length provides a significant advantage when com-
pared to alternative RNNs, concealed Markov mod-
els, and many other learning methods.

Table 1  Station details and data information

Station No Station name Location Time period Mean  (m3/s) Max  (m3/s) Min  (m3/s) Sx  (m3/s) Cv

E21A019 Erzincan 39°23′37″N 39°41′02″E 1978–2015 87.16 469 14.9 82.09 0.942
E14A022 Gümüshane 39°18′42″N 40°06′45″E 1978–2015 8.01 70.7 0.08 11.22 1.402
E23A004 Bayburt 40°13′36″N 40°15′32″E 1978–2015 16.31 94.8 1.4 26.78 1.642
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The recurrent module in standard RNNs has a very 
simple structure, like a single tanh layer. On the other 
hand, a LSTM network contains LSTM units instead of 
the other network units. The LSTM unit remembers the 
long or short periods. The key to this capability is that 
it does not use any activation functions in its recurrent 
components. Therefore, the stored value is not recur-
sively changed and the gradient does not vanish over 
time with backprop (Hu et al., 2018; Kim et al., 2018; 
Zhang et al., 2018a, 2018b).

Fig. 1  The schematic locations of the gauging stations

Fig. 2  Structure of feed forward neural networks
Fig. 3  Recurrent neural network cycle
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Gated recurrent unit

The recurrent cells or the gated recurrent cells 
proposed by Cho et  al. (2014) are a gate mecha-
nism in recurrent neural networks. It is seen that 
the performance of these cells is similar to LSTM 
in many areas, and sometimes even better. GRUs 
have fewer parameters than LSTM because they 
have no exit gates. The LSTM unit inspired the 
GRU, but it is considered simpler to compute and 
implement. They also have a memory mecha-
nism but with significantly fewer parameters than 
LSTM. GRU is often used when there is fewer data 
available and is faster to compute (Chang et  al., 
2018, Hu et  al., 2018, Kim et  al., 2018, Zhang 
et al., 2018a, 2018b).

Evaluation of model performance

This research follows the basic guideline to assess 
the goodness of fit for the developed models. The 
guideline uses the correlation coefficient (r), root 
mean square error (RMSE), ratio of RMSE to the 
standard deviation (RSR), Nash–Sutcliffe efficiency 
coefficient (NSE), index of agreement (d), and volu-
metric efficiency (VE) as fitness indices to evaluate 
the model performance. All these fitness indices are 
calculated using the Eqs. (1–6).
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where QEi
 is the ith estimated monthly streamflow dis-

charge using models; QOi
 is the ith observed monthly 

streamflow discharge; Q
Ei

 is the average of the esti-
mated monthly streamflow discharge; Q

Oi
 is the aver-

age of the observed monthly streamflow discharge; 
and l is the number of observations.

Rank analysis Determining the best model is a 
complex task in models in which many statistical 
indicators are used together. For this reason, the rank 
values of the statistical indicators used in this study 
were determined separately, and then, the most effec-
tive model was determined according to the total 
rank values. A rank is assigned to each performance 
parameter when performing rank analysis. Rankings 
were arranged from the maximum value equal to 
the number of models, which was three in our study, 
to the minimum value equal to one. Here, the best-
performing model is assigned the third rank, and the 
lowest-performing model is appointed the first rank. 
The model with the highest total rank shows the best, 
while the model with the lowest shows the worst 
(Zhang et al., 2020).

Results and discussion

This work aims to develop a forecasting model to 
predict streamflow using the GRU model. In addi-
tion, two similar configured sequential type models 
(RNN and LSTM) were also tested to find its appli-
cability to forecasting the streamflow. Furthermore, to 
check its robustness, three different stations, namely 
Erzincan, Gümüshane, and Bayburt were considered. 

(4)NSE =

⎛⎜⎜⎜⎜⎝
1 −

l∑
i=1

�
QEi − QOi

�2

l∑
i=1

�
QOi

− Q
Oi

�2

⎞
⎟⎟⎟⎟⎠

(5)d = 1 −

⎡
⎢⎢⎢⎢⎣

l∑
i=1

�
QEi

− QOi

�2

l∑
i=1

����QEi

��� −
���QOi

���
�2

⎤
⎥⎥⎥⎥⎦
, 0 ≤ d ≤ 1

(6)VE = 1 −
(
sum

(
QOi

− QEi

)
∕sum

(
QOi

))



 Environ Monit Assess (2023) 195:705

1 3

705 Page 6 of 14

Vol:. (1234567890)

The dataset was split into three parts; training (from 
Oct 1978 to April 2004), validation (from May 2004 
to Sep 2009), and testing set (from Oct 2010 to Sep 
20,015), i.e., data split is 0.7/0.15/0.15. The training 
data is used to develop the models, and validation 
data is used to tune and to select the best-performing 
models. At the same time, the test data is used to 
evaluate the performance of the developed models. 
As stated above, obtaining final model configuration 
or hyper-parameter tuning is big topic and requires 
skill. Therefore, multiple scenarios with different 
time horizons of trail and the final architecture for 
each station is selected based on the highest correla-
tion coefficient (r).

The algorithm for sequential deep learning mod-
els (RNN, LSTM, and GRU) were developed under 
TensorFlow using “Keras deep Learning library.” The 
major problem in time series analysis is selection of 
random components. Therefore, this study considered 
monthly streamflow discharge as a random compo-
nent to developing the models. The appropriate archi-
tecture of sequential models consists of model input 
(i.e., previous time steps), number of the memory cell 
(memory block), and model output. This research 
trails different combination of inputs and memory 
cells for the three stations (Erzincan, Gümüshane, 
Bayburt). Initially, the previous time steps (i.e., look 
back) are varied between 1 and 20 and the final archi-
tecture of models are selected based on the highest 
correlation coefficient (r). The input selection (i.e., 
look back) is one of the unwieldy and important 
tasks during model development. Based on the criti-
cal appraisal, different researchers considered differ-
ent looks back for the model development. Ouyang 
and Lu (2018) have considered 12-month previous 
time steps for the development of ANN model and 
multi-gene genetic programming and support vec-
tor machine. Qin et  al. (2019) have also tested the 
LSTM model for hydrological time series analysis by 
adopting different batch sizes and the number of the 

memory cell. Furthermore, Kumar et al. (2019) have 
tested different time steps to check their effect on the 
performance of the LSTM model. The final model 
has complied by adopting the loss function, i.e., mean 
square error (MSE) and optimizer ReLu. The final 
model configuration was discovered by trial and error 
based on skill. This leaves the door open to explore 
new and possibly better configurations. Table 2 shows 
the final configuration of the models at the three 
selected stations.

Model performance for Erzincan station (E21A019)

Table  3 shows the performance indices of mod-
els at the different stations. The results show that 
during the training phase, the RNN model outper-
formed, followed by LSTM and GRU. The correla-
tion coefficient (r) for RNN and LSTM model is 
approximate, showing that the models were well 
trained during the training phase, whereas, for 
GRU, the performance of slightly less as compared 
to the RNN and LSTM (Figs. 4 and 5). While the 
validation period, the correlation coefficient (r) 
was found to be approximate similar for all the 
models (RNN (r = 0.906), LSTM (r = 0.904), and 
GRU (r = 0.904)). In addition, other fitness param-
eter was also calculated. In general, the lowest 
the error better the model. The lowest RMSE was 
found for the GRU (RMSE = 0.121) followed by the 
RNN (RMSE = 0.125) and LSTM (RMSE = 0.127). 
The other fitness index confirmed that the GRU 
model is well developed and can give significant 
results to forecast the streamflow at the Erzincan 
station. Furthermore, all three models were also 
tested on remained 15% test dataset to check the 
robustness of the models. From the analysis of 
results, it was found that GRU model well capable 
and performance is similar to RNN and LSTM in 
terms of fitness indices. The result signifies that 
the GRU model can be used as a replacement of 

Table 2  The final 
configuration of the models 
at different stations

Erzincan Gümüshane Bayburt

RNN LSTM GRU RNN LSTM GRU RNN LSTM GRU 

Memory cell 40 20 12 40 10 9 40 10 5
Look back 20 20 20 10 10 10 12 12 12
Batch size 10 10 10 10 10 10 10 10 10
Epoch 200 200 200 200 200 200 200 200 200
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LSTM to predict the streamflow for this station. 
For better representation, a graphical Taylor dia-
gram has been drawn to visualize the performance 
of the models in terms of correlation coefficient 
(r), standard deviation and root mean square error 

(blue line). Figure  6a shows that the GRU model 
is clearly better than the RNN and LSTM as it 
gives smaller standard deviation without changing 
much in the correlation coefficient. In addition, 
box wisher plot (Fig. 6b) is also drawn to map the 

Fig. 4  Scatter plot display-
ing the models (RNN, 
LSTM, and GRU) perfor-
mance at stations Erzincan 
during the training phase

Fig. 5  Comparison of observed and forecasted streamflow using the proposed model (GRU) and LSTM and RNN models at Erzin-
can station



 Environ Monit Assess (2023) 195:705

1 3

705 Page 8 of 14

Vol:. (1234567890)

spread of the error (observed-predicted) to visual-
ize the range, median of the error, that occurred 
during the testing phase by the different models.

Again, the GRU model shows better perfor-
mance as the error range is lesser than the LSTM 
and the median of error occurred towards the 
center of the box. Whereas in the case of RNN, 
the median of the error shifted to the upper inter-
quartile range. Therefore, analysis of the results 
showed than the GRU model performed better than 
the LSTM at this station.

Model performance for Gümüshane station 
(E14A022)

In order to test the robustness of the GRU model, it 
is further tested on the Gümüshane station. During 
the training phase RNN model (r = 0.931) outper-
formed followed by the GRU (r = 0.914) and LSTM 
(r = 0.908) (Fig.  7). But during the validation period, 
the performance of the RNN model is reduced sig-
nificantly and showed the underfit condition and found 
LSTM model (r = 0.901) is better than the RNN model 
(r = 0.895) (Table  3). Whereas during the testing 

Fig. 6  a Taylor plot displaying the models (RNN, LSTM, and GRU) performance at Erzincan station during the validation and test-
ing phase. b Box whisker plot displaying testing error (observed-predicted) at Erzincan station

Fig.7  Scatter plot 
displaying the models 
(RNN, LSTM, and GRU) 
performance at stations 
Gümüshane during the 
training phase
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Fig. 8  Comparison of observed and forecasted streamflow using the proposed model (GRU) and LSTM and RNN models at 
Gümüshane station

Fig. 9  a Taylor plot displaying the models (RNN, LSTM, and GRU) performance at Gümüshane station during the validation and 
testing phase. b Box whisker plot displaying testing error (observed-predicted) at Gümüshane station
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period, the LSTM model reached the condition of 
overfitting (r = 0.913) and predict higher value than the 
observed, but same time GRU model showed consist-
ent performance to forecast the streamflow (Fig.  11). 
In terms of other performance indices, the GRU model 
(RMSE = 0.073, RSR = 0.439) showed approximately 
close RMSE error than the LSTM (RMSE = 0.076, 
RSR = 0.435). The volumetric efficiency of the GRU 
model (VE = 0.953) is approximately equal to the 

LSTM model (VE = 0.956). The Taylor plot showed 
that GRU and LSTM model gives smaller stand-
ard deviation during testing in comparison to RNN, 
whereas accuracy of the GRU is approximately similar 
to LSTM (Fig. 9). In addition, the interquartile range 
of box wisher plot shows that the LSTM model has 
more outlier in the lower quantile which is opposite in 
the case of GRU. This signifies that the LSTM model 
frequently predicts less value than the observed value. 

Fig. 10  Scatter plot dis-
playing the models (RNN, 
LSTM, and GRU) perfor-
mance at Bayburt stations 
during the training phase

Fig. 11  Comparison of observed and forecasted streamflow using the proposed model (GRU) and LSTM and RNN models at Bay-
burt station
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This is also observed in Fig. 8 as the LSTM model can-
not predict the streamflow peak. This analysis of the 
results showed that the GRU model is better than the 
LSTM model to forecast the peak streamflow (Fig. 9).

Model performance for Bayburt station (E23A004)

GRU model is again established on the Bayburt sta-
tion to check it performance. During the training 
phase RNN model (r = 0.943) outperformed the other 
models. But during the validation period, the perfor-
mance of the RNN model (r = 0.925) is reduced sig-
nificantly and showed the underfit condition. This 
underfit condition was observed consistently for the 
three stations during model development. This con-
cludes that the RNN model fails to maintain accuracy 
efficiently (Table  3). The performance of the GRU 
(r = 0.916) and LSTM (r = 0.916) are same during the 
training phase (Fig. 10). During the validation period, 
the performance of the LSTM model (r = 0.914) is 
more consistent than the GRU model (r = 0.902), but 
it failed during the testing period. During the test-
ing period, the LSTM model overfit and predicted 
a slightly higher value than the observed. But same 
time GRU model showed the consistent performance 
to forecast the streamflow (Fig. 11). In terms of other 
performance indices, the GRU model (RMSE = 0.159, 
RSR = 0.459) showed approximately close RMSE 
error than the LSTM (RMSE = 0.154, RSR = 0.451) 
during testing. The volumetric efficiency of the 
GRU model (VE = 0.869) is approximately equal to 

the LSTM model (VE = 0.872). The Taylor diagram 
further confirms this fact as the model coincided 
(Fig. 12a). In addition, box whisker also shows a simi-
lar range of error and median for the GRU and LSTM 
(Fig.  12b). This analysis concludes that the GRU 
model can replace the LSTM model for this station.

In Table  3, the success of the LSTM, GRU, 
deep-learning models predict monthly flows at 
a satisfactory level and close to each statistical 
parameters. At the end of the analysis, the RNN 
model at Erzincan and Bayburt stations and the 
RNN and GRU models at Gümüshane station 
showed the most successful estimation results. In 
addition, it has been determined that all the estab-
lished deep learning models predict monthly flows 
at a satisfactory level and close to each other.

De melo et al. (2019) determined that the mod-
els of GRU and LSTM networks perform more 
effectively than the MLP and ARIMA models. 
Sahoo et  al. (2019) India used LTSM and RNN 
models to estimate daily discharge data in the 
Mahanadi River basin. He found that the LSTM-
RNN model showed more successful prediction 
outputs than the RNN model. Zhao et al., (2021a, 
2021b) and Shu et al. (2021) found that deep learn-
ing models outperform machine learning models 
such as ANN, ELM, and SVR for monthly flow 
predictions. When the study is compared with the 
existing literature, it overlaps with the literature 
in that deep learning algorithms produce effective 
results from stream estimation.

Fig. 12  a Taylor plot displaying the models (RNN, LSTM, and GRU) performance at Bayburt station during the validation and test-
ing phase. b Box whisker plot displaying testing error (observed-predicted) at Bayburt station
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Table 3  Evaluation of 
model performance

Bold characters indicate the best models

Fitness Parameters Training Validation Testing

RNN LSTM GRU RNN LSTM GRU RNN LSTM GRU 

Station 1 (Erzincan)
r 0.965 0.963 0.949 0.906 0.904 0.904 0.908 0.897 0.899
Rank 3 2 1 3 2 1 3 1 2
RMSE 0.082 0.086 0.099 0.125 0.127 0.121 0.119 0.126 0.126
Rank 3 2 1 2 1 3 3 2 1
RSR 0.264 0.276 0.316 0.443 0.448 0.429 0.418 0.443 0.443
Rank 3 2 1 2 1 3 3 2 1
NSE 0.930 0.923 0.900 0.800 0.795 0.812 0.821 0.799 0.800
Rank 3 2 1 2 1 3 3 1 2
d 0.981 0.979 0.972 0.949 0.948 0.949 0.952 0.946 0.944
Rank 3 2 1 3 1 2 3 2 1
VE 0.965 0.963 0.958 0.946 0.946 0.948 0.949 0.947 0.946
Rank 3 2 1 2 1 3 3 2 1
Total rank 18 12 6 14 7 15 18 10 6
Total rank RNN:50, LSTM:29, GRU:27

Station 2 (Gümüshane)
r 0.931 0.908 0.914 0.895 0.901 0.922 0.902 0.913 0.902
Rank 3 1 2 1 2 3 2 3 1
RMSE 0.077 0.084 0.081 0.101 0.094 0.084 0.07 0.07 0.072
Rank 3 1 2 1 2 3 3 2 1
RSR 0.384 0.419 0.405 0.463 0.430 0.384 0.438 0.435 0.432
Rank 3 1 2 1 2 3 1 2 3
NSE 0.852 0.823 0.836 0.781 0.811 0.849 0.804 0.806 0.770
Rank 3 1 2 1 2 3 2 3 1
d 0.959 0.948 0.952 0.938 0.944 0.957 0.945 0.946 0.936
Rank 3 1 2 1 2 3 2 3 1
VE 0.955 0.953 0.953 0.945 0.954 0.956 0.957 0.956 0.953
Rank 3 2 1 1 2 3 3 2 1
Total rank 18 7 11 6 12 18 13 15 8
Total rank RNN:37, LSTM:34, GRU:37

Station 3 (Bayburt)
r 0.943 0.916 0.916 0.925 0.914 0.902 0.907 0.927 0.920
Rank 3 2 1 3 2 1 3 3 2
RMSE 0.123 0.143 0.143 0.141 0.143 0.148 0.150 0.154 0.159
Rank 3 2 1 3 2 1 3 2 1
RSR 0.346 0.400 0.401 0.419 0.425 0.439 0.441 0.451 0.459
Rank 3 2 1 3 2 1 3 2 1
NSE 0.880 0.839 0.839 0.821 0.816 0.803 0.802 0.792 0.764
Rank 3 2 1 3 2 1 3 2 1
d 0.967 0.953 0.953 0.950 0.953 0.946 0.951 0.945 0.942
Rank 3 2 1 2 3 1 3 2 1
VE 0.916 0.899 0.899 0.904 0.903 0.900 0.882 0.872 0.869
Rank 3 2 1 3 2 1 3 2 1
Total rank 18 12 6 17 11 6 18 13 7
Total rank RNN:53, LSTM:36, GRU:19
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Conclusion

Application of these deep learning techniques is 
encouraged because this type of model offers the pos-
sibility to take advantage of the sequential nature that 
can help achieve higher accuracy. This article dis-
cusses the feasibility of deep learning approaches such 
as GRU, RNN, and LSTM for estimating monthly 
stream flow. In this, a new generation of sequential 
deep learning models is tested to forecast the stream-
flow, which is always challenging in water resources. 
As a result of the rank analysis, it was determined that 
the most successful prediction model was RNN.

Multiple benchmarks are comprehensively tested 
and compared to the proposed GRU to forecast frame-
work on a real-world dataset. Considering this dataset, 
the proposed GRU framework achieved significant 
forecasting accuracy like the LSTM model. The incon-
sistency in the monthly streamflow profile at different 
stations generally affects the predictability. The higher 
the inconsistency, the more the GRU can contribute 
to the forecasting improvement compared to the sim-
ple RNN and LSTM. As for future work, methodolo-
gies for parameter tuning can be developed to further 
increase forecasting accuracy on different types of sta-
tions, especially for stations with varying flow regimes. 
In this study, parameter optimization was done simply. 
However, in the future, the parameters can be adjusted 
thanks to hybrid structures. Moreover, although indi-
vidual streamflow forecast is far from accurate, aggre-
gating all individual predictions yields a better predic-
tion for the aggregation level than the conventional 
strategy of directly forecasting the streamflow.
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