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Abstract The present study captures the precipitation 
synthesis of zinc nanoparticles and modification with 
alumina and oleic acid. The crystalline size evaluated 
from the XRD profile of the zinc oxide nanoparticles was 
18.05 nm but was reduced to 14.20 and 14.50 nm upon 
modification with oleic acid and alumina. The XRD 
spectra also showed evidence of the amorphous nature 
of zinc oxide nanoparticles and subsequent enhancement 
upon modification. A porous appearance was observed 
in the SEM instrumentation but seems to be enhanced by 
modification. The FTIR absorption spectra of the nano-
particles showed a peak associated with ZnO vibration 
around 449 cm, but the enhanced intensity was observed 
due to modification. The prepared ZnO-NPs and the 

modified samples were good materials for the adsorption 
removal of glyphosate from water, recording efficiencies 
above 94% at neutral pH and showing a possible incre-
mental trend with an enhanced period of contact and 
adsorbent dosage. The adsorbents showed maximum 
capacity that ranged from 82.85 to 82. 97  mg/g. The 
adsorption models of Freundlich, Temkin, Dubinin–
Radushkevich and BET showed excellent fitness. Results 
from computational results complemented experimental 
data and were used to identify the sites for adsorption and 
characteristics of molecular descriptors for the systems.
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Introduction

One of the major challenges of the global society is the 
lack of potable water or the increasing volume of waste 
and contaminated water (Warren-Vega et  al., 2023). 
Consequently, the global society is currently stretch-
ing environmental, economic, industrial and domestic 
avenues to overcome the challenges arising from water 
contamination (Kumar et  al., 2021). Some water con-
taminants have a short life span because they are biode-
gradable, but most contaminants that are nonbiodegrada-
ble or persistent are on the lists of emerging that should 
be given intensive research concerning remediation 
approaches because of their established toxicological 
documentation (Pérez-Lucas et  al., 2023; Zahmatkesh  
et  al., 2022)). Some emerging contaminants such as 
dyes, antibiotics, pesticides and other chemicals are 
useful in agricultural, scientific laboratories and sev-
eral industrial sectors (Kaczorowska et al., 2023). This  
suggests that their production and availability are on the 
increase and point to the fact that increasing production, 
demand and supply should be adequately matched by 
remediation approaches (Silva et al., 2020; 2023).

One of the most vulnerable components of the envi-
ronment that are worse impacted by the continuous dis-
charg of toxic wastes is the aquatic environment because 
most contaminants are soluble in water and can easily 
be transported directly or indirectly to other compo-
nents of the ecosystem (Caixeta, 2023). Consequently, 
research scientists around the globe have designed, 
tested and implemented several water treatment tech-
nologies (such as adsorption, ozonolysis, photodegrada-
tion, ion exchange, filtration, oxidation) to counter the 
forces of contamination (Sedighi et  al., 2023). Pesti-
cides are useful chemicals in the agricultural sector for 
the protection of crops against destruction, poor yield, 
food insecurity and associated economic and industrial 
problems (Hagner et al., 2019). Regardless of their util-
ity or benefits, most pesticides (including glyphosate) 
are persistent in the environment and have an inherent 
tendency to be toxic to aquatic life, mainly when trans-
ported in solution to aqueous systems (Maderthaner 
et  al., 2020). Some toxic impacts of glyphosate have 
been established and reported, including increased sali-
vation, internal burns and cancer (Peillex and Pelletier, 
2020). To remediate this impact, some laboratory-scale 
investigations have confirmed that among the available 
methods, an adsorption process is an excellent approach 

for the removal of toxic chemicals (including pesticide 
residue) from aqueous solutions (Odoemelam et  al., 
2018). Consequently, several conventional adsorbents 
have been established to be effective in the decontami-
nation of water such as biochar showing removal effi-
ciency of over 80% for atrazine, chlorothalonil and beta 
endosulfan from water (Kalsoom et al., 2022). Barbosa 
et  al. (2023) also observed the effectiveness of sugar 
cane biomass as an adsorbent for the removal of fipronil 
from water with optimum removal efficiency exceed-
ing 80%. The work of Naghdi et  al. (2023) employed 
a porous metal–organic framework to remove glypho-
sate from water with an attended adsorption capacity of 
440 mg/g, while Diel et al. (2022) observed efficiency 
approaching 90% with carbon nanotube as an adsor-
bent. Based on the above-reported work, there are some 
common challenges facing the selectivity, durability 
and efficiencies of adsorbents including irreducible 
particle size to enhance adsorption, the environmental 
requirement of non-constitution of primary or second-
ary contaminants, non-thermal stability, lack of struc-
tural information for enhanced modelling, inaccessi-
bility, reusability and weak surface properties such as 
porosity and surface area (Gkika et  al., 2022). Some 
of the listed shortcomings have impeded the economic 
cost of employing several adsorbents, especially at a 
commercial scale.

Of significant interest concerning the efficiency of 
an effective adsorbent is the requirement for minimal 
particle size and enhanced surface area (Cosgrove et al., 
2022). Size modification below the micro-dimension 
may be impossible within the framework of most of 
the common adsorbents (Mazari et  al., 2021). There-
fore, the production of adsorbents with particle sizes 
of 1 to 100 nm (i.e. nanoparticles) can significantly 
boost adsorption capacity. Another challenge that con-
cerns the water purification industry is the toxicity of 
some adsorbents, including some nano-adsorbents 
(Garg et  al., 2021). For example, Hubbe (2022) and 
An et al. (2015) reported the toxicity of cellulose and 
jujube-based adsorbents and called for more intensive 
research attention towards managing the toxicity of the 
adsorbent. This implies that removing contaminants 
from water may be accomplished by the introduction 
of newer and foreign contaminants (Eddy et al., 2022a). 
As a result, long-term efforts must be made to find 
adsorbents that will not leach toxic components into the 
aqueous medium. Consequently, there is a current need 
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to design and apply eco-friendly adsorbents to remove 
pesticide residue (such as glyphosate) from the aquatic 
environment (Ghavamifar et al., 2023).

The International Union of Pure and Applied Chemis-
try (IUPAC) nomenclature for glyphosate is ((3-hydroxy- 
2-oxopropyl) amino) methyl phosphonic acid. It is an 
active and standard ingredient in most pesticides, and 
its commercial value is highly appreciable because of 
its outstanding effectiveness as a pesticide (Diel et  al., 
2022). The toxicity of this product has been confirmed, 
especially its impact on body weight, skeletal composi-
tion, gastrointestinal systems and initiation of cancer 
and death (Tarazona et  al., 2017). Unfortunately, this 
toxic compound can easily be ingested through con-
taminated food, drinking water and other routes (Da’ana 
et  al., 2021). It can equally affect the aquatic environ-
ment through a reduction in primary productivity (and 
a retardation of the amount of light penetrating the water 
and subsequent retardation of photosynthesis), nutrient 
enrichment and the termination of the aquatic popula-
tion (Peillex & Pelletier, 2020). Given the closeness 
of the contamination route of glyphosate, its common 
usage, its toxicity and the need to employ eco-friendly 
adsorbents for their removal, our current study is aimed 
at the employment of the precipitation method to syn-
thesize, modify, characterize and apply zinc oxide nano-
particles (ZnO-NP) to eliminate glyphosate from aque-
ous solution. The chemical structure of glyphosate is 
shown below.

P

OHO

HO
N
H

O

OH

The structure suggests some inherent tendency of 
the compound towards adsorption based on the pres-
ence of heteroatoms (O, N and P), adsorption-prone 
functional groups and pi-electrons (Eddy et al., 2022b).

The success of zinc nanoparticles rather than zinc 
oxide nanoparticles has also been reported for the 
removal of glyphosate residue from contaminated water 
with recorded optimum efficiency of 70%. However, 
zinc nanoparticles can be very reactive with some con-
taminants, unlike zinc oxide nanoparticles which are 
relatively stable (Al-Arjan, 2022). This suggests that 

the generation of secondary contamination is more fea-
sible with ZnNPs than ZnO-NPs. Some studies have 
also shown that the adsorption capacity of nanoparti-
cles such as ZnO-NPs can be enhanced through dop-
ing or capping with other compounds. For example, 
Hosseini and Toosi (2019) observed that graphene– 
titanium oxide nanocomposites yielded removal effi-
ciency extending from 53 to 73% for some herbicides 
(including 2,4-D, glyphosate compared to  TiO2 or gra-
phene that showed efficiency not exceeding 48%. The 
only literature on the viability of zinc oxide nanopar-
ticles (ZnONPs) as an adsorbent for glyphosate is the 
one reported by Páez et al. (2019). Their work indicated 
that ZnO-NPs were synthesized by precipitation meth-
ods and applied in the removal of glyphosate-based 
herbicides from water. The efficiency describing the 
adsorption removal technology assumes an optimum 
value of about 90%. The study showed some merit 
in the application of the nanoparticles and also opens 
room for further modifications that can thrive towards 
the enhancement of efficiency; some are the investiga-
tion of environmental variables affecting the observed 
adsorption, the stabilization of the adsorbent by dop-
ing and the establishment of the theoretical or compu-
tational chemistry descriptors that can be useful in the 
prediction of future adsorption descriptors and other 
structure-based predictors. Therefore, in this study, we 
are consolidating the research need for the enhance-
ment of the adsorption capacity of ZnO-NPs through 
doping as a predictor for better adsorption removal of 
the toxic herbicide, which is popularly used in several 
countries of the world including Nigeria and India. The 
investigation of environmental variables that can affect 
the adsorption characteristics of the ZnO-NPs as well 
as the establishment of theoretical based descriptors is 
also incorporated into the work and shall form the base-
line information for the first time.

Materials and methods

Sample preparation and synthesis

All chemicals were purchased from BDH Limited, 
Poole, England, and Aldrich Company, Germany. The 
chemicals were used as delivered and without further 
purification. The precipitation method described by 
Mohan and Renjanadevi (2016) was adopted for syn-
thesizing the ZnO-NP using zinc acetate dehydrate 
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and NaOH as precursors. The first stage of the reac-
tion involves the production of sodium acetate and 
zinc hydroxide acetate (Eq. 1). In contrast, the second 
stage involves further interaction of the zinc hydroxyl 
acetate and sodium hydroxide (Eq. 2) to produce ZnO:

The synthesized zinc oxide nanoparticles were 
washed with deionized and distilled water severally 
and filtered with a Whatman No. 1 filter paper. It 
was washed with 20 ml of 96% ethanol and dried in 
an oven at 100 °C for 4 h before calcination. A por-
tion of the prepared zinc oxide nanoparticles was 
modified using oleic acid and xylene, as described by 
Hong et  al. (2006). The remaining portion was also 
modified with aluminium oxide as described by Yuan 
et al. (2005).

To prepare stock solutions of glyphosate, 1 g of the 
pesticide was dissolved in 1000 ml of distilled water to 
achieve a concentration of 1000 mg/L. Using a UV/VIS 
1800 PC spectrophotometer, a calibration curve was 
developed using various working concentrations (2, 3, 
4, 4.5 and 6.5 mg/L) prepared from the stock solutions.

Adsorption removal techniques

According to Yuan et al. (2005), batch adsorption exper-
iments were conducted using 10 mg/L pesticide solu-
tions (except for experiments investigating the effects of 
initial concentration, in which different concentrations 
were used: 2.0, 3.0, 4.0, 4.5 and 6.5 mg/L. Each analy-
sis used 0.6 g of adsorbent, except for the study that 
investigated the effects of adsorbent dosage, which used 
various adsorbent masses (0.1, 0.2, 0.4 and 0.6 g) and a 
fixed pesticide concentration (10 m/g).

A UV/VIS 1800 PC spectrophotometer was used to 
measure absorbance to determine the amount of pesticide 
adsorbed and the difference between the initial (inlet) 
concentration and the equilibrium concentration (after 
adsorption, i.e. C

0
− Ce was recorded as the amount of 

pesticide adsorbed. C
0
  is the initial concentration, while 

Ce is the concentration at equilibrium. The percent-
age concentration of pesticide removed was calculated 
using Eq. 3, while the equilibrium amount of pesticide 
adsorbed was evaluated using Eq. 4 (Ali et al., 2022):

(1)
Zn

(

CH3COO
)

2
+ NaOH → Zn

(

CH3COO
)

(OH) + NaCH3COO

(2)
Zn

(

CH
3
COO

)

(OH) + NaOH → ZnO + NaCH
3
COO + H

2
O

where m is the mass of the adsorbent used for the 
study and V is the volume of the solution

Characterization of ZnO-NP

The Fourier transformed infra-red spectrum (FTIR) of the 
ZnO-NPs was obtained by scanning the sample in a FTIR 
instrument (Shimadzu FTIR-54005) between the wave 
number of 4000 and 400  cm−1

. The spectrum obtained 
was presented as peaks of absorbance against wave num-
ber. The ZnO-NPs were also characterized using the XRD 
(model PANalytical X’Pert Pro) which operated at a volt-
age peak of 45 kV and a regulated current of − 35 mA. The 
operation also employed a Cu–Kα radiation (K = 1.5406 
A˚) and 2θ ranging from 20 to 80° at a continuous speed 
of 0.045° per min. The morphological analysis of the 
nanoparticles was implemented using a scanning electron 
microscope (Model JEOL JSM6100) with an accelerating 
voltage of 20 kV after super coating within a layer of gold.

Quantum computation

ChemBio version 18 was used to draw chemical struc-
tures. Optimization of the drawn chemical structures was 
done using DFT models in the Materials Studio program, 
which was also the software used in the computation 
of the Fukui function through Mulliken and Hirshfeld 
charges (Q). The DFT/B3LYP/6-311G** level of theory 
was used for the calculations of semiempirical parameters 
such as frontier molecular orbital energies, total molecu-
lar energy and dipole moment. The adsorption energy 
and associated energy functions such as rigid adsorption 
energy, deformation energy and others were obtained 
through Monte Carlo simulation modelling positioned as 
an adsorption locator in the Materials Studio program.

Results and discussion

Characterization of the synthesized ZnO-NP

Figure 1 shows the scanning electron micrographs (SEM) 
of (a) ZnO-NPs, (b) ZnO-NPs modified with alumina and 

(3)%Removal =
C
0
− Ce

C
0

×
100

1

(4)Qe =
C
0
− Ce

C
0

×
m

V
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(c) ZnO-NPs modified with oleic acid and xylene. The 
micrographs were obtained based on the resolution (500 ×) 
indicated in each figure. The examination of the micro-
graphs (Fig. 1) reveals that the modification changed the 
morphology of the ZnO-NPs. The unmodified micrograph 
reveals less clumsiness in the nanoparticles. However, 
modification with alumina reveals more evenly arranged 
spherical particles within the exclusive and relatively broad 
adsorptive sites with different morphological appearances, 
at the bottom left (largest diameter), centre (average diam-
eter) and top right (most minor diameter).

Also, the ZnO-NPs modified with oleic acid and xylene 
gave a relatively better and more ordered morphology than 

the unmodified ZnO-NPs. From the appearance or mor-
phology of the three micrographs, there is a development 
of a more ordered and defined structured appearance that 
can be attributed to modification. Some reports have been 
documented on the morphology of nanoparticles after 
modification. For example, Egbuchunam and Balkose 
(2012) observed that ZnO-NPs consisted of spherical par-
ticles and were monodisperse, but modification with inor-
ganic compounds increased aggregation.

In the work of Mohan and Renjanadevi (2016), the 
morphology of ZnO-NPs synthesized showed a grain-
like and spherical appearance, while Kamal et  al. 
(2023) reported a hexagonal shape for ZnO-NPs.

Fig. 1  Scanning electron 
micrographs of a ZnO-NP, 
b MAlO and c MOLA
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The X-ray diffraction spectra of the ZnO-NPs, ZnO-
NPs modified with alumina (MAlO) and ZnO-NPs 
modified with oleic acid (MOLA) are shown in Fig. 2a 
to c, respectively. The XRD spectra (Fig.  2) reveal 
sharp peaks for crystalline ZnO-NPs with a hexagonal 
wurtzite structure, consistent with the range of values 
reported elsewhere (Xin, 2022). The observed sharp 
peaks indicate an excellent crystallinity of the ZnO-
NP at 2θ = 8.4874°, 12.6734°, 16.5172°, 28.4438°, 
33.0871° and 59.3223°, while the rough surface indi-
cates the amorphous areas with relatively broad peaks.

According to Zhou et al. (2017) and Khoshhesab et al. 
(2011), the diffraction peaks at 33.0871° and 59.3223° 
are associated with the hexagonal wurtzite phase of ZnO. 
Peaks at 8.4874, 12.6734 and 16.5172 indicate the pres-
ence of Zn(OH)2 and ethanol in the drying process. A 
reduction in peak intensity (but an increase in the number 

of peaks) of ZnO-NPs was observed due to the inclusion  
of aluminium oxide (Fig.  2b), which contributed to the 
increase in the amorphous character of the ZnO-NPs (Gogoi 
et al., 2020). However, the peaks are much broadened, and 
the crystallinity of ZnO-NPs tends to decrease, while peaks 
were observed at 2θ = 31.1748° to 67.3585°. On the other 
hand, the weak crystallinity of the ZnO-NPs after oleic acid 
inclusion occurred at 2θ = 33.0113° (fig. 2c).

In view of the diffraction peaks observed for the 
nanoparticles, significant information can be obtained 
from the XRD spectrum regarding nanoparticle dimen-
sion through the application of the Scherrer equation 
given as Eq. 5 (Hong et al., 2006):

(5)Crystalline size(nm) =
k�

Bcos�

Fig. 2  XRD spectra of  
(a) ZnO-NP, (b) MAIO 
(ZnO-NPmodified with 
alumina) and(c) MOLA 
(ZnO-NP modified 
witholeic acid and xylene)
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where k is Scherrer’s constant (k = 0.94 for spherical 
crystallites with cubic symmetry), λ is the wavelength 
of the X-ray, β is the full width at half maximum of 
the XRD peak and θ is the diffraction angle, deduced 
from the XRD peak position, i.e. 2θ.

The crystallite sizes of the unmodified nanoparticles 
were estimated as 32.25, 18.79, 7.35, 16.39, 8.48 and 
7.01 nm, which gave an average of 18.05 nm. Also, the 
crystallite sizes of the MOLA were 18.27, 14.20, 22.98, 
9.65 and 5.90 nm (average = 14.2 nm). A similar trend 
was observed for the MAlO, whose corresponding crys-
tallite sizes were 46.0, 31.13, 7.04, 21.43, 10.26, 11.84, 
4.69, 6.71, 4.35 and 5.53 nm (average = 14.50 nm). The 
peaks around 33.0871 and 59.3222° are typical for the 
wurtzite structure of ZnONPs (Pelicano et al., 2017).

The analysed XRD data also confirmed that the 
modification of ZnONPs with alumina changes the peak 
at 33.0871 to 33.1362°, while the peak at 59.3222° is 
absent in the modified ZnO-NPs. Relatively new peaks 
were formed at 20.24, 29.24, 3.17, 36.39, 40.72, 45.62 
and 61.35°. However, modification with oleic acid 
changes the peak from 33.09° to 33.01°, while the origi-
nal peak of 12.65° was changed to 12.07°. The increase 
in the number of peaks (and their broadness) due to alu-
mina and oleic acid modification makes the ZnO nano-
particles less crystalline (and more amorphous) (Zhao 
et al., 2021). It can be seen from the XRD spectrum that 

the modification with alumina tends to increase the crys-
tallite size and the number of peaks more than what was 
found in the ZnO-NPs. In contrast, modification with 
oleic acid reduces the number of peaks and the particle 
sizes of the nanoparticles. Also, the alumina tends to 
make the ZnO-NP more ordered, while the oleic tends 
to increase the crystallinity of the synthesized nanoprod-
uct. There were also observable changes in peak inten-
sities after the modifications, showing a slight decrease 
for alumina-modified ZnO-NPs and an increase for the 
oleic acid-modified ZnO-NPs.

Figure  3 shows the FTIR spectra of the ZnO-NPs, 
MAlO and MOLA. Figure 3 shows the FTIR spectra of 
glyphosate, MAlO, MOLA and ZnO-NPs. The spectra 
reveal a general observation concerning the nanoma-
terials: enhanced absorption due to modification with 
alumina (MalO) and oleic acid (MOLA). The FTIR 
of glyphosate (Fig. 3) reveals OH stretches at 922 and 
12,630  cm−1,  PO2 stretches at 1198 and 1087  cm−1, CO 
stretches at 1745  cm−1, and NH2 stretches at 1600  cm−1. 
Also, the FTIR spectrum of ZnO-NP indicated the pres-
ence of vibration due to ZnO at 479  cm−1 and hydroxyl 
stretches at 3572, 3467, 3549 and 3467  cm−1 (Dangana 
et al., 2023), possibly due to traces of NaOH and  H2SO4 
that were used for the preparation (Handore et al., 2014).

O = C = O stretches were observed at 2348 and 1030  cm−1 
(Hong et al., 2021), and C = C stretch was observed at 1598 

Fig. 3  FTIR spectra of 
glyphosate (GLY), ZnO-
NPs, ZnO-NPs modified 
with alumina (MAlO) 
and ZnO-NP modified 
with oleic acid and xylene 
(MOLA)
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and 831  cm−1. C-O stretches were observed between 1022 
and 1123  cm−1 (Tiwari et al., 2022). These stretches might 
have resulted from traces of unreacted acetate ions. However, 
after adsorption of the pesticide, the OH stretches at 3572 
and 3439  cm−1 were shifted to 3536 and 2501  cm−1, respec-
tively, while the functional groups at 3467 and 3549  cm−1 
were shifted to 3463 and 3422  cm−1, respectively. These 
changes indicate the interaction between the ZnO-NP and 
the glyphosate. Also, new OH stretches were formed at 3881, 
3866, 3803, 3746 and 3646  cm−1, indicating the involve-
ment of these bonds in adsorption. The C-O, C = C and C-H 
stretches were not found in the spectra of the adsorbent after 
adsorption, which also suggests their interaction and subse-
quent involvement in bond formation.

After modification of the adsorbent with oleic acid, 
the FTIR of MOLA reveals almost similar functional 
groups but at different positions, including OH stretch at 
3421  cm−1 but not at 3572, 3467, 3549 and 3467  cm−1  
that were found in ZnO-NPs. This OH stretch was shifted 
to 3536  cm−1, contrary to the multiple stretches in ZnO-
NPs. The observed difference may be partly attrib-
uted to the reducing action of oleic acid. C-O stretch at  
1025  cm−1 was missing a functional group. However, 
new C-O bonds were formed at 1455 and 1404  cm−1 
indicating their involvement in adsorption. After the 
glyphosate adsorption, the C-H bond at 984  cm−1 and the 
O = C = O stretch were also missing in the MOLA spec-
tra. Some of the newly introduced vibrations might have 
been introduced by the adsorbed glyphosate, for exam-
ple,  NH2 stretches.

The MAlO FTIR spectrum after the adsorption of 
glyphosate revealed multiple OH stretching (at 3646,  
3463, 3422, 3881, 3866, 3803, 3463 and 3422  cm−1) 
as shown in the results, which suggest the relative 
contribution of OH stretching in the adsorption of the 
glyphosate. The OH stretches must have been due to 
those from the glyphosate and the adsorbents. How-
ever, the C-H stretches (at 1499 and 1429  cm−1) and 
the C-O stretch (at 11,322  cm−1) were missing in the 
spectrum of the adsorbent after the adsorption of 
glyphosate, which also confirmed their involvement 
in the adsorption process.

It is also evident from the results presented that some 
functional groups were missing after adsorption, while 
others experienced changes in the frequency of adsorp-
tion. Also, new functional groups were formed. The 
observed changes and modifications are evidence of 
interaction and adsorption through the employment of 
functional groups, as reported elsewhere (Eddy et  al., 

2022c). For example, the reported stretches at 3572 and 
3472  cm−1 in ZnO-NP shifted after adsorption shifted 
to 3536 and 3501  cm−1, respectively. The O = C = O 
stretch at 2348  cm−1 in the ZnO-NPs was not found in 
the FTIR spectrum of the adsorbent (ZnO-NPs) after 
adsorption. Multiple OH stretches formed new bonds 
(3881, 3866, 3803, 3746 and 3646  cm−1). These new 
bonds were probably used in the glyphosate adsorp-
tion onto the ZnO-NPs. The employment of MAlO and 
MOLA as adsorbents for the removal of glyphosate 
from water also reveals some frequency shifts, the dis-
appearance of bonds and the formation of new bonds.

Batch adsorption study

Results showing the variation in the amount of glypho-
sate adsorbed with some analytical parameters such as 
time, concentration and adsorbent dosage are displayed 
in Fig.  4. The adsorbent dosage was found to exert a 
positive impact on the adsorption of glyphosate by the 
three adsorbents (Fig.  4a), such that the equilibrium 
amount of glyphosate adsorbed experienced a rise with 
an increase in the mass of the adsorbent. Literature has 
shown that an increase in the mass of the adsorbent gen-
erally results in improved adsorption because there is a 
corresponding increase in the number of active adsorp-
tion sites. Therefore, as more adsorbate molecules dif-
fuse to the surface, the vacancy for further adsorption 
would be enhanced (Elfeky et al., 2020). These results 
also align with the findings reported by Naghdi et  al. 
(2023) for the adsorption removal of glyphosate by the 
metal–organic framework.

The best adsorption tendency regarding the period 
of contact was achieved by the unmodified sample 
(i.e. ZnO-NPs), while the MAlO exhibited the least. 
This may be related to the nature of porosity and the 
tendency of the adsorbent to be relatively weakened 
as the contact period increases (Fig.  4b). Some stud-
ies have given explanations on possibilities that favours 
the mutual increment in adsorption and time concern-
ing the adsorption of organic molecules. Some attrib-
uted such observations to the successful equilibration 
of the adsorbate–adsorbent system, which is principally 
dependent on time as explained in this context (Silva 
et  al., 2020). The period of contact of the adsorbate 
with the adsorbent in the solution was also observed to 
affect the extent of adsorption of glyphosate pesticides 
such that as the contact period increases, more of the 
adsorbate molecules had the opportunity to be adsorbed 



Environ Monit Assess (2023) 195:658 

1 3

Page 9 of 19 658

Vol.: (0123456789)

due to enhanced interaction between the adsorbed spe-
cies and the penetration power of the adsorbate towards 
the electric double layer as the contact period increases. 
A similar trend in variation of the amount of glypho-
sate adsorbed with time was observed and reported by 
Sen and Mondal (2022) and Chen et al. (2016) for the 
adsorption of glyphosate from an aqueous solution by 
some non-ZnO-NP adsorbents.

Between the pH of 3 and 5 (Fig. 4c), the equilibrium 
amount of glyphosate adsorbed decreases by 7.67%, 7.87% 
and 13.77% for ZnO-NPs, MAlO and MOLA, respec-
tively. Consequently, the highest decrease in adsorption was 
observed for the MOLA adsorbent. The decreasing trend 
was followed by a sharp increase that resulted in compa-
rable efficiencies for both ZnO-NPs and MAlO. The two 
adsorbents also seem to display similar adsorption mecha-
nisms (as shown by the parallel pattern recorded for the 
adsorption profiles of the two adsorbents for glyphosate). 

However, at a pH of 9, ZnO-NPs had the best adsorption 
efficiency (% Removal = 93.27%), while MAlO had the 
lowest, and MOLA had the highest (% Removal = 93.27%). 
At a pH of 9, the recorded efficiency was 91.54%.

The optimum pH for the removal of the pesticide was 
7, 3 and 7 for ZnO-NP, MAlO and MOLA, respectively. 
That means the removal of MAlO is best favoured at an 
acidic while profiles the dominance of  H+. This may be 
ascribed to the fact that  Al2O3 (though amphoteric) causes 
the ZnO-NPs to act as a base and thus exert a strong affin-
ity for the adsorption at acidic pH (Pereira et al., 2019). 
The dependent pH for the other adsorbents witnessed 
the best conditions at neutral pH. The observed trend is 
not strange when considering the available literature. For 
example, Mattos et al. (2017) also reported a pattern simi-
lar to the observation in this study while investigating the 
variation of glyphosate adsorption with pH.
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An increase in the initial concentration of the adsorb-
ate (Fig. 4d) was also found to produce an increase in 
adsorption because more molecules are available to 
compete for the available adsorption sites (Al-Harby 
et al., 2021). It is certain that as long as the available 
adsorption sites have not been saturated, the tendency 
for an adsorbent to accommodate more adsorbate mol-
ecules will increase with an increase in concentration. 
At lower concentrations, once the adsorbate molecule 
is unable to diffuse to the adsorbent surface, adsorp-
tion will decrease, but at higher concentrations, there 
would be enough molecules to compete for the adsorp-
tion sites (Rápó & Tonk, 2021). The kinetics of the 
adsorption process was investigated through the fitting 
of experimental data into pseudo-first-order, pseudo-
second-order, Weber–Morris and Elovich kinetic mod-
els, which are described by Eqs.  6 to 9, respectively 
(Babapour et al., 2022):

The suitability of a pseudo-first-order model to the 
adsorption of glyphosate by ZnO-NP, MAlO and MOLA 
was investigated by plotting against time (based on Eq. 6). 
The linear plot (plots not shown) obtained gave the best R2 
value for MALO (Table 1). The values of the theoretical 
equilibrium amount of the pesticide adsorbed (Qe) were 
low, but the ZnO-NP gave the closest approximation to 
the experimental data. The highest pseudo-first-order rate 
constant was exhibited by MOLA and the least by MAlO, 
indicating the adsorption becomes faster in that order. 
However, perfect correlations (R2 = 1) were obtained 
for the three adsorbents (Table  1) through the pseudo-
second-order plots (Fig. 5) compared to the pseudo-first-
order model, which gave R2 values (ranging from 0.8316 
to 0.9314) that are relatively lower than those calculated 
for pseudo-second-order. Excellent approximation was 
also observed for the theoretical equilibrium amount of 
glyphosate adsorbed (ranging from 82.85 to 82. 97 mg/g) 
compared to the experimental average of 82.90 mg/g 

(6)ln
(

Qe − Qt

)

= lnQe − k
1
t

(7)
t
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=
1

k
2
Q2

e

+
t

Qe

(8)Qt = kidt
1∕2 + Cid

(9)Qt =
1

�
ln(1 + ��t) =

1

�
ln�� +

1

�
lnt

(Table 1). Therefore, the kinetics of the adsorption pro-
cess is best described by the pseudo-second-order model. 
Others have published similar deductions concerning 
the adsorption of glyphosate by various adsorbents and 
accepted the pseudo-second-order kinetics as best fitted 
(Jia et al., 2011). Therefore, the adsorption rate is majorly 
limited by chemisorption and not solely by diffusion 
(Bazan-Wozniak & Pietrzak, 2023).

The linear plot describing the intraparticle diffusion 
model (Fig. 5) did not give a zero intercept, confirm-
ing that the adsorption is not limited by diffusion (Xu 
et al., 2022). The estimated rate constant (Table 1) was 
the highest for the adsorption of glyphosate by ZnO-
NPs and MOLA, which is consistent with the inference 
drawn from the pseudo-second-order models (Table 1). 
The application of the intraparticle diffusion model to 
the adsorption removal of glyphosate by calcined cal-
cium aluminium hydrotalcite has also been affirmed by 
Peng et al. (2021).

The Elovich model was also accepted since a plot 
of Qt against t was linear as shown in Fig. 5. From the 
model, the constants a and b have  mgg−1  min−1 and 
g.mg−1 as their respective units. The initial rate was 
the highest for MOLA and lowest for ZnO-NPs, which 
is the inverse of the constant rate values obtained from 
the other models.

The Elovich model predicts that ZnO-NPs have the 
least initial adsorption rate but the least desorption rate, 

Table 1  Evaluated kinetic parameters for the adsorption of 
glyphosate by ZnO-NPs, MAlO and MOLA

ZnO-NP MAlO MOLA

Pseudo-first-order
  R2 0.8966 0.8366 0.9314

  Qe (mg/g) 0.000488 0.000184 0.001207

  K1  min−1) 0.0692 0.0495 0.0888

Pseudo-second-order
  R2 1.000 1.000 1.0000

  Qe (mg/g) 82.974 82.85 82.953

  K2  min−1) 0.015974 0.028189 0.009126

Elovich
   R2 0.9369 0.947 0.9503

 β 11,111.11 14,285.71 20,000

  In ( a) 907.351 1170.433 1642.097

Weber–Morris
   R2 0.9134 0.9547 0.9841

   kid  (min-1) 0.00000053 0.0000002 0.00000003

   Cid 0.0827 0.0827 0.0827
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Fig. 5  Pseudo-first-order 
plots for the adsorption 
of glyphosate by ZnO-
NP, MAlO and MOLA 
and Webber–Morris and 
Elovich isotherms for ZnO-
NP, MAlO and MOLA
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while MOLA has the highest initial adsorption rate and 
desorption rate. These findings are consistent with the 
experimental data, which showed that ZnO-NPs adsorbed 
glyphosate better than MOLA. Hnana et al. (2019) also 
found that the adsorption of glyphosate obeyed the 
Elovich model onto ghassoul and chitosan. A similar 
report, on the use of calcite for the adoption removal of 
glyphosate from an aqueous medium, also affirmed the 
suitability of the Elovich equation in the explanation of 
the adsorption characteristics of the system.

Adsorption isotherms are pivotal in the under-
standing of the adsorption behaviour of ZnO-NPs, 
MAlO and MOLA adsorbents. We investigated sev-
eral isotherms and found that the experimental data 
fit the Temkin, Freundlich, Brunauer–Emmet–Teller 
and Dubinin–Radushkevich isotherms (shown in 
Fig.  6d) gave a better degree of fitness. The listed 
isotherms were developed based on Eqs.  10, 11 12 

and 13, respectively, which represent the assump-
tions that established them (Brião et al., 2022):

Equation 6 is the linear equation for the Freundlich 
isotherm. The consistency of the experimental data 
with this model was ascertained by the high calculated 
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values of R2 (Table 2). The adsorption constants of the 
Freundlich system deduced from the plot (Fig. 6a) were  
0.7516, 1.6274 and 0.2418 for ZnO-NPs, MAlO and 
MOLA (Table  2), respectively. The parameter, 1/n 
(which represents adsorption intensity), energy distri-
bution factor and surface heterogeneity, was less than 
unity except for MOLA (which had a slight deviation) 
and therefore confirmed that the adsorption of glypho-
sate is favourable because 0 <

1∕
n
< 1 (Mahalakshmi 

et al., 2016). Furthermore, the 1/n values are less than 
unity (except for MOLA), suggesting the favouritism of 
the physisorption mechanism for ZnO-NP and MALO 
but the chemisorption mechanism for MOLA (Garg 
et al., 2022). However, based on the fitness of Elovich 
and pseudo-second-order kinetic models, it is also infer-
able that the chemisorption mechanism also features 
in the adsorption of the pesticides onto ZnO-NP and 
MAlO but with relatively less dominance. The hetero-
geneity factor connects the free energy of adsorption 
( ΔGads = −RTlnkF) with the maximum adsorption sur-
face according to Eq. 14 (Eddy et al., 2022a):

The evaluated values of Qmax (Table 2) showed that 
MOLA had the largest unutilized adsorption area, 
while ZnO-NP had the least, which is also consistent 
with experimental data.

(14)Qmax =
ΔGads

nRT
=

−lnKF

n

The Dubinin–Radushkevich plot (a plot of  lnQe versus 
� , where � = RTln

(

1 + 1∕Ce

)

 , expressed in Eq. 9) gave a 
linear plot with reasonable values of R2 (Fig. 6). Evaluated 
values of the Dubinin–Radushkevich adsorption energies 
(E = 400 kJ/mol) (Table  2) for the different adsorbents 
were less than the maximum required for observing a 
physical adsorption mechanism. Therefore, based on the 
Dubinin–Radushkevich data, the adsorption of glypho-
sate on ZnO-NP and modified ZnO-NP occurred through 
the mechanism of physicochemical adsorption. However, 
in their study, Pereira et al. (2019) found a physisorption 
mechanism for the adsorption of glyphosate onto ferrihy-
drite using the Dubinin–Radushkevich model.

The BET model (Eq. 14) allows for the occupation 
of the given adsorption sites by more than one mole-
cule, unlike the Langmuir model which is based on the 
monolayer of adsorption (Langmuir, 1918). The exper-
imental data did not fit the Langmuir adsorption model 
but fitted the BET model (because a plot of Ce

Qe(Cs−Ce)
  

versus Ce

Cs

  t was linear) as shown in Fig. 6, indicating 
that there existed a multimolecular layer of adsorption 
that operated to create a lower adsorption surface (i.e. 
BET surface), that was almost the same for all the 
adsorbent (Table  2), where Qm(BET) is the BET mon-
olayer adsorption capacity and CBET is the BET adsorp-
tion constant (which followed the trend, ZnO-
NP > MAlO > MOLA). Al-Arjan (2022) also affirmed 
that the BET adsorption isotherm was appropriate in 

Table 2  Adsorption 
parameters for the 
adsorption of glyphosate 
by ZnO-NPs, MAlO and 
MOLA

Adsorption model ZnO-NP MAlO MOLA

Freundlich
   R2 0.9242 0.9937 0.9871
1/n 1.1952 1.253 0.6569
  n 0.8367 0.7981 1.5223
   Kf 0.7516 1.6274 0.2418
   Qmax(mg.g-1) 719.467 1226.82 3576.42
Dubinin–Radushkevich
   R2 0.988 0.9234 0.9862
   Qmax(mg/g) 3.00E-06 3.00E-06 3.00E-06
  β 327,747.9 237,993.8 194,852.9
   Eads(KJ/mol) 4.08E + 02 4.08E + 02 4.08E + 02
Brunauer–Emmet–Teller(BET)
   R2  0.8903 0.8916 0.8921
   Qm(BET) (mg/g) 0.00111 0.00112 0.0011
   CBET 10.4176 10.3666 10.3067
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the explanation of the adsorption of glyphosate by oil 
palm front. Also, the fitness of the BET isotherm was 
affirmed by Rodrigues et al. (2023) for the adsorption 
of glyphosate by palygorskite. Such levels of fitness is 
an indication of a multiple adsorption layer which is a 
descriptive term for the adsorption of more than one 
molecule of glyphosate by a given adsorption site in 
the ZnO-NPs.

Regeneration study

The three adsorptions were investigated for their reus-
ability (in the re-adsorption of the glyphosate) after 
washing with distilled water (severally) and drying in 
the oven. According to the findings, ZnO-NP had the 

highest reusability index (94.34%), followed by alu-
mina (92.6%) and MOLA (91.65%).

Computational chemistry consideration

Calculated values of semiempirical parameters for gly- 
phosate were  EHOMO =  − 6.84 eV,  ELUMO =  − 1.22 eV,  
the energy gap (ΔΕ =  ELUMO –  EHOMO = 5.62 eV), dipole 
moment (7.80 Debye), total energy (− 930.6525 au), 
area (200.08 Å2), polar surface area (112. 480 Å2), oval-
ity (1.42) and polarizability (53.84 Å3). The HOMO and 
LUMO parameters can effectively be represented through 
a molecular surface plot, which is shown in Fig. 7a for 
glyphosate (Ebenso et  al., 2021). The positive charge 
(red) is seen to concentrate on the heteroatom, while the 

Fig. 7  a Surfaces showing the HOMO and LUMO locations in glyphosate. b Adsorption interaction model between glyphosate and 
ZnO-NPs
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negative lobes concentrate on the carbon atoms. Figure 
6a also shows the electrostatic potential plot (ESP) for 
glyphosate which reveals different ESP surfaces as shown 
by differences in colour.

The fundamental of the semiempirical calculations is 
that molecular reactivity is addressed as a global prop-
erty without consideration of the contributions from 
each of the participating atoms in a molecule. Local 
reactivity can be addressed by the charges on each atom, 
but the most formal approach involves the calculation 
of Fukui functions, which can be defined as a process 
involving the loss of electron (N − 1), the gain of elec-
tron (N + 1) and neutral state (N). The first Fukui func-
tion defines electrophilic (Eq.  16), the second nucleo-
philic (Eq.  15) and the last radical Fukui functions 
(Eq. 17) (Eddy & Ameh, 2021):

The functionality of the above equations is the assign-
ment of the sites with the highest positive values of the 
Fukui functions as the appropriate functional atom or 
bonds. Therefore, based on the calculated Fukui func-
tions, the sites for electrophilic, nucleophilic and radical 
attacks are on the preference of O(11) atom, C(4)-O(6) 
bond and O(6) atom, respectively. The Fukui functions 
were evaluated using Mulliken and Hirshfeld charges  
for N + 1 

(

qN+1
)

 , N − 1 
(

qN−1
)

 and N  
(

qN
)

 electronic  
systems. Quantum chemical investigation was also 
extended to cover the adsorption-associated interaction 
energy through Monte Carlo simulation modelling using 
the adsorption locator program in the Materials Studio 
software (see Fig. 7b). The adsorption locator function 
indicated that the insecticide is adsorbed on the surface 
of zinc oxide nanoparticles, which are also consistent 
with the findings from the evaluated Fukui functions.

The total energy, adsorption energy (Eads), rigid 

adsorption energy, deformation energy and dEads

dN
 were 

evaluated to correspond to − 27.9913, − 56.5196, − 6
2.4737, 5.9541 and − 56.5196 kcal/mol, respectively. 
The negative value of the Eads confirms the exother-
mic adsorption process (between the pesticide and 
the ZnO-NPs) resulting from the decrease in surface 

(15)f +
x
= qN+1 − qN

(16)f −
x
= qN − qN−1

(17)f 0
x
=

(

qN+1 − qN−1
)

2

energy as the glyphosate molecules approach the sur-
face of the adsorbent. The evaluated adsorption energy 
(− 56.5196 kJ/mol) is consistent with the range of data 
expected for the mechanism of chemisorption adsorp-
tion (i.e. 200 > Eads (kJ/mol). Therefore, the adsorption 
of glyphosate on the nanosurface first responded to the 
physical adsorption and was succeeded by the chem-
isorption mechanism (Eddy et al., 2018). The sum of 
the deformation (5.9541 kcal/mol) and rigid adsorp-
tion energy (− 62.4737 kcal/mol) is the equivalent of 
the Eads. The rigid energy component is associated 
with the energy released when the unrelaxed glypho-
sate is adsorbed on the surface of the ZnO nanopar-
ticles, while the energy released when the adsorbed 
molecule is relaxed on the surface is the deformation 
energy. Also, since the total energy is the sum of the 
internal and adsorption energy, then, the calculated 
internal energy of the adsorbed system is equal to 
84.5109 kcal/mol (Yuan et al., 2005).

Conclusions

ZnO-NPs with wurtzite crystalline structure have been 
synthesized by the application of the precipitation 
method. The produced nanoparticles showed major 
FTIR peaks at 459 nm and a ZnO stretching are typi-
cal ZnO-NPs. Apart from the reduction in crystallite 
sizes, modification of the adsorbent by alumina and 
oleic acid (+ xylene) resulted in a more ordered crystal 
but with an increased amorphous character. The syn-
thesized ZnO-NPs, MAlO and MOLA are good adsor-
bents for the removal of glyphosate from an aqueous 
medium. The adsorption tends to be dominated by a 
chemical adsorption mechanism, showing excellent 
fitness for pseudo-second-order kinetics. The present 
results showed that more than 90% glyphosate can be 
withdrawn from aqueous media through adsorption by 
the zinc oxide nanoparticles and the modified samples.
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