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of the compounds. Chromatographic separation was 
on a reversed-phase Zorkax Eclipse Plus C18 column 
eluted in a gradient program and compounds detected 
by mass spectrometer operated in a positive electro-
spray ionization (+ ESI) mode. Twenty-eight anti-
biotics were detected in water where 22 had a 100% 
detection frequency and the remaining 4 showed 
detection frequencies ranging from 5 to 47%. Three 
BZs had a 100% detection frequency. Detectable con-
centrations of the pharmaceuticals in water ranged 
between 0.1 and 247 ng  L−1 and 0.01 and 974 µg  kg−1 
in the sediments. The sulfonamide, sulfamethoxazole, 
had the highest concentration in water (247 ng  L−1), 
whereas penicillin G showed the highest concentra-
tions in sediments (414–974  µg   kg−1). Quantified 
pharmaceuticals decreased in the order SAs > DAPs 
> FQs > ATs > PNs ≈ MCs ≈ LNs > NIs in water, and 
followed the order PNs > BZs > FQs > MLs > DAPs ≈ 
LNs > NIs > SAs in sediments. Risk quotients  (RQw) 
showed that sulfamethoxazole and ciprofloxacin were 
of high ecological risk in the surface water  (RQw val-
ues of 1.11 and 3.24, respectively), whereas penicillin 
V, ampicillin, penicillin G, norfloxacin, enrofloxa-
cin, erythromycin, tylosin, and lincomycin were of 
medium ecological risk in the aquatic system. The 
findings show high prevalence of pharmaceuticals in 
surface water and sediments and are therefore poten-
tial ecological hazards. Such information is vital 
when devising mitigation strategies.

Keywords Antibiotics · Anthelmintics · Surface 
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Abstract The continued frequent detection of phar-
maceuticals in the environment is of major concern 
due to potential human and ecological risks. This 
study evaluated 30 antibiotics from 8 classes: sul-
phonamides (SAs), penicillins (PNs), fluoroquinolo-
nes (FQs), macrolides (MLs), lincosamides (LINs), 
nitroimidazoles (NIs), diaminopyrimidines (DAPs),  
salfones and 4 anthelmintics benzimidazoles (BZs) 
in surface water and sediments from River Sosiani 
in Eldoret, Kenya. Samples were collected during 
the wet and dry seasons and subjected to solid phase 
extraction using HLB cartridges. A liquid chroma-
tography tandem mass spectrometry (LC–MS/MS) 
method was used for the simultaneous quantification 
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Introduction

Antibiotics are natural, synthetic, and semi-synthetic 
compounds which show antimicrobial activities on bac-
teria or other single-celled microorganisms (Catteau 
et al., 2018). Antibiotics have revolutionized medicine in 
many respects, and countless lives have been saved; their 
discovery was a turning point in human history (Davies 
& Davies, 2010). They represent one of the largest ther-
apeutic categories used in the treatment of infectious 
diseases caused by bacteria (Schmieder & Edwards, 
2012). Antibiotic drugs are predominantly used to treat 
bacterial diseases in human therapy and as veterinary 
medicines to prevent and treat bacterial diseases in ani-
mal husbandry (Kümmerer, 2009). Besides these funda-
mental applications of antibiotics in treatment of certain 
types of diseases in animals and humans, a significant 
portion is used in animal feed as supplements to pro-
mote animal growth (Chattopadhyay, 2014; Economou 
& Gousia, 2015; Poole & Sheffield, 2013), more so in 
developing countries where it is harder to successfully 
regulate the use of antibiotics (Eagar et al., 2012; Van 
et al., 2020). This broadness of applications has caused 
an increase in the consumption of antibiotics (Kraemer 
et al., 2019; Pokharel et al., 2020).

The residual antibiotics from human and animal use 
can enter the environment via various pathways, includ-
ing wastewater effluent discharge, runoff from land to 
which agricultural or human waste has been applied, 
and leaching (Bottoni et al., 2010; Faleye et al., 2018; 
Polianciuc et  al., 2020; Sodhi et  al., 2021). Antibiot-
ics might also be added to the environment through 
improper disposal of unused and expired antibiotics, 
where they end up in wastewater, landfills, water sup-
plies, and drains (Anwar et  al., 2020; Kotwani et  al., 
2021). Domestic effluents are considered a major 
contributor of antibiotic contamination of surface and 
wastewaters (Zheng et  al., 2012), but effluents from 
pharmaceutical industries (Kotwani et  al., 2021) and 
hospitals’ effluents are also of great concern (Bansal, 
2019; Brown et al., 2006; Ngigi et al., 2020). Further-
more, the intensive practice of aquaculture for food pro-
duction can lead to inadvertent introduction of antibi-
otics into surrounding surface waters (Hoa et al., 2011; 
Zheng et al., 2012).

Antibiotics are often partially metabolized after 
administration, and a significant portion of the antibi-
otic can be excreted as the parent compound or in con-
jugated forms that can be converted back to the parent 

antibiotic. For example, fluoroquinolones, whose ther-
apeutic prescription in human medicine is between 
300 and 600  mg per day, are almost all excreted as 
unchanged compounds in urine and are, consequently, 
discharged into hospital sewage or municipal wastewa-
ter (Lindberg et al., 2004). This ultimately contributes 
to residual antibiotics in recipient waters. Thus, sew-
age sludge and manure, used as fertilizer in agricultural 
land, are often contaminated with antibiotics (Thiele-
Bruhn, 2003). Subsequent runoffs from such contami-
nated agricultural land transfer some of the residues 
into environmental water systems such as surface water.

Therefore, the continued intensive use of antibiot-
ics in livestock production and human medication 
has led to their frequent detection in different envi-
ronmental matrices. Antibiotics have been reported 
in hospital wastewater effluents (Anwar et  al., 2020; 
Aydin et al., 2019; Bansal, 2019; Diwan et al., 2009; 
Lindberg et  al., 2004; Ngigi et  al., 2020; Yao et  al., 
2021), wastewater treatment plant (WWTP) effluents 
(Golchin et al., 2021; Kortesmäki et al., 2020; Ngigi 
et  al., 2020; Rodriguez-Mozaz et  al., 2020), WWTP 
biosolids, soil, surface waters, groundwater (Burke 
et  al., 2016; Clarke & Smith, 2011; Hu et  al., 2018; 
Li et al., 2021; Martín et al., 2015; Yang & Carlson, 
2003), sediments, biota and drinking water (Hanna 
et al., 2018; Li et al., 2014; Meng et al., 2021; Wang 
et al., 2016), and in different forms of natural waters 
systems (Litynska et al., 2021) at ng  L−1 to low μg  L−1 
levels. It is therefore important to continuously moni-
tor the residual antibiotics in WWTPs and in surface 
water. There are few studies on surveillance of anti-
biotic residues in the environment in Kenya. For river 
surface water, antibiotics from different classes were 
reported at varying concentrations including the sul-
phonamides sulfamethoxazole, sulfamethazine, and 
sulfadiazine at concentrations of up to 142.6, 0.47, 
and 0.84  μg   L−1, respectively; β-lactam (penicillins) 
including amoxicillin (up to 9 μg  L−1), ampicillin (up 
to 0.9  μg   L−1), and penicillin G, dicloxacillin, and 
nafcillin (< 1.0  μg   L−1); the fluoroquinolones cipro-
floxacin and norfloxacin (up to 4.9 and 2.8 μg   L−1); 
and trimethoprim (up to 9.5  μg   L−1) (K’oreje et  al., 
2012; Kairigo et al., 2020a, b; Kimosop et al., 2016; 
Ngigi et  al., 2020; Opanga, 2018). Other environ-
mental matrices studied include river sediments 
(Kairigo et al., 2020b; Kandie et al., 2020; Kimosop 
et  al., 2016), hospital wastewater, and lagoons and 
WWTPs (Kimosop et  al., 2016; Ngigi et  al., 2020). 
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Establishing residual antibiotics in water sediments, 
surface and hospital wastewater is important for base-
line information, generation of knowledge, bridging 
existing knowledge gaps, and in policy formulations. 
This study investigated the occurrence of 4 anthelmin-
tics benzimidazoles (BZs) and 28 antibiotics from the 
classes: sulphonamides (SAs), β-lactams-penicillins 
(PNs), Fluoroquinolones (FQs), macrolides (MLs), 
lincosamides (LINs), nitroimidazoles (NIs), and two 
other antibiotics dapsone (a sulfone) and trimethoprim 
(a Diaminopyrimidine) in sediments and surface water 
from River Sosiani in Eldoret Municipality. Kenya, as 
one of the developing countries, has few reports on 
the status of pharmaceuticals contamination of sur-
face and wastewaters. Environmental risks can only be 
assessed when the background contamination levels 
have been established.

Materials and methods

Chemicals and reagents

Standard pharmaceutical reference compounds (> 98% 
purity) and high-performance liquid chromatography-
grade water (LC water) were obtained from Merck 
through Scientific Laboratory Supplies Ltd. (Kenya 

Branch). Table 1 gives the list of the compounds and 
abbreviations, while table S1 (supplementary material) 
gives the physicochemical properties of the compounds 
used in this study. High-performance liquid chroma-
tography-grade methanol (MeOH) and acetonitrile 
(ACN); formic acid (HCOOH) and ammonium formate 
 (NH4HCO2) were purchased from Kobian Scientific 
Ltd. (Nairobi, Kenya). Oasis hydrophilic–lipophilic 
balance cartridges (HLB, 200 mg/6 mL; 60 mg, 3 mL) 
and glass microfiber filters (0.7, 0.45, 0.22  µm) were 
obtained from Milford, MA (Waters, USA). All other 
reagents were of analytical grade and were purchased 
from Kobian Scientific Ltd. Individual standard stock 
solutions were prepared at a concentration of 1 g/L, in 
either methanol or acetonitrile and stored at 4 ºC.

Study area and sampling

The study was conducted in Uasin Gishu County, 
within Eldoret municipality (Fig.  1) in Kenya. Sur-
face water samples and water sediments were col-
lected from River Sosiani (which traverses through 
the town) in Eldoret Municipality during the wet sea-
son (June, 2020) and the dry season (February, 2021). 
A judgemental random sampling method was used 
whereby 10 sampling points were identified (Table 2) 
in the suburban and the urban sections of the river 

Table 1  List of compounds used in the study

Class of antibiotics

Sulfonamides (SAs) Sulfaguanidine (SFG) Sulfamonomethoxine 
(SMM)

Sulfachlorpyridazine 
(SCP)

Sulfadimethoxine 
(SDMX)

Sulfadiazine (SDZ) Sulfamethazine (SMZ) Sulfamethoxazole 
(SMXZ)

Sulfadoxine (SDX)

Sulfathiazole (STZ) Sulfamethoxypyridazine 
(SMPZ)

Sulfisoxazole (SXZ)

Sulfamethizole (SMTZ) Sulfapyridine (SPD) Sulfaquinoxaline (SFQ)
β-lactams (penicillins 

(PNs)
Penicillin V (PEV) Amoxicillin (AMX) Cloxacillin (CLX) Nafcillin (NAF)
Ampicillin (AMP) Penicillin G (PEG) Dicloxacillin (DCX)

Fluoroquinolones (FQs) Norfloxacin (NOR) Ciprofloxacin (CIP) Enrofloxacin (ENR)
Macrolides (MLs) Erythromycin (ERY) Tylosin (TYL)
Lincosamides (LNs) Lincomycin (LIN)
Nitroimidazoles (NIs) Metronidazole (MET)
Diaminopyrimidines 

(DAPs)
Trimethoprim (TMP)

Salfone Dapsone (DPS)
Anthelmintics
Benzimidazoles (BZs) Oxfendazole (OXF) Mebendazole (MEB) Flubendazole (FLB) Albendazole (ALB)
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in close proximity to urban settlements, hospitals, 
and the city’s sewer system or where wastewater dis-
charges occur followed by random sampling from 
each selected site. Water samples were collected in 
2.5  L amber glass bottles that had been pre-cleaned 
successively with saturated MeOH-EDTA solution, 
rinsed with distilled water, and then dried in an oven 

at 100 °C. Prior to sample collection, the bottles were 
pre-rinsed three times with river water. Five 0.5-L 
grab water samples were collected randomly at each 
sampling point (away from the edges of the river) and 
combined to form a composite 2.5 L sample (in dupli-
cate). The temperature and pH were recorded in situ. 
The pH of the water ranged from 7.0 to 8.0, with 

Fig. 1  Location of sampling points in the study area

Table 2  Sampling locations and some parameters of water samples

Sampling 
point

Sample code Coordinates pH Altitude (above 
sea level) (ft)

Temperature 
(oC)

Location/major 
anthropogenic 
activity

1 SP1 0° 30′ 33.5″ N35° 16′ 42.8″ E 7.4 200 19.3 Forest
2 SP2 0° 30′ 32.7″ N35° 16′ 43.4″ E 7.2 50 22.6 Hospital
3 SP3 0° 30′ 34.8″ N35° 16′ 43.1″ E 7.2 50 21.8 Hospital
4 SP4 0° 30′ 42.0″ N35° 16′ 33.5″ E 7.8 100 22.7 Hospital
5 SP5 0° 30′ 50.7″ N35° 16′ 47.1 ″ E 7.8 200 23.7 Bridge
6 SP6 0° 30′ 45.7″ N35° 16′ 34.6″ E 7.4 200 22.8 Hospital
7 SP7 0° 30′ 42.9″ N35° 16′ 39.3″ E 7.8 83.3 21.5 Hospital
8 SP8 0° 30′ 41.0″ N35° 16′ 39.0″ E 7.5 200 21.5 Forest
9 SP9 0° 30′ 31″ N 35° 17′ 2″ E 7.9 83.3 20.4 Residential
10 SP10 0° 30′ 31″ N 35° 16′ 59″ E 7.8 83.3 19.7 Bridge
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majority of the samples being neutral. Sodium azide 
(0.5 g  L−1) was added into each sample bottle imme-
diately after sampling to inhibit potential biodegrada-
tion. Samples were placed in cooler box during trans-
portation, acidified with HCl to a pH of 3 and stored 
at 4 °C in a cold room prior to extraction. Ten grab 
sediment samples (approximately 200  g) were also 
collected (in duplicate), coded as SP1 to SP10, and 
transported together with the water samples, where 
they were stored at – 20  °C in a cold room prior to 
extraction.

Sample preparation

One-liter subsamples (from the composite samples) 
were filtered sequentially using 0.7  µm and 0.45  µm 
Millipore filter prior to SPE clean-up. The Oasis hydro-
philic-lipophilic balance (HLB) cartridges (200  mg, 
6 mL) were preconditioned with 6 mL MeOH followed 
by 6 mL LC-water. Each 1-L water sample (in tripli-
cate) was then passed through the cartridge at a flow 
rate of 8 mL/min using an SPE vacuum Manifold (Mil-
liporeSigma™ Supelco™ Visiprep, Thermo Fisher 
Scientific), washed with 10% MeOH in LC-water and 
air-dried for 10 min. The cartridges were eluted with 
3 mL of 70: 30 v/v MeOH-ACN solution and reduced 
to a volume of 100 µL under a gentle flow of nitrogen. 
The sample was reconstituted to 1 mL with a 2: 1 (v/v) 
LC-Water-ACN solution containing 5 mM  NH4HCO2 
(acidified with 0.1% HCOOH), filtered through a 0.22-
µm glass membrane filter and stored at 4  °C prior to 
LC–MS/MS measurement.

For the sediment samples, a 2-g aliquot of sample 
was weighed into a 50-mL centrifuge tube. Six mil-
liliter of MeOH: ACN:  H2O: water (60: 20: 20) solvent 
mixture was added to the tube followed by vortexing 
for one minute. The mixture was then sonicated for 
20 min and centrifuged at 4500 rpm for 10 min, after 
which the supernatant was collected in a 15-mL glass 
test tube. A repeat extraction using 6  mL of 100% 
methanol was done and extracts were pooled in the 
15-mL tube. The pooled extract was concentrated 
using a rotary evaporator to approximately 1  mL 
and reconstituted to 10 mL using LC-water. Extracts 
were passed through 0.45-µm glass microfilters and 
cleaned-up by SPE method using Oasis (HLB) car-
tridges (60 mg, 3 mL). The SPE procedure was same 
as that of the water samples, using 3 mL of precondi-
tioning, washing, and eluting solutions.

LC–MS/MS analysis

Samples were analyzed using Agilent LC-1290 infin-
ity II system (Germany) coupled to an API 6460c tri-
ple Quad Mass Spectrometer (Applied Biosystems/
MDS Sciex Instruments, Toronto, Canada) system 
equipped with a Zorbax Eclipse Plus C18 RRHD, 
50 mm × 2.1 mm, 1.8 µm column and a guard column 
(3.0 × 4  mm) of the same material. The binary sol-
vent gradient elution program (Solvent A: 0.1% aque-
ous HCOOH, 5 mM ammonium formate and Solvent 
B: 0.1% HCOOH acetonitrile) of 23 min was set up 
as follows: 0 min, 0% B; 1 min, 5% B; 3 min, 10% 
B; 7  min, 20% B; 11  min, 30% B; 15  min, 40% B; 
17 min, 50% B; 19 min, 70% B; 21 min, 80% B; and 
23 min, 5% B. The oven temperature was set at 35 °C, 
a flow rate of 0.30 mL   min−1, and an injection vol-
ume of 10 µL. A post-time of 3 min was set between 
sample runs for the column re-equilibration. Mass 
spectrometer (MS) was operated in positive electro-
spray ionization (+ ESI) mode with the following 
source parameters: gas temperature 325 °C, gas flow 
1 L  min−1, and nebulizer gas 45 psi capillary voltage 
of 4000  V. Precursor ion and two or three product 
ions were used for compound identification (Supple-
mentary Table S2).

Method evaluation and validation

The SPE clean-up method was evaluated by spiking 
mixed standards to 1-L blank water samples at two 
concentrations (0.01 and 0.5 µg   L−1) and subjecting 
the samples to the same SPE procedure as the sam-
ples. One-gram triplicate sediment samples were also 
spiked to a final concentration of 0.1 and 0.5 µg  kg−1 
and subjected to similar extraction and SPE clean-up 
procedure as the sediment samples. Recoveries (%) 
were determined for each of the analyte compound 
as the ratio of quantified amount to that of the spiked 
amount multiplied by 100%. Repeat blank sample 
spike experiments (in water) were conducted in dif-
ferent days to evaluate the intra-day and inter-day 
method precision and accuracy of recoveries for rep-
resentative test pharmaceuticals from different classes 
(Table S3, supplementary material).

Reference standard compounds of concentrations 
0.1–2  µg   mL−1 in 2: 1 (v/v) LC-Water-ACN solu-
tion containing 5  mM  NH4HCO2 (acidified with 
0.1% HCOOH) were prepared and injected into the 
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LC–MS/MS to determine linearity of the quantifica-
tion method and as external calibration standards. A set 
of six replicates of lowest calibration mixed standard 
were injected into LC–MS/MS instrument and used 
to determine the limit of detection (LOD) and limit of 
quantification (LOQ). LOD and LOQ were evaluated 
as; LOD = (3.3 × σ/s), while LOQ = (10 × σ/s), where 
σ is standard deviation of the replicates and s is the 
slope. There was good precision among the replicates 
for each compound, and this reproducibility confirmed 
ruggedness of method.

The determined method performance param-
eters including the linearity, accuracy, and repeat-
ability expressed as the correlation coefficient (R2) 
of calibration curves,% recoveries, LOD, LOQ, and 
standard deviation for replicate measurements for 
water samples, and spiked samples are presented in 
Tables 3 and S3 (supplementary material). Linearity 
was good (R2 > 0.93) for all test compounds. The% 
recoveries ranged from 83 to 114% for water sam-
ples and 80–108% for the sediments. The LOD of the 
adopted method ranged from 0.003 to 0.317  ng   L−1 
whereas the LOQ range was 0.010–0.908 ng  L−1. All 
values reported were above the LOQ for each corre-
sponding analyte compound. The method was there-
fore robust enough for the study.

Ecological risk assessment

The potential ecological risk of the pharmaceuti-
cal residues in water was evaluated using risk quo-
tient  RQw, which was evaluated based on maximum 
measured environmental concentration (MEC) to 
the predicted no-effect concentration (PNEC, ng 
 L−1) using Eq. (1) (Yin, 2021).

PNECw (maximum drug concentration with no 
adverse effect on the microorganisms or the ecosys-
tem in the environment) was determined using the 
evaluation (or assessment) factor, AF (Eq. 2).

where  EC50 is the half-maximum effect concentra-
tion (ng  L−1).  EC50 and  NOEC50 values (for the most 
sensitive species) were obtained from literature (Chen 

(1)RQw =
MEC

PNECw

(2)PNECw =
NOEC or EC

50

AF

et  al., 2021a; Oh et  al., 2004; Sharma et  al., 2021). 
 NOEC50 values were used in cases where  EC50 could  
not be obtained (Table S7, supplementary material). An 
AF value of 1,000 was used when acute toxicity  (EC50) 
data was used, and 100 when chronic toxicity data, 
 NOEC50 was used (Jiang et al., 2014). From the com-
monly used criteria of ranking the RQ values, RQ range 
of 0.01 to 0.1 is considered as low risk, 0.1 > RQ < 1 
medium risk, and RQ > 1 as high risk, and this criterion 
was adopted in this study (Yan et al., 2013).

Data analysis

Descriptive and other data analysis were done using 
Microsoft Excel 2016 (Apple Inc., USA) computer 
software. Pearson’s correlation (r, ρ = 0.05) was 
used for the comparison of pharmaceutical residues 
in river surface water and in sediments. Statistical 
comparison of the intra- and inter-day recoveries 
was done to evaluate the precision and accuracy (% 
coefficient of variation, CV, and% accuracy) of the 
method. Pseudo-partitioning coefficients (Kp,s) of test 
compounds between water and sediments were used 
to estimate the sorption capacity of these compounds 
and were calculated using the equilibrium: Kp,s = Cs/
Cw, where Cw is the mean concentration of the target 
compound in the water sample (μg  L−1), and Cs is the 
mean concentration of the target compound in the 
sediment sample (ng  g−1) (Chen et al., 2021b).

Results and discussion

Residual pharmaceuticals in water

Water samples were randomly obtained from 10 
selected sites in Sosiani river (Eldoret) and analyzed 
for antibiotic residues. From a total of 34 compounds 
that were investigated, varied amounts of residues 
were detected for 28 compounds is surface water, rep-
resenting 79% of analytes. The six compounds that 
were not detectable included sulfaguanidine, sulfa-
monomethoxine, sulfachlorpyridazine, sulfaquinoxa-
line, dapsone, and flubendazole. Detectable amounts 
of SAs ranged from 0.08 to 247.0, PNs from 0.19 to 
10.37, QNs from 13.68 to 56.02, MCs 3.32 to 9.08, 
LNs (LIC) from 3.67 to 7.77, NIs (MET) from 3.11 to 
5.56 and TMP ranged from 0.17 to 67.32 ng  L−1. The 
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amount of determined BZs (OFX, MEB, and ALB) 
ranged from 1.97 to 21.39 ng  L−1. Therefore, the con-
centrations (based on maximum amount) decreased 
in the order SAs > TMP > FQs > ATs > PNs  ≈  MCs 
≈  LNs > NIs (Tables  4, 5  and 6). Though the high-
est detected amount was that of a sulfonamide com-
pound (SMXZ), the FQs were generally present in 
higher amounts than the other classes of compounds 
determined (Tables 4, S4a and b). The three FQs were 
detected at all sampling points, presenting a 100% 

frequency. AMP was detected at only one sampling 
point, SP4 (0.2 ng  L−1), a similar observation to that 
of STZ. PEG was detected at four sampling points 
(2% frequency), whereas the other two PNs (AMX 
and CLX) were detected at all sampling points. For all 
other detected compounds (other than SAs, FQs, and 
PNs), 100% detection frequency was observed. There 
was no observed trend in concentrations of detected 
compounds downstream. This suggests that dilu-
tion was not an influencing factor, and point source 

Table 3  Parameters for method validation

Compound Calibration equation R2 % recovery in water % recovery in sediments LOD (ng L−1) LOQ (ng L−1)

SFG y = 1255.24x + 1813.70 0.999 90.00 ± 8.01 93.44 ± 9.48 0.028 0.084
SDZ y = 2084.72x + 386.77 0.998 113.8 ± 3.05 108.00 ± 12.73 0.023 0.069
STZ y = 1578.08x + 6322.26 0.988 98.44 ± 8.00 98.88 ± 6.90 0.119 0.359
SMTZ y = 539.11x + 345.51 0.996 92.91 ± 7.88 89.47 ± 8.68 0.006 0.019
SMM y = 5433.86x + 19,791.77 0.995 98.70 ± 3.25 99.77 ± 3.45 0.006 0.018
SMZ y = 2348.55x + 9297.53 0.991 104.84 ± 11.08 100.23 ± 7.87 0.014 0.043
SMPZ y = 5502.77x + 1405.27 0.997 93.98 ± 4.69 80.07 ± 4.81 0.006 0.018
SPD y = 616.62x + 1494.97 0.999 98.20 ± 2.07 93.33 ± 4.71 0.054 0.162
SCP y = 2014.77x + 7861.64 0.990 87.57 ± 5.52 99.44 ± 2.51 0.016 0.050
SMXZ y = 1361.40x + 5067.49 0.989 109.03 ± 8.48 100.45 ± 4.41 0.056 0.170
SXZ y = 1104.31x + 2689.19 0.998 98.70 ± 3.25 97.88 ± 2.66 0.040 0.122
SFQ y = 1476.14x + 12,278.26 0.982 97.70 ± 6.18 97.45 ± 0.31 0.022 0.068
SDMX y = 6876.99x + 10,819.36 0.999 101.87 ± 13.95 81.09 ± 1.54 0.005 0.016
SDX y = 3487.36x + 10,381.48 0.999 100.69 ± 4.28 97.44 ± 0.32 0.014 0.041
DPS y = 553.29x + 1058.94 0.999 97.30 ± 7.50 93.43 ± 5.79 0.006 0.018
NOR y = 857.10x – 18,865.35 0.928 96.53 ± 5.47 94.63 ± 5.60 0.092 0.280
CIP y = 1587.47x – 21,575.60 0.984 101.33 ± 6.60 97.69 ± 0.44 0.044 0.133
ENR y = 1323.60x – 24,880.26 0.955 95.07 ± 7.64 97.78 ± 2.52 0.109 0.330
PEV y = 135.53x − 385.45 0.998 96.77 ± 5.33 98.16 ± 5.88 0.317 0.960
AMP y = 168.78x + 159.37 0.993 88.20 ± 4.05 82.84 ± 2.60 0.020 0.059
AMX y = 392.24x − 460.66 0.998 80.79 ± 1.12 82.80 ± 1.61 0.014 0.043
PEG y = 49.86x + 140.25 0.997 91.68 ± 10.86 98.76 ± 4.37 0.113 0.341
CLX y = 14.89x − 29.00 0.997 85.73 ± 8.11 90.65 ± 7.51 0.300 0.908
DCX y = 2091.96x − 6421.16 0.999 104.01 ± 12.74 95.87 ± 4.53 0.089 0.270
NAF y = 7026.26x − 24,981.86 0.999 103.06 ± 6.68 90.14 ± 9.63 0.008 0.023
ERY y = 2862.05x − 11,347.62 0.993 83.01 ± 4.26 100.37 ± 10.89 0.082 0.247
TY L y = 1883.39x − 15,649.47 0.993 98.98 ± 7.51 96.63 ± 4.20 0.018 0.055
LIC y = 3580.88x − 20,237.15 0.998 91.71 ± 6.19 96.22 ± 5.78 0.015 0.045
MET y = 1963.60x + 6079.99 0.999 88.98 ± 5.62 97.37 ± 4.25 0.053 0.162
TMP y = 1627.21x − 31.47 0.998 86.47 ± 4.43 81.04 ± 7.13 0.027 0.082
OXF y = 4624.85x − 8946.04 0.999 98.27 ± 2.92 98.95 ± 2.76 0.003 0.010
MEB y = 14,067.99x − 37,179.38 0.999 89.07 ± 6.23 98.84 ± 4.01 0.011 0.035
FLB y = 8944.22x + 2596.94 0.999 92.04 ± 3.83 94.27 ± 7.45 0.004 0.011
ALB y = 9018.73x − 24,555.95 0.999 92.44 ± 10.99 93.20 ± 10.65 0.014 0.043
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pollution may have played a major role, taking into 
account that the sampling area has several hospitals, 
residential areas (discharge of wastewater) and, to a 
small extent, some agricultural activities (Table  2). 
Sampling point SP4 recorded higher concentrations 
than other sites for most of the compounds, which 
strongly supports the idea of point source pollution as 
the site may be a recipient of large amounts of waste-
water from a nearby hospital. Surface runoffs, from 
poorly managed domestic and hospital wastes and 
effluents, might have contributed to the pharmaceuti-
cals in the investigated surface water.

Of the 10 SAs present in detectable amounts, 
SMXZ had the highest concentration of 247.0 ng  L−1 
followed by SMZ with 23.3  ng   L−1 (Tables  4  and 
S4a-supplemantary material). The average concen-
tration increased in the order SMPZ < SDZ < SMTZ 
< SDMT < SDX < SXZ < SPD < SMZ < SMXZ. This 
observed trend did not follow the order of solubility 
of the compounds in water, and was not significantly 
correlated (r = 0.39, ρ = 0.05) to the octanol–water 
coefficient (log Kow). STZ was detected at only one 
sampling point (SP4) in the wet season at a concentra-
tion of 7.4 ng  L−1 (Table 4). The frequency of detec-
tion of SAs varied among determined compounds and 
ranged from 0.05 to 100%. Considering the average 
amount for each compound at all sampling points, 
there was no discernable trend in the concentrations 
of SAs while comparing amounts in dry and wet sea-
sons (supplementary Fig. S1a). This indicated contri-
butions from point sources as well as surface runoffs. 
In general, SMTZ, SXZ, SDMT, and SDX recorded 
higher amounts in wet season (difference not sig-
nificant), SPD and SXZ had higher amounts in dry 
season (difference significant for SPD, and signifi-
cant for most sites for SXZ) whereas the concentra-
tions of SMXZ and SMPZ were variable for the two 
seasons. It was noted that point sources contributed 
more to the concentrations of SDZ, SMTZ, SMZ, 
SMPZ, SPD, SMXZ, and SXZ during the dry season 
for points SP4 and SP6, and a similar observation for 
SDZ, SMZ, SMPZ, SPD, SMXZ, and SXZ for the 
points SP5, SP7, SP8, and SP9. Compared to other 
sampling points, SP4 had the highest concentrations 
of SDZ, SMTZ, SMZ, SMPZ, SMXZ, and SXZ in 
the dry season. Hospital and domestic effluents were 
the major sources of SAs in the sampled surface water 
(Table 2), going by the description of the study area.

Globally, reported concentrations of various SAs 
in surface water vary from non-detectable (nd) lev-
els to 5320  ng   L−1 for SMXZ (Chen & Zhou, 2014; 
Dinh et al., 2017; Kuang et al., 2020; Matongo et al., 
2015; Ncube et al., 2021; Zhang et al., 2012), and up 
to 6192, 112.5, and 530.1 ng   L−1 for SMZ, SDZ, and 
SPD, respectively (Chen & Zhou, 2014; Díaz-Cruz 
et al., 2008; Dinh et al., 2017; Yao et al., 2017). Also, 
a reported amount of up to 66.0 and 6.0  ng   L−1 for 
SMM and SFQ, respectively, (Chen et  al., 2018), and 
up to 47.5 and 15.6 ng  L−1 STZ and SXZ, respectively 
(Li et al., 2021). However, high levels of SMXZ of 19.4 
and 142.6 μg  L−1 were reported for upstream and down-
stream of Mitheu river water in Kenya (Kairigo et al., 
2020a). Other reported SA contaminations in surface 
water (Nairobi, Chania, Sagana, Kanyulu, and Mwania 
rivers) in Kenya are concentrations of up to 23.35, 0.47, 
and 0.84  μg   L−1 of SMXZ, SMZ, and SDZ, respec-
tively (K’oreje et al., 2012; Kairigo et al., 2020b; Ngigi 
et  al., 2020), whereas values of < 0.08  μg   L−1 were 
determined for SDX and SCP (Ngigi et al., 2020).

Concentrations of the seven PNs ranged from 0.19 
to 10.37 ng  L−1, with average amounts increasing in the 
order AMP < AMX < PEG < CLX < PEV < DCX < N
AF (Tables 5 and S4b). A 100% frequency of detection 
was observed for five of the compounds except AMP 
(detected at sampling point SP4 during dry season only) 
and PEG (21% frequency). Also, notable observation 
was that the maximum concentrations of PEV, CLX, 
and DCX were obtained from sampling point SP4 dur-
ing the wet season. Generally, concentrations of PEV, 
AMX, DCX, NAF, and CLX were high during the 
wet seasons (supplementary Fig. S1b), though the dif-
ferences were not significant (ρ = 0.05) except AMX at 
SP9, DCX at SP4, and CLX at SP8 where the amounts 
were higher in dry the season). Among the PNs, AMP is 
among the most frequently detected antibiotic in aquatic 
systems, having a reported concentration of up to 
13,800 ng  L−1in surface water (Dinh et al., 2017; Ncube 
et  al., 2021). Others include AMX, PEG, and PEV at 
concentrations 200, 250, and 10 ng  L−1, respectively, in 
surface water (Dinh et al., 2017; Watkinson et al., 2009). 
In Kenya, the reported penicillin’s in water include 
AMX at 900  ng   L−1 in Mitheu river (Kairigo et  al., 
2020b), AMP, PEG, DCX, NAF, and oxacillin at a range 
of < 120–500 ng  L−1 (Ngigi et al., 2020) in Nairobi river.

Concentrations of the three FQs (100% fre-
quency detection) ranged from 13.68 to 56.02 ng  L−1, 
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which increased (average concentration) in the order 
CIP < ENR < NOR (Tables  5 and S4b). The highest 
amount of CIP and NOR of 56.02 and 52.19 ng   L−1, 
respectively, were recorded from sampling SP4 dur-
ing the dry season. The concentrations of the three 
FQs was variable, and no seasonal trend could be 
drawn (supplementary Fig.  S1b). FQs, like SAs are 
also commonly found in aquatic systems. In surface 
waters, they have been reported at varied concen-
trations, for example, reported CIP concentrations 
ranged from non-detectable (nd) to 5,015,000 ng   L−1 
in Leça river in Portugal, Yamuna river in India, and 
Charmoise river and Arc river in France (Dinh et al., 
2017; Feitosa-Felizzola & Chiron, 2009; Fernandes 
et al., 2020; Mutiyar & Mittal, 2014), the highest con-
centration having been reported in the Ganges river in 
India (Sharma et  al., 2019). Enrofloxacin, ENR, has 
similarly been studied in surface water with reported 
concentrations of up to 181,609  ng   L−1 (Sharma 
et  al., 2019; Yao et  al., 2017). Likewise, NOR has 
reported ranges of 9.57–1261  ng   L−1 in Leça river, 
Portugal and Jianghan Plain, Central China (Dinh 
et  al., 2017; Yao et  al., 2017), and a high concentra-
tion of 16,148–251,137  ng   L−1 in Ganges River in 
India (Sharma et  al., 2019). Ofloxacin, though not 

determined in this study, is also a commonly reported 
pollutant in surface water at concentrations of up 
to 11,700  ng   L−1 (Bhagat et  al., 2020). Among the 
reported concentrations of FQs in surface water in 
Kenya include NOR at levels of up to 4900 ng  L−1 and 
CIP of up to 2800 ng  L−1 (Kairigo et al., 2020a, b).

Of the two MCs, TLY was detected at higher levels 
in the range 5.46–9.08  ng   L−1 and 3.32–6.73  ng   L−1 
for ERY (Tables  6  and S4c). ERY amounts were 
higher during the dry season (difference not signifi-
cant) whereas the concentration of TLY varied for 
the two seasons (supplementary Fig.  S1c). ERY has 
been previously reported in surface water at a range 
of 32.3–2910  ng   L−1 in China (Yao et  al., 2017), 
nd–240 ng  L−1 in South Africa (Matongo et al., 2015), 
and TLY at 9.8–74.2  ng   L−1 in Italy (Zuccato et  al., 
2005). Concentrations of up to1.9  μg   L−1 of ERY 
were reported in Nairobi river water in Kenya (Ngigi 
et al., 2020). Similar to ERY, the concentration of LIN 
(lincosamide) ranged from 3.67 to 7.77  ng   L−1 and 
was significantly higher during the dry season (sup-
plementary Fig.  S1c). There a few studies reporting 
the occurrence of LIN in surface water, for example, 
a concentration range of 1.9–248.9 ng   L−1 in surface 
water (rivers, lake, and ponds) (Bhagat et  al., 2020; 

Table 6  Concentrations of MLs, LNs, NIs, TMP and ATs in surface water in ng  L−1

Sample site ERY TYL LIN MET TMP OFX MEB ALB

SP1 W 3.53 (0.06) 5.46(0.01) 3.67 (0.00) 3.13 (0.00) 0.50 (0.05) 1.99 (0.05) 2.77 (0.01) 2.89 (0.05)
SP1 D 3.97 (0.00) 5.82 (0.11) 6.43 (0.36) 3.12 (0.01) 1.53 (0.35) 2.21 (0.02) 2.69 (0.00) 2.82 (0.01)
SP2 W 3.47 (0.14) 5.51 (0.12) 3.70 (0.02) 3.12 (0.02) 0.72 (0.09) 2.14 (0.15) 2.74 (0.00) 2.84 (0.02)
SP2 D 3.98 (0.01) 5.46(0.04) 6.69 (0.02) 3.11 (0.00) 0.17 (0.05) 2.02 (0.04) 2.69 (0.01) 2.80 (0.00)
SP3 W 3.32 (0.07) 5.50 (0.08) 4.93 (0.37) 3.12 (0.00) 0.29 (0.13) 2.10 (0.06) 2.71 (0.02) 2.83 (0.01)
SP3 D 3.97 (0.00) 6.63 (0.08) 6.47 (0.71) 3.12 (0.01) 0.66 (0.05) 2.06 (0.02) 2.67 (0.00) 2.82 (0.01)
SP4 W 4.13 (0.05) 8.49 (0.11) 5.66 (0.00) 3.22 (0.12) 2.40 (0.15) 2.30 (0.32) 2.78 (0.01) 4.55 (0.57)
SP4 D 6.73 (0.44) 9.00 (0.76) 6.95 (0.11) 5.56 (0.20) 67.32 (2.87) 2.47 (0.05) 2.71 (0.01) 3.48 (0.03)
SP5 W 4.00 (0.05) 8.83 (0.43) 5.70(0.05) 3.14 (0.01) 0.66 (0.32) 2.09 (0.05) 2.75 (0.04) 2.81 (0.01)
SP5 D 4.01 (0.02) 8.52 (0.06) 7.32 (0.08) 3.15 (0.04) 2.87 (0.00) 1.97 (0.03) 2.67 (0.00) 3.04 (0.00)
SP6 W 4.00 (0.01) 6.96 (0.58) 5.71 (0.02) 3.14 (0.03) 0.44 (0.06) 2.02 (0.00) 2.72 (0.01) 2.81 (0.00)
SP6 D 4.03 (0.07) 8.57 (0.05) 7.63 (0.10) 3.30 (0.27) 1.52 (0.24) 2.11 (0.02) 2.69 (0.02) 3.07 (0.27)
SP7 W 3.98 (0.00) 8.71 (0.37) 6.17 (0.71) 3.14 (0.02) 0.46 (0.20) 2.14 (0.01) 2.70 (0.00) 2.77 (0.01)
SP7 D 4.10 (0.03) 8.85 (0.18) 6.83 (0.22) 3.15 (0.00) 0.64 (0.13) 2.09 (0.04) 2.69 (0.01) 2.95 (0.03)
SP8 W 3.98 (0.02) 8.49 (0.03) 6.32 (0.57) 3.12 (0.01) 0.95 (0.14) 2.12 (0.07) 2.74 (0.01) 2.77 (0.01)
SP8 D 4.05 (0.04) 9.08 (0.34) 7.77 (0.14) 3.17 (0.01) 2.25 (0.75) 2.02 (0.02) 2.70 (0.01) 3.05 (0.06)
SP9 W 3.83 (0.07) 8.49 (0.10) 5.99 (0.00) 3.14 (0.03) 0.30 (0.01) 1.99 (0.04) 2.69 (0.02) 2.80 (0.02)
SP9 D 4.09 (0.10) 8.92 (0.07) 7.68 (0.01) 3.14 (0.00) 1.41 (0.10) 2.06 (0.09) 2.77 (0.01) 5.18 (0.05)
SP10 D 4.13 (0.06) 9.02 (0.05) 7.69 (0.01) 3.25(0.02) 1.49 (0.20) 2.16 (0.06) 3.00 (0.04) 21.39 (7.81)
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Castiglioni et  al., 2005; Feitosa-Felizzola & Chiron, 
2009). Amount of MET, a nitroimidazole, was gener-
ally low and ranged from 3.11 to 5.56 ng   L−1. How-
ever, K’oreje et  al. (2012) reported a concentration 
of over 500 ng  L−1 in their study within Nairobi river 
basin, Kenya. Concentration of TRM, a diaminopy-
rimidine, ranged from 0.17 to 67.32  ng   L−1, which 
was higher during the dry season except at sampling 
point SP2. Notably, is the highest amount of TRM, 
which was obtained from site SP4 in the dry season. 
Studies have reported TRM concentrations of up 
13,680 ng  L−1 in surface water (Archundia et al., 2017; 
Dinh et al., 2017; Fernandes et al., 2020; Zhang et al., 
2012, 2020). Concentrations of up to 9480 ng  L−1 were 
reported in Kenya for TRM in surface water (K’oreje 
et al., 2012; Kairigo et al., 2020b; Ngigi et al., 2020) 
from Nairobi and Mitheu rivers.

Four anthelmintics, ATs (commonly used to treat 
parasitic worms) from benzimidazole class, were 
determined in surface water and were obtained in 
the range 1.97–21.39 ng   L−1. FLB was not detected 
at all sampling points, whereas the other three had 
a 100% occurrence frequency and their concentra-
tions increased in the order OXF < MEB < ALB 
(Tables 6 and S4c). The concentrations of MET, OFX, 
and MEB were similar during the wet and dry season 
and variable without any obvious tend for ALB. A 
detection frequency of 77 to 100% was reported for 
19 ATs in river water (Chen et  al., 2021b), whereas 
the same study reported a concentration range of 
nd–61.12 ng  L−1 for seven BZs, namely, ALB, OXF, 
MEB, ricobendazole (RIC), fenbendazole (FEN), 
flubendazole (FLU), and thiabendazole (THI). Other 
studies have reported up to 197 ng  L−1 anthelmintics 
in surface water (Kumirska et al., 2015; Zrnčić et al., 
2014); however, very few studies have been done on 
these pollutants in aquatic environments.

The differences in detected amounts of the antibi-
otics and benzimidazole anthelmintics in the surface 
water may be attributed to several factors including 
physicochemical characteristics of the compounds, 
usage patterns in the environs, anthropogenic activi-
ties, biogeochemical processes, surface runoffs, in 
addition to environmental fate processes such as 
biodegradation, photo-degradation, and adsorption 
(Chen et  al., 2018; Kümmerer, 2009; Tang et  al., 
2015). As a result, the order of detections in dif-
ferent studies may differ. For example, in a study 
by Duong et  al. (2021), the average concentrations 

(ng  L−1) of five classes of antibiotics decreased in the 
order SAs (117.9) > β-lactams (31.28) > quinolones 
(20.19) > MLs (17.74) > TMP (8.93). Though, it is 
notable that the study ranked SAs as the highest and 
this agrees with the observation in this study. For the 
detected compounds, there was a negative correla-
tion between the obtained concentrations and log Kow 
(r =  − 0.2). However, a positive correlation existed 
between the concentrations and solubility (r = 0.71) 
(Table S6a, b in supplementary material).

Largely, all the antibiotics and benzimidazoles 
determined in this study had concentrations within 
globally reported values. As a primary source of 
antibiotics in aquatic systems, final effluents from 
WWTPs (both hospital and domestic) contain a vari-
ety antibiotic residues (Rodriguez-Mozaz et al., 2020) 
as antibiotics are not fully eliminated (Abuin et  al., 
2006), which was one of the major contributing fac-
tors in the studied river water system, judging from 
the location. The behavior and fate of antibiotics in 
the aquatic environment are influenced by the physi-
cal and chemical characteristics of the compounds 
(molecular structure, size, shape, solubility, hydropho-
bicity, and sorption potentials), environmental factors 
(pH), and the climatic conditions (temperature and 
precipitation), as well as biological factors (micro-
bial degradation). Thus, the detection of antibiotics 
in aquatic systems is greatly affected by their sorption 
potentials (Kd) in soil particles (among other factors), 
where surface runoffs and leaching are contributory 
pathways. Those with low Kd (< 5 L  kg−1) and half-life 
of less than 21 days are easily transported to aquatic 
systems, whereas those with high Kd (> 5 L  kg−1) tend 
to accumulate and persist in the soil matrix. For exam-
ple, SAs have relatively low Kd of 0.2 to 2.0 L   kg−1 
and organic carbon normalized partition coefficient 
(Koc), which indicates their low sorption affinity to 
soil and sediment particles (Thiele-Bruhn, 2003) com-
pared to FQs (Kd of 70 to 5000 L  kg−1) (Sarmah et al., 
2006; Van Dijk & Keukens, 2000), and are therefore 
likely to be mobile in the aqueous runoff component 
following application in soil. However, Kd values vary 
widely in different types of soils. Moreover, SAs are 
extensively used to treat human and animal diseases, 
hence they are ubiquitous in aquatic environments. 
For SMXZ, it is often used in combination with TRM 
(Cotrim) because this enhances the effectiveness of 
the sulfonamide. This combination is moderately 
mobile and hydrophilic (log Kow values ≤ 0.91), hence 
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easily transferable into the aquatic environment (Viana 
et  al., 2021), and this may be one of the factors that 
led to the detection of this compound at higher levels 
compared to other SAs.

Some antibiotics form conjugated metabolites that 
may be converted back to parent compounds after 
excretion. An example is the formation of acetylated 
metabolites such as N4-acetylsulfamethoxazole or 
N4-acetylsulfamethazine (in SAs), which can be con-
verted back to the parent form (Viana et al., 2021). Such 
metabolites have been detected in WWTPs, imply-
ing that they form part of residual pollutants that enter 
recipient surface waters from this source. For most 
antibiotics, the deconjugation of conjugated active and 
inactive metabolites into the active parent molecules 
in WWTPs via biological transformation by microbial 
enzymes such as glucuronidases and sulfatases, can 
lead to negative removals of such compounds (exam-
ple, ERY), hence their discharge into receiving surface 
waters (Brown & Wong, 2018; Mirzaei et al., 2018).

FQs are considered relatively stable in the environ-
ment than other antibiotics, which allows them to per-
sist for longer periods, spreading further and hence 
accumulating in water and sediments. The fate of 
these FQs in aquatic systems is mainly dominated by 
adsorption (log Koc ≥ 4.2, strong sorption) and pho-
todegradation reactions and therefore rapidly move 
from water to soil/sediments and onto organic parti-
cles solution, hence the occurrence in surface water, 
although adsorption is more critical (Cardoza et  al., 
2005; Viana et al., 2021). The fact that FQs are easily 
adsorbed by sediments, accounts for their detection in 
low concentrations in surface water as compared to 
SAs (Li et  al., 2021). CIP and ENR are among the 
most frequently detected FQs. Presence of ENR can 
contribute to increased amounts of CIP as it is the 
primary degradation product of enrofloxacin (about 
13–60% of ENR is metabolized into ciprofloxacin) 
(Cardoza et al., 2005; Viana et al., 2021). Lincomy-
cin is moderately mobile and therefore detected in 
surface water, having been mobilized from primary 
sources such as domestic and wastewater treatment 
effluents (Zhu et al., 2020) and from animal manure 
or animal production (Kuchta & Cessna, 2009).

Benzimidazole anthelmintics are widely used for 
helminthic infections and are utilized in animal hus-
bandry, agriculture, aquaculture, and human health 
(Zajíčková et  al., 2020). Their detection in the envi-
ronment, like antibiotics, is through anthropogenic 

activities, including sewage discharge, agricultural 
irrigation, and livestock breeding (Sim et  al., 2013). 
BZs were reported to be the dominant class in river 
water among six other ATs due to their heavy use 
(Chen et al., 2021b). With respect to the study area, a 
combination of these sources is possible as the loca-
tion has several hospitals, residential houses, and 
some agricultural activities.

Pharmaceuticals in sediments

Sediments were collected at each corresponding 
water sampling point from Sosiani River and tested 
for presence of the selected pharmaceuticals using 
described methods. Residual pharmaceuticals varied 
for individual compounds in the range of undetected to 
26.4 µg  kg−1 (dry weight) for most of the compounds 
(Fig.  2a–c). However, for the two compounds PEG 
(PNs) and ALB (BZs), the concentration ranged from 
414 to 974  µg   kg−1 and 3–125  µg   kg−1, respectively 
(Fig.  2d). The frequency of occurrence was 100% 
for all detected compounds except for two SAs, SDZ 
and SMZ, with 40 and 20% occurrence, respectively. 
Residual concentrations in sediments were signifi-
cantly higher than in surface water (in orders of 10 to 
1000 times). Of the eight classes detected in sediments, 
the amounts followed the decreasing order (based on 
maximum amounts); PNs > BZs > FQs > MLs > DAPs 
≈ LNs > NIs > SAs. Out of the 16 SAs analyzed, 8 were 
detected in the sediments. The quantified amounts for 
each class ranged as follows: PNs 0.83–973.87, BZs 
1.95–124.56, FQs 13.22–26.35, MLs 3.97–11.64, LNs 
4.27–6.55, NIs 1.98–5.10, DAPs (TMP) 0.08–6.55, 
and SAs 0.01–4.13 µg  kg−1. It was also observed that 
the point SPD 4 had relatively higher amounts com-
pared to other sampling points. Seven compounds were 
not detected in sediments, which included STZ, SMM, 
SCP, SFQ, DPS, AMP, and FLB. All pharmaceuticals 
that were not detected in water were also not detectable 
in the sediments except for the sulfonamide STZ that 
was quantifiable in water but not in sediments.

Investigations on occurrence of pharmaceuticals in sed-
iments have been conducted globally and present varied 
results for antibiotics and other compounds. A report by  
Chen et al. (2018) placed the average detected amounts of 
five categories of target antibiotics in sediments in decreas-
ing order, tetracyclines (88.8 ± 34.2 µg   kg−1) > fluoroqui-
nolones (53.7 ± 33.6 µg   kg−1) > β-lactamases (33.7 ± 23.4  
µg   kg−1) > sulfonamides (18.1 ± 12.8  µg   kg−1) > others 
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Fig. 2  a Concentrations 
of SAs in river sediments. 
b Concentrations of PNs, 
MET, TRM and OFX in 
river sediments. c Concen-
trations of FQs, MLs, and 
MEB in river sediments. d 
Concentrations of PEG and 
ALB in river sediments
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(11.5 ± 9.8 µg  kg−1). Of these, SDZ, NOR, CLX, oxcytet-
racycline, and LIN showed a 100% detection frequency. 
Among the reported FQs in sediments are CIP, NOR, 
ENR, and ofloxacin with values of up to 569, 225, 8.19, 
and 1560 µg  kg−1, respectively (Chen & Zhou, 2014; Dinh 
et al., 2017; Li et al., 2021; Yang et al., 2010). A concen-
tration range from 1700 to 3500 ng   g−1 dry weight was 
reported for a number of antibiotics in river sediments, 
among which were four FQs (CIP, NOR, ofloxacin, and 
enoxacin) (Dinh et  al., 2017). Though SMXZ was not 
detected in this study, high concentrations of this com-
pound of up to 344 µg  kg−1 have been reported elsewhere 
(Dinh et al., 2017; Wei et al., 2013). Other reported SAs 
include SMZ, SPD, SDZ, sulfaquinoxaline, and sul-
fathiazole, at 19.7, 9.1, 2.07, 0.08–0.9, and 0.6 µg   kg−1, 
respectively (Chen & Zhou, 2014). The macrolide, ERY, 
has been detected at a range of 1.5–24.6 µg   kg−1 (Chen 
& Zhou, 2014) and a range of nd–87.55  µg   kg−1 for 
TRM in sediments (Matongo et al., 2015). ALB and ric-
obendazole were reported as the most dominant BZs in 
sediments, with concentration ranges of nd–596.06 and 
nd–68.63  ng   g−1 for the two compounds, respectively 
(Chen et  al., 2021b). Metronidazole was detected at a 
concentration of up to 1253.5 ng  g−1 in sediments from a 
dam in Msunduzi river catchment, South Africa (Matongo 
et al., 2015).

There are only two studies (to the best of our 
knowledge) reporting occurrence of antibiotics (up to 
this moment) in river sediments in Kenya of amounts 
of up to 474, 26.6, 13.3, 94, 85, and 94 µg  kg−1 CIP, 
NOR, TRM, AMP, SMXZ, and chloramphenicol, 
respectively (Kairigo et  al., 2020b; Kimosop et  al., 
2016). Environmental concentration of antibiotics 
in sediments ranges from a few ng   kg−1 to few hun-
dreds µg   kg−1 (Chen et  al., 2018), hence supporting 
observed results in this study where the quantified 
amount ranged from 0.01 to 974 µg  kg−1. Sediments 
are important sinks for contaminants, hence concen-
trating antibiotics and other pollutants. Additionally, 
sediments are in an anaerobic environment that inhib-
its the degradation of antibiotics and limits exposure 
to light, hence the concentrations of some antibiot-
ics in sediments are greater than in water (Li et  al., 
2021). As earlier noted, FQs are easily adsorbed onto 
sediments (Li et al., 2021), hence their higher concen-
trations compared to SAs and MLs. Likewise, BZs 
can be stably adsorbed in sediments under the con-
ditions of suitable pH and appropriate proportion of 
organic matter (Pavlović et al., 2018).

Comparison of pharmaceutical residues in river 
surface water and in sediments

Pearson’s correlation was used to establish if there was 
any relationship between concentrations found in sur-
face water and sediments for those compounds that were 
detected in both compartments. Additionally, pseudo-
partitioning coefficients (Kp,s) of the target compounds 
between water and sediment were also evaluated. In 
aquatic systems, the sorption is not in equilibrium; 
hence, Kp,s is not always a valuable parameter but is 
however useful for estimating the sorption capacity of 
concerned compounds. From Pearson’s correlations 
(ρ = 0.05), concentrations of the compounds in water 
were positively and significantly correlated to solubil-
ity (r = 0.71), whereas the concentration in sediments 
was negatively correlated (not significant) to the solubil-
ity (r =  −0.02) (Tables S6a, b, supplementary material). 
Further, the concentrations of the compounds in water 
had no significant correlation to the concentrations in 
the sediments (r =  −0.09). The Kp,s values ranged from 
52 to 943, 797 to 322,190, 870 to 919, 1171 to 1262, 
and 1111 to 7372 L  Kg−1 for SAs, PNs, FQs, MLs, and 
BZs, respectively (Table  S5, supplementary material). 
SAs were among the compounds with low Kp,s values, 
indicating their low adsorption in sediments. Kp,s val-
ues of over 2000 L  kg−1 correspond to highly adsorbed 
compounds. Hence, the BZs, ALB, and the penicillin 
PEG were strongly adsorbed in sediments, with poten-
tial of accumulation. Other compounds were moderately 
adsorbed (FQs, MLs, LIN, and MET). However, for 
such Kp,s values, data should be obtained for a consid-
erable period of time for fair representation of sorption 
equilibrium with relation to sources of the pollutants.

Generally, as observed in this study, concentra-
tions of the determined pharmaceuticals from seven 
different classes varied in surface water and river 
sediments. Pharmaceuticals are ubiquitous and are 
among the major anthropogenic pollutants in the 
environment. Previous studies have reported presence 
of antibiotics and other pharmaceuticals in water and 
river sediments worldwide. Concentrations in sur-
face water range from a few ng   L−1 to a few µg   L−1 
(Bottoni et al., 2010; Chen et al., 2021a; Kuang et al., 
2020; Wang et al., 2016). Detected amounts of antibi-
otics from the classes SAs, FQs, PNs, MLs, βLs, and 
TRM in surface water were within reported values 
(Chen et  al., 2018; Kuang et  al., 2020; Wang et  al., 
2016). Though not as widely studied in environment 
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as the antibiotics, ATS have also been reported in 
surface water and sediments within the same range 
as antibiotics (Chen et  al., 2021b; Kumirska et  al., 
2015), similar to findings in this study.

Ecological risk analysis

From the  RQw values, 50% of the compounds (9 out of 
18) were of medium ecological risk in aquatic system, 
whereas 39% presented low risk. These included the 
PNs (PEV, AMP, and PEG), FQs (NOR and ENR), the 
macrolides (ERY and TLY), and LIN (Tables  7  and 
S7-supplementary material). The sulfonamide, sul-
famethoxazole (SMXZ), and the fluoroquinolone, 
ciprofloxacin (CIP), posed a high risk to aquatic life, 
having  RQw values of 1.11 and 3.24, respectively. The 
rest of the evaluated compounds posed no risk. Many 
pharmaceuticals pose ecological risk because of their 
continuous usage (some in large consumption) and 
strong environmental persistence. Previous ecological 
risk assessment reported SMXZ as having potential 
to cause medium damage to Daphnia in the aquatic 
ecosystem (Chen & Zhou, 2014) and was the only SA 
posing a risk to algae in effluent water, with an risk 
quotient > 7 in a report by García-Galán et al. (2011). 

High RQs of 335.5 were reported for sulfachloropyri-
dazine to green algae and 152 to Daphnia magna in 
ditch water, and the ecological and human health risks 
caused by sulfonamide mixtures were larger than the 
individual risks (Qin et al., 2020). In a review by Duan 
et al. (2022), the sulfonamides SDZ, SMXZ, and SMZ 
reportedly posed a great risk to the aquatic system. 
Results by Tang et  al. (2015) suggested that SMXZ, 
ofloxacin, CIP, and ENR in the surface water of Lake 
Chaohu and inflowing rivers might pose a high risk 
to algae and plants. Enoxacin, CIP, and SMXZ posed 
high ecological risks (RQ > 1) to the aquatic organ-
isms Vibrio fischeri, Microcystis aeruginosa, and Syn-
echococcus leopoliensis, respectively, in aquatic envi-
ronments (Zhang et al., 2012). For the benzimidazole 
ALB, its occurrence was classified as of medium risk 
to selected organisms, in the river and water source of 
Tuojiang River in Sichuan, China (Chen et al., 2021b). 
It is evident from ecological risk assessments that 
pharmaceuticals at certain concentrations pose a threat 
to aquatic environments. Further studies are necessary 
to fully understand the hazards that these pollutants 
present, more so considering the human health risks 
posed by ARB and ARGs present in aquatic environ-
ments (Khan et al., 2019).

Table 7  Risk quotients for the target antibiotics and benzimidazoles in surface water

n no risk, l low risk, m medium risk, h high risk

Antibiotic Mean (ng L−1) Organism EC50 (mg L−1) NOEC50 AF PNEC mg L−1 RQw (mean) Risk

STZ 7.380 Scenedesmus vacuolatus 13.1 - 1000 0.013 0.001 n
SMZ 10.529 Scenedesmus vacuolatus 19.52 - 1000 0.020 0.001 n
SPD 3.713 Chlorella vulgaris 1 - 1000 0.001 0.004 n
SMXZ 29.919 Synechococcus leopoliensis 0.027 - 1000 0.000 1.108 h
SDMT 1.912 Lemna minor 0.248 - 1000 0.000 0.008 l
PEV 3.477 Microcystis aeruginosa 0.006 - 1000 0.000 0.579 m
AMP 0.190 Microcystis aeruginosa 0.0002 - 1000 0.000 0.950 m
AMX 1.420 Synechococcus leopoliensis 0.00222 - 1000 0.000 0.639 m
PEG 1.753 Microcystis aeruginosa 0.006 - 1000 0.000 0.292 m
NOR 24.596 Vibrio fischeri - 0.01038 100 0.000 0.237 m
CIP 16.215 Microcystis aeruginosa 0.005 - 1000 0.000 3.243 h
ENR 20.007 Vibrio fischeri - 0.00288 100 0.000 0.695 m
ERY 4.068 Microcystis aeruginosa 0.023 - 1000 0.000 0.177 m
TYL 7.701 Microcystis aeruginosa 0.034 - 1000 0.000 0.226 m
LIN 6.279 Anabaena Raphidocelis 0.01 - 1000 0.000 0.628 m
MET 3.281 Chlorella Raphidocelis 3.22 - 1000 0.003 0.001 n
OFX 2.108 Vibrio fischeri 2.21 - 1000 0.002 0.001 n
ALB 4.088 Vibrio fischeri 0.77 - 1000 0.001 0.005 n
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Conclusion

In this study, 28 antibiotics and 4 benzimidazoles 
were investigated in surface water and sediments of 
an urban and suburban river. Their occurrence dif-
fered widely according to classes of the pharmaceu-
ticals and was mainly influenced by anthropogenic  
activities within the sampled location. SAs had the 
highest contribution in the surface water, and SMXZ 
had the highest concentration of 247.0  ng   L−1. The 
concentrations in surface water decreased in the order 
SAs > TMP > FQs > ATs > PNs  ≈  MCs  ≈  LNs > NIs.  
Residual pharmaceuticals in the sediments varied from  
nd to 974 µg  kg−1. PEG and ALB represented the high-
est concentration in sediments in the range 414–974 µg  
 kg−1 and 3–125  µg   kg−1, respectively, while the order  
of detection was PNs > BZs > FQs > MLs > DAPs ≈ 
LNs > NIs > SAs. Ecological risk assessments showed 
that SMXZ and CIP were of high risk in the surface 
water, whereas PEV, AMP, PEG NOR, ENR, ERY, 
TLY, and LIN were of medium ecological risk in the 
aquatic system. Continuous monitoring of these pol-
lutants is necessary as researcher’s endeavor to under-
stand more on their fate in the environment, human, 
and ecological risks posed by these compounds, devel-
opment of policies for interventions, and sustainable 
mitigation strategies.
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