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Abstract  Detailed wetland inventories and informa-
tion about the spatial arrangement and the extent of 
wetland types across the Earth’s surface are crucially 
important for resource assessment and sustainable 
management. In addition, it is crucial to update these 
inventories due to the highly dynamic characteristics 
of the wetlands. Remote sensing technologies captur-
ing high-resolution and multi-temporal views of land-
scapes are incredibly beneficial in wetland mapping 
compared to traditional methods. Taking advantage of 
the Google Earth Engine’s computational power and 
multi-source earth observation data from Sentinel-1 
multi-spectral sensor and Sentinel-2 radar, we gener-
ated a 10  m nationwide wetlands inventory map for 
Iran. The whole country is mapped using an object-
based image processing framework, containing SNIC 

superpixel segmentation and a Random Forest clas-
sifier that was performed for four different ecologi-
cal zones of Iran separately. Reference data was pro-
vided by different sources and through both field and 
office-based methods. Almost 70% of this data was 
used for the training stage and the other 30% for eval-
uation. The whole map overall accuracy was 96.39% 
and the producer’s accuracy for wetland classes 
ranged from nearly 65 to 99%. It is estimated that 
22,384 km2 of Iran are covered with water bodies and 
wetland classes, and emergent and shrub-dominated 
are the most common wetland classes in Iran. Con-
sidering the water crisis that has been started in Iran, 
the resulting ever-demanding map of Iranian wetland 
sites offers remarkable information about wetland 
boundaries and spatial distribution of wetland spe-
cies, and therefore it is helpful for both governmental 
and commercial sectors.

Keywords  Wetland mapping · Google Earth 
Engine · Sentinel-2 · Sentinel-1 · Iran · Object-based 
Random Forest

Introduction

Wetlands are described as transitional terrains 
between aquatic systems and terrestrials. Water is the 
most contributing element in wetland areas, manag-
ing the environment and related animals’ life and 
plants. In wetland environments, shallow water covers 
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the land, or the water level is near or at the surface. 
Under the text of the Ramsar Convention, the first 
intergovernmental treaty on the sustainable use and 
conservation of wetlands, wetlands are defined as: 
“areas of marsh, fen, peatland or water, whether natu-
ral or artificial, permanent or temporary, with water 
that is static or flowing, fresh, brackish or salt, includ-
ing areas of marine water the depth of which at low 
tide does not exceed six meters” (Ramsar Convention 
Secretariat, 2013).

Wetlands’ designation to international or govern-
mental conventions reflects the global importance 
of wetlands. It is estimated that wetland sites cover 
nearly 3 to 8% of the global land surface (Tiner 
et  al.,  2015). However, this small proportion has a 
significant impact on climate, biodiversity, and both 
natural and artificial ecosystems. A variety of envi-
ronmental functions are offered by wetlands. They 
regulate hydrological cycles and mitigate floods 
and storms to protect shorelines. Wetlands supply 
fresh and clean water by retaining and stabilizing 
sediments, and they store a considerable amount of 
carbon and other nutrients (Mitsch et al., 2013).

Considering the importance of wetland ecosystems, 
they are being destroyed at an increasing rate because 
of both anthropogenic activities and natural cycles 
(Wulder et  al., 2018). The Millennium Ecosystem 
Assessment found that wetlands are being lost faster 
than any other ecosystem on a global scale. Primary 
indirect drivers of the wetland changes are the popula-
tion growth, and economic activities and overexploi-
tation of wetland resources, water use, eutrophication 
and pollution, infrastructure development, overhar-
vesting, and land conversion are the primary direct 
drivers of wetland loss and degradation (“Millennium 
Ecosystem Assessment” 2005).

Recognition of wetlands’ values as an important eco-
system and as a natural resource, growing interest in 
wetland mapping, and environmental change monitoring 
for governments and international organizations (Wulder 
et al., 2018). Wetland studies with traditional approaches 
that were based on a field survey of wetland ecosystems 
were time- and cost-consuming. Photogrammetry (Cox, 
1992) and satellite imaging (Rundquist et  al., 2001) 
gradually replaced these traditional approaches, and use 
of earth observation approaches in different applica-
tions, such as water level monitoring (Wdowinski et al., 
2008), classification (Chopra et  al., 2001), and change 
detection (Munyati, 2000), has been well illustrated.

Satellite remote sensing has many advantages for 
inventorying and monitoring wetlands, such as wide 
coverage, low cost, multi-temporal data, and infor-
mation about land use in upland areas. Especially in 
developing countries, like Iran, where small informa-
tion on wetland areas, surrounding uplands, and wet-
land losses are available and funds are limited, remote 
sensing technologies can be appropriate for wetland 
inventories and monitoring (Ozesmi & Bauer, 2002). 
However, wetland mapping over a large area has been 
a challenge or an impossible task to do until very 
recently, given the fact that wetlands have a highly 
dynamic nature and the high expense of in  situ data 
collection for country-wide wetland mapping. New 
technologies and resources overcome this problem by 
providing free high-quality earth observation data on 
cloud computing platforms. An extensive archive of 
remote sensing data is accessible from the European 
Space Agency (ESA), National Aeronautics and Space 
Administration (NASA), United States Geological 
Survey (USGS), and National Oceanic and Atmos-
pheric Administration (NOAA), and recent advance-
ment of novel cloud-based computational platforms, 
like the Google Earth Engine (GEE), provide opportu-
nities to apply state-of-the-art algorithms and machine 
learning advances for large-scale wetland mapping.

Considering the availability of cloud-free images, 
optical satellite imaging is practical for wetland clas-
sification (Adam et  al., 2010; Hemati et  al., 2021a, b). 
Although in northern latitude, tropical, and subtropi-
cal regions, optical satellite imagery is less useful due 
to high cloud cover almost all the year. On the contrary, 
images from Synthetic Aperture Radar (SAR) platforms 
are preferable when optical image usage is limited by 
cloud covers (Whiteside & Bartolo, 2015). These images 
are independent of weather or atmospheric conditions, 
can be acquired days and nights, and also can penetrate 
through the soil, vegetation, and tree canopies; therefore, 
a lot of attention has been gained by SAR images for wet-
land mapping (Schmitt & Brisco, 2013). Usage of sin-
gle-polarization (Gessner et al., 2015), dual-polarization  
(Dabboor et  al., 2015), and full-polarization (Gallant 
et  al., 2014), in addition to polarimetric features, have 
been demonstrated in different applications regarding 
wetlands. For places with low coverage of clouds, like 
Iran, another consideration for wetland mapping would 
be the usage of multi-platform satellite images, espe-
cially the fusion of radar data and optical images (M. A. 
). The combination of optical and SAR images has been 
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comprehensively examined through different studies with 
different applications (Corcoran et  al., 2013; Durieux 
et al., 2007; Li & Chen, 2005; Walker et al., 2010), show-
ing promising results achieved by a combination of SAR 
and spectral data. The accessibility of optical and SAR 
images with high spatial resolution has been joined with 
cutting-edge image processing frameworks, like Object-
Based Image Analysis (OBIA), to enhance the quality 
of final maps (Blaschke, 2010). The OBIA framework 
has been shown to have better results compared to pixel-
based approaches, by combining multi-source earth 
observation data with various ground resolutions. Clas-
sification features, including textual, contextual, spatial, 
spectral, and geometric information, in addition to the 
real pixel values of an object (a group of neighborhood 
pixels), are provided by OBIA, enhancing the classifi-
cation results (Salehi et al., 2012). Several studies have 
tested the potential of OBIA for the classification of wet-
land areas (Grenier et al., 2008; Walker et al., 2010). The 
segmentation step is typically followed by a classifica-
tion to generate the final results. As a flexible ensemble 
learning method, Random Forest (RF) has acquired a 
great deal of attention in mapping the land cover and land 
use using remote sensing data recently (Ghimire et  al., 
2010; Guo et al., 2011; Rodriguez-Galiano et al., 2012). 
RF is an advanced and robust algorithm due to minimum 
affection of noises and outliers, great capability to pro-
cess huge multi-source and high-dimensional datasets, 
and it usually achieves more accurate results compared to 
other advanced methods, such as support vector machine 
(Sheykhmousa et al., 2020).

Leveraging cloud computing platforms, free high-
resolution multi-temporal satellite images, and machine 
learning (ML), and deep learning (DL) methods, vari-
ous studies have been implicated for mapping heteroge-
neity of wetland landscapes with a fusion of both SAR 
and spectral data (Amani et  al., 2017; Mahdianpari 
et  al., 2017; Rezaee et  al., 2018; Salehi et  al., 2019). 
National wetland mapping has been recently impli-
cated in some countries (Mahdianpari et  al., 2020a, 
b). Also, remote sensing technologies have been used 
for some major wetland sites in Iran (Alibakhshi et al., 
2017; Qaderi Nasab & Rahnama, 2020; Qureshi et al., 
2020). However, generally, these studies are only lim-
ited to a single wetland site and lack land cover maps 
with robust classification systems, including wetland 
subclasses and vegetation.

The overarching objective of this study with consid-
eration of the above discussion was to fulfill the absence 

of a wetland inventory map of Iran with an internation-
ally accepted classification scheme and standard wetland 
terminology, including various wetland types founded in 
different climates of Iran, and by taking advantage of the 
special processing strength of cloud-computing platforms, 
and accessibility free earth observation data with high 
spatial resolution. Specifically, the synergistic usage of 
10-m free optical and radar data from Sentinel missions, 
including Sentinel-2 multispectral images with a 10-day 
revisit time and Sentinel-1 SAR images with a 12-day 
revisit time, has been considered in this study. Also, we 
aimed to take advantage of OBIA and RF to process a 
huge amount of multi-source and high-dimensional data 
to achieve promising land cover results across the country.

Study area and classification system

Iran (the Islamic Republic of) is a country located in the 
southwest of Asia, between 25–40°N and 44–66°E, in 
the Middle East region (Fig. 1). With an area of 1.64 
million  km2 and nearly 84 million population, Iran is 
the 17th largest and populated country in the world. 
Since 1955, the population of Iran has increased by 
77%, and the urban population percentage has increased 
from 30 to 75% (UN, 2019). Population growth and 
human activities directly have a major impact on cli-
mate and land cover changes (Song et al., 2018). Due to 
high topographic and climatic diversity and its location 
at biogeographic realms crossroad, Iran is one of the 
most biodiverse countries, and around 1260 vertebrates 
with more than 8000 plants species have been identified 
there (Yousefi et al., 2019).

According to the Iranian Department of Environ-
ment, 138 wetland sites are registered locally in Iran 
(Fig.  1). The convention on globally important wet-
lands especially as waterfowl habitat (Ramsar Con-
vention) was first founded in February 1971 on the 
southern shore of the Caspian Sea, in the Iranian city 
of Ramsar. Twenty-five wetland sites have been regis-
tered in the Ramsar convention from Iran with a total 
area of 14,886.24 km2 (Table 1). Among the 42 Ram-
sar wetland types identified in the world, 30 wetland 
types from inland, marine, and human-made wetlands 
are found in Iran (Ramsar Convention Secretariat, 
2013). Intermittent or seasonal freshwater marshes 
or inorganic soil pools, including seasonally flooded 
sedge marshes, meadows, sloughs, and potholes, are 
the most common wetland type found in Iran.
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Out of Iranian registered wetland sites, 21 are 
included in Ramsar Criterion 1, which means within 
the appropriate biogeographic region, they contain 
rare, unique, or representative wetland types and are 
considered internationally important. Unfortunately, 
the ecological characteristics of six Iranian Ramsar 
sites have changed, are changing, or are beginning to 
change because of pollution, technological advance-
ments, or other human interference. These wetlands 
have been included in the Montreux Record to attract 
positive local and global conservation attention.

Many countries have regional and national wet-
land terminology, and they have adopted narrower 
definitions. National wetland classification systems are 
designed to represent the special specifications of their 
wetlands and include specified local classes. These 
national terminologies are not understood internation-
ally, and national classification systems lack sufficiency 
and flexibility when applied to a global scope (Scott & 
Jones, 1995). Ramsar convention recognized the need 

for an international classification system for designated 
sites, to provide a basis for both local and international 
wetland inventories. This hierarchical classification sys-
tem is based on the US classification system for deep 
water habitats and wetlands (Cowardin, 1979), which 
includes systems, subsystems, classes, and subclasses. 
Considering the limitations, in form of both quantity 
and quality of reference and earth observation data 
available for Iran, we followed the masterclasses sug-
gested by the Ramsar convention to classify diverse 
wetland types founded in Iran (Fig. 2).

Materials and methods

Reference data

A variety of reliable sources were used to collect ref-
erence data for training and evaluating machine learn-
ing models. Collecting reference data with proper 

Fig. 1   Median Sentinel-2 image of the study area and location of wetland site centroids
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quality and quantity is often challenging in large-scale 
studies. A combination of office-based and field-
work methods was used to obtain the data. Despite 
it is not the most cost-effective method, field data is 
considered the most reliable source of reference data, 

especially in complex wetland habitats to determine 
the wetland types. Ramsar Site Information Service 
(https://​rsis.​ramsar.​org/  Accessed 9 January 2023) 
provides detailed information and reports about wet-
land types within Ramsar sites. This information is 

Table 1   List of Ramsar sites located in Iran

Ramsar Site No Site name Designation date Area (ha) Ramsar 
Criterion1

Wetland type Montreux listed

49 Alagol, Ulmagol and Ajigol 
Lakes

1975–06-23 1400 Yes Inland No

47 Amirkelayeh Lake 1975–06-23 1230 Yes Inland No
40 Anzali Wetland Complex 1975–06-23 15,000 Yes Inland, Marine, or 

coastal
Yes

46 Bujagh National Park 1975–06-23 3177 Yes Inland, Marine, or 
coastal

No

1939 Choghakhor Wetland 2010–03-03 1687 No Inland No
52 Deltas of Rud-e-Gaz and 

Rud-e-Hara
1975–06-23 15,000 Yes Inland, Marine, or 

coastal
No

51 Deltas of Rud-e-Shur, Rud-
e-Shirin, and Rud-e-Minab

1975–06-23 45,000 Yes Inland, Marine, or 
coastal

No

1308 Fereydoon Kenar, Ezbaran 
& Sorkh Ruds Ab-Bandans

2003–03-28 5427 No Human-made No

53 Gavkhouni Lake and 
marshes of the lower 
Zaindeh Rud

1975–06-23 43,000 Yes Inland No

1109 Gomishan Lagoon 2001–11-05 17,700 Yes Marine or coastal No
1006 Govater Bay and Hur-e-

Bahu
1999–11-01 75,000 Yes Inland, Marine, or 

coastal
No

44 Hamun-e-Puzak, south end 1975–06-23 10,000 Yes Inland Yes
42 Hamun-e-Saberi & Hamun-

e-Helmand
1975–06-23 50,000 Yes Inland Yes

1940 Kanibarazan Wetland 2011–01-17 927 No Inland No
50 Khuran Straits 1975–06-23 100,000 Yes Marine or coastal No
48 Lake Gori 1975–06-23 120 Yes Inland No
43 Lake Kobi 1975–06-23 1200 Yes Inland No
37 Lake Parishan and Dasht-

e-Arjan
1975–06-23 6200 Yes Inland No

38 Lake Urmia [or Orumiyeh] 1975–06-23 483,000 Yes Inland No
36 Miankaleh Peninsula, 

Gorgan Bay, and Lapoo-
Zaghmarz Ab-bandan

1975–06-23 100,000 Yes Inland, Marine or 
coastal, Human-made

No

39 Neiriz Lakes & Kamjan 
Marshes

1975–06-23 108,000 Yes Inland, Marine, or 
coastal

Yes

41 Shadegan Marshes & mud-
flats of Khor-al Amaya & 
Khor Musa

1975–06-23 400,000 Yes Inland, Marine, or 
coastal

Yes

1015 Sheedvar Island 1999–12-29 870 Yes Marine or coastal No
45 Shurgol, Yadegarlu & 

Dorgeh Sangi Lakes
1975–06-23 2500 No Inland Yes

2369 Zarivar 2016–07-17 2185.58 Yes Inland No

https://rsis.ramsar.org/
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based on a field investigation from Ramsar Conven-
tion Monitoring Procedure. In addition, the Iranian 
Department of Environment provides geospatial 
information about both Ramsar sites and locally reg-
istered sites. These data are available in both formats 
of classified maps and reports.

To ensure the quality and consistency of reference 
data, office-based methods also were used. Some data 
were re-labeled and converted into the mentioned 
classification system to prevent inconsistency in form 
of different wetland descriptions and terminology. 
High-resolution images from Google Earth were used 
to update the borders of classes or to expand training 
samples. Also, Upland reference data was sampled 
from the national land cover provided by the Iranian 
Space Agency. The number of reference samples for 
each class is listed in Table 2 and the distribution of 
the test and train data is illustrated in Fig. 3.

Earth observation data and preprocessing

Different aspects of earth observation data are pro-
vided by the Sentinel mission from the Copernicus 
program under the management of the European 
Space Agency (ESA) in association with the Euro-
pean Commission. This constellation is consisting 
of both active and passive imaging instruments for 
atmospheric, land, and marine monitoring (Berger 
et al., 2012). Computational capability for large-scale 
studies, in addition to petabytes of earth observa-
tion data from various sources, is available through 
Google Earth Engine (GEE). Free access data from 
Sentinel missions in addition to robust cloud-com-
puting platforms, like GEE, make unprecedented 
opportunities for monitoring wetlands and producing 
national wetland inventories. The spatial distribu-
tion of Sentinel-1 SAR and Sentinel-2 multispectral 

Fig. 2   A classification 
scheme for Iran wetland 
mapping (high-resolution 
image of Anzali wetland 
complex from Google Earth 
and wetland cross-section 
from New England Wetland 
Plants, Inc.)
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images, in addition to the Normalized Difference 
Vegetation Index (NDVI) index and topographic hill 
shade, is illustrated in Fig. 4.

In this study, we used a total of 1399 C-Band images 
from Sentinel-1 Synthetic Aperture Radar (SAR) from 
June to August 2020. This Level-1 10 m Ground Range 
Detected (GRD) data had a 250-km swath and was 

collected in interferometric wide (IW) mode and was 
accessed from the GEE data catalog. The spatial scat-
tering of Sentinel-1 images is illustrated in Fig. 3. Sev-
eral preprocessing steps are already done for Sentinel-1 
GRD images in GEE, including terrain correction, 
radiometric calibration, and noise removal. In addi-
tion to these, a 7 × 7 adaptive sigma Lee filter has been 
applied to reduce speckle noises and SAR backscatter 
coefficient σ0 (Sigma Naught), and other derivatives of 
these values were extracted (Table  3). Each polariza-
tion component is sensitive to specified characteristics 
of wetlands. Specifically, herbaceous wetland classes 
with sparse canopy closure are better discriminated in 
σ0

VV observations are useful.
With a joined 5-day revisit time, Sentinel-2A and 

Sentinel-2B provide a high spatial resolution and wide-
swath dataset for monitoring wetlands. In this study, 
a total number of 5839 Level-2A surface reflectance 
data with less than 20% cloud coverage were used. To 
minimize the cloud coverage and dynamic characteris-
tics of wetlands, a tri-monthly summer timeframe from 
June to August 2020 was used to filter the data and 
create a median summer composite image. To remove 

Table 2   The number of polygons is used as training and test-
ing data

Land cover Train Test Total Total area (km2)

Water 181 84 265 326.11
Emergent 147 69 216 57.62
Shrub-dominated 205 86 291 44.44
Forested wetland 134 60 194 12.43
Cropland 163 76 239 104.82
Orchard 231 69 300 176.34
Urban 180 72 252 12.51
Forest 158 79 237 119.00
Bare land 349 155 504 1436.63
Total 1748 750 2498 2289.88

Fig. 3   Distribution of the 
train and test polygon cen-
troids across the study area
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the remaining clouds and cirrus, the QA60 bitmask 
band from Sentinel-2 metadata was used. In addition, a 
thresholding method was used on the Sentinel-2 Aero-
sol band to remove other clouds and aerosols. To pro-
duce a high-resolution national wetland inventory, only 
four spectral bands (RGB and NIR bands) with 10 m 
resolution were used. In addition to spectral bands, 
a list of spectral features from Sentinel-2 and topo-
graphic features from the Shuttle Radar Topography 
Mission (SRTM) were extracted (Table 3).

Classification scheme

In this study, we used an object-based image analysis 
(OBIA) framework (Mahdianpari et al., 2020a, b) and 
the flowchart of different processing stages is shown 
in Fig.  5. This framework is containing a simple 

non-iterative clustering method and a Random For-
est (RF) classifier. Iran consists of different wetland 
classes with unique characteristics. This variation is 
in the light of different climate conditions, influenced 
by Iran’s location between the subtropical humidity of 
the eastern Mediterranean areas and the aridity of the 
Arabian Desert areas. To increase the commonality 
between wetland vegetation classes, the classification 
system was applied separately for four major sections 
of the study area (Mahdianpari et al., 2020a, b). We 
derived these sections by joining regions from eco-
logical zones (subtropical humid forest, mountains 
system, steppe, and desert), climate classification 
maps (Koeppen–Geiger classification), and provincial 
zones to minimize variation in each section, in terms 
of climate, temperature, precipitation, soil, vegeta-
tion, landform, and human activities.

Fig. 4   NDVI index on hill shade map of Iran and data distribution for Sentinel-1 SAR and Sentinel-2 spectral data

Table 3   List of features extracted from different datasets

Data Feature description Formula

Sentinel-1 Vertically transmitted and received SAR backscattering coefficient σ0
VV

Vertically transmitted, horizontally received SAR backscattering coefficient σ0
VH

Span or total scattering power |σ0
VV + σ0

VV|
Ratio |σ0

VV |2 +|σ0
VV |2

Sentinel-2 Spectral bands Blue (B2), Green (B3), Red (B4), NIR (B8)
The Normalized Difference Vegetation Index (NDVI) (NIR-Red)/(NIR + Red)
The Normalized Difference Water Index (NDWI) (Green-NIR)/(Green + NIR)
Green Chlorophyll Vegetation Index (GCVI) (NIR/Green)—1
Green Normalized Difference Vegetation Index (GNDVI) (NIR-Green)/(NIR + Green)
Ratio Vegetation Index (RVI) NIR/Red

SRTM DEM Elevation
Slope
Aspect



Environ Monit Assess (2023) 195:558	

1 3

Page 9 of 21  558

Vol.: (0123456789)

Fig. 5   The flowchart of Iranian wetland mapping processing stages



	 Environ Monit Assess (2023) 195:558

1 3

558  Page 10 of 21

Vol:. (1234567890)

Within a given neighborhood, the OBIA approach 
uses contextual information and does not have salt 
and pepper noises caused by conventional pixel-based 
approaches. Superpixel segmentation was applied by 
using the simple non-iterative clustering (SNIC) algo-
rithm (Achanta & Susstrunk, 2017). By using color 
and spatial coordinates distance in five-dimensional 
space, this algorithm starts by measuring the depend-
ency of the central pixel on a regular grid (Achanta 
& Susstrunk, 2017). As a non-parametric classifier, 
RF shows promising results in remote sensing fields, 
and it is superior to some other well-known classi-
fiers (Sheykhmousa et  al., 2020). Compared to sup-
port vector machine (SVM), RF is easily tunable and 
has better performance in comparison to decision tree 
(DT). By using random samples from training data, 
an ensemble decision tree is created by RF with boot-
strap aggregating (bagging approach), and the cor-
relation between the trees is minimized by specify-
ing the finest splitting of the nodes (Breiman, 2001). 
RF requires two adjustable parameters, the number 
of variables (Mtry) and the number of trees (Ntree). 
Specifically, the square root of the number of vari-
ables was used for Mtry and a total number of 500 
for Ntree. These parameters were adjusted based on a 
trial-and-error procedure and previous studies on the 
classification of wetlands (Mahdianpari et  al., 2019, 
2020a, b). All the OBIA steps were applied in the 
GEE and the models in each zone were trained with 
almost 70% of the reference data. Evaluation of the 
produced maps is a key element in land cover map-
ping with earth observation data. Approximately, 30% 
of the reference data were used as independent testing 
data for accuracy assessment.

Results

Figure  6 illustrates the nationwide wetland inven-
tory map produced by object-based RF classification 
at 10-m spatial resolution. All these image datasets 
and products can be downloaded from rslab.ut.ac.ir 
(Accessed 9 January 2023). A significant proportion 
of Iran’s land cover is covered with bare land classes, 
such as clay, sands, salty lands, and outcrops, which 
are not subject to interest in this article.

Lake Urmia, registered as a national park and 
recorded as the biggest water body in Iran, is illustrated 
in Fig.  6A This hypersaline lake is fed by streams, 

rainfalls, and springs, and also extensive brackish 
marshes surround it. The water content of this lake is 
dependent on seasonal variations in salinity and water 
level. Also, a road bridge connects two sides of this 
lake. Figure  6B is the results from Anzali Wetland 
Complex, a permanently flooded wetland surrounded 
by water impoundments that are fringed by damp 
grasslands, reedbeds, and seasonally flooded marshes. 
A dune system separates this large, freshwater lagoon 
from the sea, which is supporting extensive floating 
vegetation, abundant submerged, and reedbeds, and is 
fed by several rivers. Wintering, Staging, and breeding 
of water birds made this wetland site internationally 
important. Because of changes in the level of water and 
incensement of nutrient enrichment, this site is listed in 
Montreux Record. This area contains a rich vegetation 
variety due to high precipitation and includes heteroge-
neous wetland classes and agriculture areas.

Miankaleh Peninsula and Gorgan Bay (Fig. 6C) is a 
brackish bay that is almost entirely disconnected from 
the Caspian Sea. This freshwater lagoon supports sea-
sonally flooded woodland, extensive reedbeds, and 
also freshwater marshes. This wetland ecosystem is 
intensely significant for the wintering waterbirds, 
especially for their passage, breeding, and nesting. 
Ajigol and Ulmagol are seasonally filled freshwater 
lakes, depicted in Fig. 6C Precipitation in autumn and 
winter feeds these lakes, and in drought periods, they 
become desiccated. Alagol, also, is moderately saline 
and is fringed by grass marshes and reeds. Due to the 
high rate of wildfowl hunters’ disturbance and the 
water extraction for irrigation purposes, these lakes 
are on the Montreux Record.

Figure  6D shows the Zarivar freshwater wetland, 
fed mostly by lake floor springs and located at the 
foot of the Zagros Mountain system. Relatively exten-
sive reed beds make this wetland area the habitat for a 
lot of species, and the local societies near the Zarivar 
lake depend on it for recreational activities and fish-
ing. The Hawizeh Marsh is a wetland site located at 
the border of Iran and Iraq (Fig. 6F). Since the 1990s, 
dam-building activities, as well as warfare destruc-
tion, are seen as the main expected dangers to the site. 
Also, recent oil developments in surrounding regions 
threaten to prevent the recovery and restoration of the 
marshes and affect the natural environment.

Khuran Straits (Fig. 6G) is an extensive intertidal silt 
flat including mangrove forests (Hara forests), plenty of 
estuarine creeks, islands, and salt marshes. Brown and 
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red algae growth are supported by shallow saline waters 
and habitat for crustaceans is provided by the intertidal 
mangroves. A closed drainage basin is shown in Fig. 6H 
and contains two predominantly shallow freshwater 
lakes and associated wetland areas, located at the border 
of Iran and Afghanistan. This site is listed on the Mon-
treux Record due to river control structures, drought, and 
increasing stress from crop irrigation and urbanization.

Figure 7 shows detailed levels of classification from 
three Ramsar Sites. All the results are visually compared 
with the latest Iran land cover map (Ghorbanian et al., 
2020) and high-resolution images from ESRI. Gener-
ally, there is an agreement and correlation between the 
produced results in this article and results from previ-
ous land cover maps. However, the wetland classes from 
previous maps are limited and did not separate wetland 

Fig. 6   The nationwide wetland inventory map for Iran and 
subsets from Ramsar sites. A Lake Urmia; B Anzali Wetland 
Complex; C Miankaleh Peninsula and Gorgan Bay; D Zarivar; 

E Alagol, Ulmagol, and Ajigol Lakes; F Hawizeh Marsh; G 
Khuran Straits (Hara mangrove forests); and H Hamun-e-
Saberi and Hamun-e-Helmand
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vegetation, especially in heterogeneous areas. For exam-
ple, the first row of Fig. 7 shows the successful separa-
tion of floating emergent from upper shrub-dominated 
areas. Also in the second row, wetland classes are 
mixed with water bodies, and both floating shrublands 
and emergent are identified. In the third row, a typical 
sequence of wetland vegetation classes occurred at the 

Zarivar lake, floating emergent vegetation is separated 
from more stable shrub-land areas.

The confusion matrix of the four different ecologi-
cal zones is illustrated in Fig. 8. Columns of the con-
fusion matrix show the predicted values, and the rows 
show the actual values from the ground truth data. 
The confusion matrix shows the performance of the 

Fig. 7   Subsets from ESRI high-resolution images, Iranian wetland map, and land cover map from)1) Anzali Wetland Complex, (2) 
Shadegan Marshes, and (3) Zarivar Lake
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OBIA classification results in different classes and the 
number of samples that were misclassified into other 
classes in each region.

The final map was produced with an overall accuracy 
of 96.39%. The producer’s accuracy of wetland classes 
is shown in Fig.  9. From wetland classes, Water had 
the highest accuracy due to its special characteristics in 
both spectral and radar datasets. Shrub-dominated and 
emergent areas also had promising accuracy ranging 
from 86.46 to 99% for Shrub-dominated and 82.40 to 
95.34% for emergent, showing great separation of these 
two heterogeneous wetland vegetation areas. Forested 

wetlands had 64.91 to 99.25% producer accuracy. This 
variation is in the light of dense forest systems in the 
humid forest ecological zone which is misclassified with 
forested wetlands and mangroves in the southern Steppe 
ecological zone, which are easily distinguished from 
surrounding waters. Having an arid climate, the desert 
zone did not include emergent and forested wetland 
classes. Among upland classes, bare land areas cover 
most of our study area and had the highest accuracy. 
However, urban areas, especially in southern steppe and 
desert zones with dry climates, are usually misclassified 
with bare lands, on account of nearly similar spectral 

Fig. 8   Confusion matrix of the different ecological zones
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characteristics. Cropland and orchard classes, corre-
sponding to agricultural areas, had an accuracy range 
between 75.25 and 98%. Producer’s accuracy for the 
forest class was above 95%, and the kappa coefficient 
ranged from 0.91 to 0.97 for all regions.

The proportion of each class, with the exclusion 
of bare land and urban classes due to unbalance cov-
erage, is illustrated in Fig. 10 for study area regions 
with an explosion of wetland classes. Generally, for-
est and cropland classes cover more area than wetland 
classes. Rain forests are the major land cover in the 
northern humid forest area. The existence of Urmia 
Lake and Hur al-Azim in the mountain system and 
southern steppe region increased the proportion of 
water bodies in these areas. Among wetland veg-
etation classes, the shrub-dominated class covers the 
most area. On the other hand, forested wetland areas 
are rare wetland classes in Iran, only existing in the 
southern part of Iran as mangroves and partial cover-
age in northern and northern western areas.

The area of different wetland classes, calculated 
from the Iranian wetland inventory, is depicted in 
Fig.  11. Wetland classes, including water bodies, 
cover around 22,384.591 km2 in Iran. In comparison 
to the Ramsar report, which is 14886.24 km2 for reg-
istered sites, this estimation is respectively accept-
able because all local and small wetland classes, in 

addition to small water bodies, streams and rivers, 
are mapped in this study. Both emergent and shrub-
dominated areas cover about 3405.96 km2. Forested 
wetland areas only cover 709.54 km2, representing 
the rare wetland class.

The binary mask of wetland classes, in addition to 
other vegetation classes (forest, cropland, orchard), is 
illustrated in Fig. 12. Wetlands and water bodies only 
cover around 1.35% of Iran’s area. Iran is facing criti-
cal water resource problems due to frequent recent 
droughts and overconsumption of both groundwater 
and surface water sources. Unfortunately, drying wet-
lands, lakes, and rivers, in addition to desertification, 
soil erosion, land subsidence, and declining ground-
water levels, are consequences of this water crisis. The 
absence of a far-reaching comprehension of the main 
drivers of the issue, in addition to the lack of sustainable 
structure of the water management system in Iran, does 
not provide a basis for developing long- and short-term 
solutions to Iran’s water problems. Providing a national 
wetland inventory may be one of the first steps toward 
addressing these issues. High-resolution mapping and 
monitoring of heterogeneous and complex wetland sites 
are advantageous for understanding cyclic land cover 
transition in wetland-dominated areas. Up-to-date infor-
mation about wetland sites, especially about the loca-
tion, extent, and water content of these areas, is crucial 

Fig. 9   Producer’s accuracy of different wetland classes and kappa coefficient from different ecological regions
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for the restoration and conservation of these valuable 
ecosystems. The special opportunity for precise moni-
toring and mapping of wetland environments on previ-
ously infeasible spatial and temporal scales is provided 
by recently developed high temporal and spatial resolu-
tion open-access earth observation data, in addition to 
cloud computation platforms.

Discussion

Leveraging cloud massive computational power and 
storage capacity, an Iran-wide wetland map was pro-
duced that is more advanced compared to old-fash-
ioned approaches, such as the interpretation of aerial 
photography and small-scale wetland inventories. 
These generalized maps are especially interesting in 
various applications, demanding wetland information 
and regional land cover maps for decision-making, 

reporting purposes, and modeling (Ashraf et al., 2021). 
Compared with other similar sentinel-based national 
and continental scale wetland inventories, the 96% 
overall accuracy of the resulting map is acceptable 
(Mahdianpari et al., 2021; Venter & Sydenham, 2021). 
The resulting maps and high accuracy demonstrate the 
capabilities of the OBIA classification method and RF 
classifier. However, recent advances in deep learning 
approaches for wetland mapping have shown promis-
ing results for more advanced classification systems 
and better separation of wetland classes in homogene-
ous areas (Hosseiny et al., 2022). The quality of deep 
learning approaches is highly dependent on the amount 
of the available reference data, and implementation of 
them for large-scale areas is still challenging due to the 
computational sources required for training the model 
and high-density field data across the study area.

Previous wetland mapping studies in Iran focused 
on single wetland sites and lacked spatial coverage 

Fig. 10   The percentage of each class in different ecological zones. Urban and bare land classes are excluded
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of the produced map, in addition to the advanced 
classification system (Kharazmi et al., 2018; Minaei 
& Kainz, 2016; Qureshi et al., 2020). Due to a lack 
of previous nationwide wetland inventory for Iran, 
a direct comparison was not possible. However, the 
total area of the wetland classes identified in this 
study showed general agreement with the previous 
Ramsar reports (Ramsar Convention, 2016) and gen-
eral land cover maps (Ghorbanian et  al., 2020). It 
is worth mentioning that the production of wetland 
inventories is more challenging than general land 
cover maps due to the fact that spectral responses of 
wetland classes are closer, especially in homogenous 
wetland areas, rather than general land cover classes 
(e.g., bare land, cropland, and open water).

The usage of auxiliary data besides spectral and 
SAR data for wetland mapping has been demonstrated 
in previous studies. In particular, Mahdianpari et  al. 

(2021) enhanced the previous existing wetland inven-
tories of Canada by using temperature, precipitation 
and the Visible Infrared Imaging Radiometer Suite 
(VIIRS) day and night band. Unfortunately, due to 
data gaps and the unavailability of the mentioned aux-
iliary data in the GEE for Iran, usage of them is not 
applicable. Besides Sentinel platforms, Landsat data 
have been used for wetland mapping at lower spatial 
resolution (Mao et  al., 2020). The usage of Landsat 
data decreases the spatial resolution of wetland maps. 
However, monitoring long-term wetland changes is 
only possible with the science-grade archive of Land-
sat data for the past 50 years (Kouhgardi et al., 2022). 
With the availability of open-access Landsat archive, 
there have been studies on regional and national wet-
land changes internationally (Amani et  al., 2022; 
Hopkinson et al., 2020) and in Iran (M. Hemati et al., 
2022; Qureshi et al., 2020). However, Iranian wetland 

Fig. 11   The area regarding 
each wetland class
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change detection studies were limited to a small scale 
or lacked the inclusion of wetland classes. Monitor-
ing wetland changes in different classes require his-
torical reference data, which are not mostly available. 
Another approach would be releasing updates of the 
current wetland inventories, with up-to-date ground 
truth and enhancement in classification. Future stud-
ies can use the produced 10-m wetland inventories 
with wetland sub-classes as the reference for future 
change detections.

Conclusion

Monitoring and mapping the wetland areas has been 
a challenging task, especially at national-scale, due 
to time and budget requirements for field data col-
lection, the fuzziness of boundaries between wetland 
classes, and the diversity of wetland types in Iran, in 
addition to the huge amount of storage and computa-
tional power required to process geospatial big-data. 
Nevertheless, recent advances in satellite imagery, 

Fig. 12   Binary mask of water bodies, wetlands, forests, and agriculture classes in Iran
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such as accessibility of free and high-resolution opti-
cal and radar data, as well as powerful online comput-
ing platforms with petabytes of various earth observa-
tion data and massive computation power that bring 
state-of-the-art algorithms to the data, offer unprec-
edented opportunities for mapping these important 
natural resources. By using the unmatched compu-
tational capabilities of GEE and through the fusion 
of radar and spectral data to benefit from both data 
sources in a large-scale investigation, we produced a 
10-m Iran national wetland inventory using a mixture 
of Sentinel-1 SAR and Sentinel-2 multispectral data. 
A classification system was developed and adapted 
from Ramsar wetland types, to be suitable to cover 
the diversity of Iranian wetlands, as well as different 
upland classes. An object-based image analysis tech-
nique was implicated in this study, including SNIC 
superpixel clustering and a Random Forest classifier. 
A separate classification was performed for each of 
the four ecological zones, and through the evaluation 
step, the overall accuracy of all zones ranges from 
95 to 98%. The accuracy of the results matches with 
similar sentinel-based studies in other countries and 
visual comparison with the existing land cover maps 
shows the general agreement between the produced 
wetland inventory and general land cover maps. 
Among nine classes, water achieved the highest pro-
ducer’s accuracy and shrub-dominated and emergent 
classes range from 82.4 to 99%. Forested wetland, as 
the rarest wetland class in Iran, ranges from nearly 65 
to 98% producer’s accuracy. Wetland classes, which 
are more complicated to classify than the general 
land cover classes, were identified in this study with 
acceptable accuracy, and the final map was produced 
with the wetland classification system that was not 
studied in Iran before.

In this study, we estimated that 22,384.591 km2 of 
Iran are covered with wetland classes and water bod-
ies. The estimated area shows the agreement from 
previous Ramsar and national land cover maps, with 
the advantage of the inclusion of various wetland 
classes and local wetland sites. Also, the distribution 
of water bodies, wetland classes, and other vegeta-
tion areas are highlighted in this study. Importantly, 
unprecedented information about the spatial distribu-
tion, status, and extent of wetlands classes have been 
provided by the resulting Iranian wetland inventory 
map and, therefore, are useful for both governmental 
and commercial sections, including environmental 

consultants, federal and provincial governments, and 
municipalities. Produced wetland inventory at 10-m 
spatial resolution can be used as the base maps for 
future change detection or wetland inventory updates.
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