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Abstract  Assessment of salt-affected land (SAL) is 
still a major challenging task worldwide, especially 
in developing nations. The advancement of remotely 
sensed digital satellite images of different spectral 
bands has enabled the assessment of soil salinity. Sen-
tinel-2 and Landsat 8 and 5 images of 2020, 2015 and 
2009 and Shuttle Radar Topographical Mission data 
of 2014 were obtained from the Google Earth Engine 
data catalogue. Twenty spectral indices have been 
used which include four vegetation indices, twelve 
soil salinity indices, four topographical characteristics 
and their spectral bands. The Random Forest model 
was used to detect SAL. A total of 593 soil samples 
were used in the model. Of the electrical conductiv-
ity values of samples collected in the field, 70% of the 
soil samples were used for the model training, and the 
remaining 30% were used for validation. Also, fivefold 
cross-validation was carried out to validate the model 
prediction. The predicted SAL extent identified dur-
ing 2020 was 134.4 sq. km with an overall accuracy of 
93% using fivefold cross-validation. In 2015 and 2009, 
the total SAL was 128.42 and 120.41 sq. km, respec-
tively. The total SAL has increased by 11.6% during 
the study period. The present study demonstrated the 
strength of remote sensing techniques to assess the 

SAL, which will help quantify the unproductive lands 
at the state or national level for reclamation or other 
productive use.

Keywords  Salt-affected lands · Google earth 
engine · Machine learning · Spectral indices · Soil 
salinity

Introduction

Soil salinization is a global environmental issue 
as it affects around 10% of global food production 
(Machado & Serralheiro, 2017), particularly in coastal 
countries, and is expected to be more intense in the 
future due to climate change scenarios (Das et  al., 
2020), viz. sea level rise impact on coastal areas, rise 
in temperature and thus increase in evapotranspira-
tion. Precise statistics on the global salt-affected land 
(SAL) spatial database is not yet developed; various 
data sources provide different information. Globally, 
424 million ha of topsoil (0–30 cm) and 833 million 
ha (30–100 cm) of subsoil are salt-affected, covering 
73% of the global land area in 118 countries (FAO, 
2021). Studies have shown that the SAL area has 
been increasing across the world: 932.2 million ha 
(Sparks, 2003), 952.2 m ha (Arora & Sharma, 2017) 
and 1128  m  ha (Mandal et  al., 2018). Of the salt-
affected regions, Asia stands first (65%), followed by 
Africa (19%) and Europe (5%) (Siebert et al., 2013). 
The estimations show that globally, there is US$27.3 
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billion loss of crop production annually due to salt-
induced land degradation in irrigated areas (Qadir 
et al., 2014).

Salinity and excessive alkalinity (Zhu et al., 2012) 
have a negative influence on soil fertility, thus damag-
ing the land and creating difficulties for plant growth 
(Wang et  al., 2014). In semi-arid regions, soil salin-
ity has a major influence due to the difficult climatic 
conditions, especially as these areas are under pres-
sure for food and fibre (Mushtak & Zhou, 2012). The 
traditional method of collecting soil samples with sub-
sequent laboratory analysis (Allbed et  al., 2014) has 
proven to be insufficient and unsuitable to achieve the 
speed of development of this phenomenon, especially 
as these methods are very time-consuming, costly and 
difficult to update.

Remote-sensing data and methods have been increas-
ingly applied to map soil salinity. Extensive research on 
soil salinity mapping using satellite images has been car-
ried out over the last three decades across the world. The 
advancement of satellite data availability and analytical 
capability has paved the way for accurate and timely 
assessment of soil salinity at different spaces and times. 
Different spatial models have been tested for saline soil 
assessment based on the topographic information, cli-
mate condition, land use information, etc. (Fathololoumi 
et al., 2020; Peng et al., 2019). Several spectral indices 
are used in soil salinity mappings, such as normalized 
differential vegetation index (NDVI), enhanced vegeta-
tion index (EVI) and generalized difference vegetation 
index (GDVI), and soil salinity normalized difference 
salinity index (NDSI), salinity index (SI), SI 1, SI 2, SI 
3, SI-I and canopy response salinity index (CRSI), etc. 
(Jiang et al., 2018; Peng et al., 2019; Wang et al., 2020). 
In addition, measured soil electrical conductivity (EC) 
values and various topographical attributes used in the 
soil salinity mapping include elevation, slope, aspect, 
hill shade and flow accumulation (Fathololoumi et al., 
2020; Peng et al., 2019); distance from the sea and dis-
tance from the tidal creek; land surface temperature 
(Ivushkin et al., 2019) and soil moisture indices.

Modelling techniques used in the study include 
partial least square regression (PLSR) (Jiang 
& Shu, 2018; Peng et  al., 2019; Yahiaoui et  al., 
2021), cubist model (Peng et al., 2019; Wang et al., 
2020), multiple linear regression (MLR) (Gorji 
et  al., 2017; Yahiaoui et  al., 2021), support vec-
tor machine (SVM) (Jiang et  al., 2018), artificial 
neural network (ANN) (Habibi et  al., 2021; Jiang 

et al., 2018) and random forest (RF) (Fathizad et al., 
2020; Wang et  al., 2020; Yahiaoui et  al., 2021). A 
large number of studies showed machine learning 
techniques (ANN, SVM, RF) achieved high predic-
tion accuracy as compared to other methods, espe-
cially RF (Ivushkin et  al., 2019; Lu et  al., 2018; 
Yahiaoui et  al., 2021). Researchers have used dif-
ferent machine learning methods such as classifica-
tion and regression trees (CART), support vector 
machine (SVM) and random forest (RF), but among 
all these methods, they found the RF method as the 
most accurate (Wang et al., 2019; Wu et al., 2018) 
as compared to others, and output generated by the 
RF model was more reliable (Li et al., 2021) as it is 
matched with the visual interpretation data (Aksoy 
et  al., 2022). So, we also have considered the RF 
model for the present study.

India has 6.727 m ha (2.1% of total geographical 
area) of salt-affected area, classified into 2.956 m ha 
of saline soil and 3.77  m  ha of sodic soil (Arora & 
Sharma, 2017). The country loses 16.84 million tons 
of farm production annually due to soil salinization, 
costing Rs 230.20 billion (Mandal et al., 2018). Con-
sidering the national population projection growth, 
India would need around 311 and 350 million tons 
of grain (cereals and legumes) to feed around 1.43 
and 1.8 billion people in 2030 and 2050, respectively 
(Kumar et al., 2016). It is estimated that nearly 10% 
of the additional area is being salinized each year, 
and by 2050, about 50% of the arable land will be 
affected by salinity (Kumar & Sharma, 2020). Chang-
ing climate may enhance the speed of soil salinization 
due to sea-level rise, which will make densely popu-
lated developing nations more vulnerable than other 
regions.

Soil salinity assessment has been carried out by 
researchers in India using traditional and remote 
sensing data (Sahana et  al., 2020; Periasamy & 
Ravi, 2020; Paliwal et al., 2019; Kumar et al., 2015), 
but these studies were in bits and pieces, not repre-
sentative to make an informed decision to policymak-
ers. However, there is a need to find ways and means 
to monitor soil salinity in a multi-temporal mode 
through automation to get faster, cheaper and more 
reliable results. Hence, the present study aimed to 
identify and quantify the SALs using various freely 
available satellite data, spectral indices and topo-
graphical characteristics through machine learning 
techniques.
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Material and methods

Study area

The study area, Thoothukudi District, lies between 8º 
19′ N and 9º 20′ N latitude, 77º 40′ E, and 78º 10′ 
E longitude, covers an area of 4621 sq. km, with a 
coastal length of 163.5 km (Fig. 1). The region gains 
enormous ecological importance due to The Gulf of 
Mannar bioreserve, home to marine biodiversity with 
3600 species of flora and fauna. The district produces 
70% of the total domestic salt production and meets 
30% of our country’s needs. The study region is fac-
ing many climate change impacts such as meteorolog-
ical drought (Sheik & Chandrasekar, 2011), sea-level 
rise (Sheikh,  2011), shoreline change and seawater 
intrusion (Satheeskumar et al., 2021) and increase in 
SAL (Selvam et al., 2013). Maximum and minimum 
temperatures in the study area ranged from 29.5 to 
40.5 °C and from 18.4 to 26.7 °C, respectively. The 

district experiences a semi-arid tropical climate, 
typically hot and dry. The average annual rainfall in 
this district is 661.6 m. The Thamirabarani River in 
Thootukudi is highly influenced by seawater intru-
sion (Satheeskumar et al., 2021).

Data used

Satellite images of Sentinel-2 of 2020, Landsat 8 of 
2015 and Landsat 5 TM of 2009 of May to August 
months having less than 20% cloud cover and Shut-
tle Radar Topography Mission (SRTM) 30-m reso-
lution image (Fig. 2), available in the Google Earth 
Engine (GEE), were used in the study (Table  1). 
GEE possesses extensive geospatial datasets, 
including Sentinel, Landsat imageries and SRTM, 
and other ready-to-use products with the earth 
engine explorer web application, high-speed data 
processing and machine learning algorithm using 
Google’s computing infrastructure using application 

Fig. 1   Study area map 
showing soil sampling 
points in Thoothukudi Dis-
trict, Tamil Nadu, India
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programming interface library with a development 
environment using JavaScript and Python program-
ming language which enables users to find, ana-
lyse and visualize large geospatial dataset with-
out any supercomputer devices. The topographic 
maps of (58  K/3,4,7,8; 58H/9,13–15;58L/1–3,5; 
58G/12,15,16) Survey of India (SOI) were used 
to demarcate the basic features like administrative 
boundary and rivers.

Field sample collection and analysis

A total of 593 soil samples were used in the present 
study. Of 593 soil samples, 258 soil samples were 
collected from different locations from 30 July to 5 
August 2020 for EC analysis. The remaining samples 
were taken from the Indian Council of Agricultural 
soil database. The geographic coordinates of soil sam-
pling locations were measured using GPS TDC 600 

Fig. 2   Methodology flow chart of automated delineation of SAL

Table 1   Satellite data used for the assessment of salt-affected lands

Satellite data used

Sl.no Year Date Data Used Number of 
band used

Band details

1 2020 2020 May 01 to 2020 Aug 30 Sentinel-2 10 Blue (B2), green (B3), red (B4), red-edge1 (B5), red-edge 2 
(B6), red-edge 3 (B7), near infrared (B8)

Narrow near infrared (B8A), shortwave infrared 1 (B11)
Shortwave infrared 2 (B12)

2 2015 2015 May 01 to 2015 Aug 30 Landsat-8 6 Blue (B2), green (B3), red (B4), near infrared (B5), shortwave 
infrared 1 (B6), shortwave infrared 2(B7)

3 2009 2009 Jan 05 to 2010 Aug 30 Landsat-5 6 Blue (B1), green (B2), red (B3), near infrared (B4), shortwave 
infrared 1 (B5), shortwave infrared 2(B7)
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with a positioning accuracy of less than 2 m. At each 
sampling location, topsoils from four corners of quad-
rants were collected and mixed well. The samples 
were completely air-dried and passed through a 2-mm 
sieve to remove non-soil materials. Soil leachate was 
prepared at a soil/water ratio of 1:2.5, and then the 
EC of the soil was determined using a digital multi-
parameter measuring apparatus (Systronics EC-TDS 
meter 308) at room temperature at 25 °C. The EC val-
ues were classified as non-saline (< 2 ds/m), slightly 
saline (2–4 ds/m), moderately saline (> 4, < 8 ds/m)), 
highly saline (8–16 ds/m) and extremely saline (> 16) 
(Abrol et al., 1988; Ivushkin et al., 2019).

Data processing

All selected satellite images from the GEE data cata-
logue were imported to the earth engine code editor 
section. The entire image collection was filtered using 
script.filterDate(). based on the cloud-free nature 
of images between May to August for all 3  years. 
The study region shapefile was uploaded via ‘assets’ 
tool and imported into the code editor in GEE, and 
the extent of the study area was defined using.filter-
Bounds(). The median of all images was derived using 
script.median(), which produced the final image for 
the analysis. The use of median values between the 
date of interest of imageries reduces the data volume 
and ensures easy and fast analysis (Carrasco et  al., 
2019). As a preparatory step for analysis, the soil 
sampling point coordinates and measured EC values 
were used to make a shapefile in ArcGIS, and then 
imported into GEE.

Selection of predictors

Spectral indices are an effective method in arid and 
semi-arid regions to detect soil salinity (Fathizad et al., 
2020; Gorji et al., 2017; Peng et al., 2019). The spe-
cific environmental conditions influence the selection 
of spectral indices (Wang et al., 2020). In this study, 
the commonly used soil salinity indicators have been 
selected to produce a powerful grouping in the soil 
salinity model and evaluate the comparison for further 
selection. Different spectral bands of Sentinel-2 (B2, 
B3, B4, B5, B6, B7, B8, B8a, B11, B12) were resam-
pled to make the same spatial resolution of all satellite 

images. Landsat 8 OLI (B2, B3, B4, B5, B6, B7) and 
Landsat 5 TM (B1, B2, B3, B4, B5 and B7) related to 
earth indicators were selected for the study (Table 1). 
Thermal images and other atmosphere-related bands 
were not considered in the analysis, as other atmos-
pheric bands are not related to land degradation analy-
sis, whereas thermal bands of Landsat 8 and 5 were 
of 100- and 60-m spatial resolution. The various soil 
salinity indices, vegetation indices and topographical 
attributes (Fig.  3) were integrated by various math-
ematical expressions of different band combinations 
as soil salinity indicators (Table  2). The bands are 
linked to their acronym using.select(); the indices are 
calculated using the script.expression(). All selected 
10 bands of Sentinel 2, sixteen indices and four topo-
graphical attributes were composed as predictors for 
the year 2020 using.addBands (), whereas for the years 
2015 and 2009, sixteen indices, six spectral bands and 
four topographical attributes were used.

Random forest modelling

The RF classifier was trained using thirty variables for 
Sentinel-2 and 26 variables for Landsat 8 OLI, Landsat 
5 TM and the EC shapefile. Of the measured EC val-
ues, 70% was used for training and the rest 30% was 
applied for validation using script.filter(). Of the 593 
soil samples, 70% of the samples were used to train, 
and the remaining 30% samples were used for vali-
dation. The predictors selected training sets and their 
EC values have been integrated using script ‘ee.Clas-
sifier.smileRandomForest()’. The hyperparameter tun-
ing was used to find the optimum number of trees and 
bag fraction with the highest training accuracy. With 
different settings from 1 to 500, the number of trees 
in the interval of 10 and the bag fraction varying from 
0.1 to 0.9 in the interval of 0.1 was calculated to find 
the optimal number of trees and bag fraction with the 
highest training accuracy. Through the bag-fraction 
method, unused samples can participate in the decision 
tree–making process to assess the accuracy of each 
tree to improve model performance by considering 
the average accuracy value of all trees. The model was 
trained using.sampleRegions(). The output was gen-
erated for the predictors, and their importance in the 
ranking was assessed using the script ‘ee.Feature(null, 
ee.Dictionary().get(‘importance’))’. The RF algorithm 
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Fig. 3   Soil salinity predictors for the 2020 model for Thoothukudi District, India
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makes a group of decision trees and allows them ‘vote’ 
for the best likely class (Strobl et al., 2008).

The confusion matrix was calculated using the 
training dataset of the classified raster using script.
confusionMatrix(), and thus, overall training accu-
racy was calculated from the classified raster using.
accuracy() script. Similarly, for the validation data-
set, error matrix and overall validation accuracy was 
calculated using.errorMatrix() and.accuracy() script. 
Fivefold cross-validation method, training and valida-
tion accuracy were calculated to validate the model 
performance. A very limited number of points in 
moderately, highly and extremely saline regions 
were selected because of fewer soil samples in these 
regions. The area of the classified raster image under 
each category was calculated using ee.Image.pix-
elArea() script.

Results

Soil sample assessment for electrical conductivity

Soil EC values have ranged from 0.31 to 72 ds/m, with 
a mean value of 5.94 ds/m. Both the training and vali-
dation samples ranged from 0.31 to 72 ds/m, to rep-
resent the whole dataset. The coefficient of variation 
of EC values was 2.46, which shows huge variability 
in the soil samples. Of the analysed samples, 19.76%, 
6.59% and 73.64% had EC values of more than 4 ds/m, 
between 2 and 4 ds/m and less than 2 ds/m. The major 
part of the study area belongs to agricultural land. 
The mean and standard deviation (SD) of the training 
samples were 5.06 ds/m and 13.01 ds/m, respectively, 
while the validation sample mean and SD were 5.02 
ds/m and 12.50 ds/m, respectively.

Table 2   Spectral indices of vegetation, soil salinity and topographical attributes used in the model

Category Sl. no Spectral indices Formula References

Vegetation spectral indices 1. Normalized difference vegetation 
index (NDVI)

(NIR-Red)/(NIR + Red) (1) Khan et al. (2005)

2. Enhanced vegetation index (EVI) 2.5 × (NIR-Red)/ (NIR + 6 × Red − 
7.5 × Blue + 0.5) (2)

Huete et al. (2002)

3. Soil adjusted vegetation index 
(SAVI)

[(NIR-Red)/
(NIR + Red + 0.5)] × (1 + 0.5) (3)

Huete (1998)

4. Generalized difference vegetation 
index (GDVI)

(NIR2 − Red2) / (NIR2 + Red2) (4) Wu et al. (2014)

Salinity spectral indices 5. Normalized difference salinity 
index (NDSI)

(Red − NIR)/(Red + NIR) (5) Khan et al. (2005)

6. Canopy response salinity index 
(CRSI)

√

(NIR∗Red)−(Green∗Blue)

(NIR∗Red)+(Green∗Blue) (6)
Scudiero et al. (2014)

7. Salinity index (SI) (Blue + Red)0.5 (7) Douaoui et al. (2006)
8. Salinity index 1 (SI1) (Green × Red)0.5 (8)
9. Salinity index 2 (SI2) [(Green)2 + (Red)2 + (NIR)2]0.5 (9)
10. Salinity index 3 (SI3) [(Red)2 + (Green)2)]0.5 (10)
11. Salinity index I (S-I) Blue/Red (11) Khan et al. (2005)
12. Salinity index II (S-II) (Blue − Red)/ (Blue + Red) (12) Khan et al. (2005)
13. Salinity index III (S-III) (Green × Red)/Blue (13) Khan et al. (2005)
14. Salinity index-IV (S-IV) (Blue × Red)/Green (14) Khan et al. (2005)
15. Salinity index V (S-V) (Red × NIR)/Green (15)
16. Salinity index VI (S-VI) (SWIR1/SWIR2) (16)

Topography 17. Elevation Mehrjardi et al. (2014)
18. Slope ArcGIS 10.6
19. Hillshade ArcGIS 10.6
20. Aspect ArcGIS 10.6
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Machine learning with RF model

Hyperparameter was used to get the optimum value 
of the number of trees and bag fraction. The RF 
model was computed using the respective num-
ber of trees and bag fractions for the years 2020, 
2015 and 2009. It was observed that 20 number of 
trees with a 0.6 bag fraction had the highest train-
ing accuracy of 99% in 2020. Similarly, the highest 
training accuracy was observed with 200 number of 
trees and 0.9 bag fraction in 2015; 0.5 bag fraction 
and 30 number of trees showed the highest training 
accuracy in 2009.

Variable of importance (VIMP) was derived using 
the RF model for 3-year study periods. Thirty vari-
ables were used in the 2020 RF model, whereas 26 
variables were used in 2015 and in 2009. The impor-
tance of each variable was evaluated for each year’s 
RF model. In 2020, the RF model’s top 10 important 
variables were SI6, B8, NDSI, GDVI, NDVI, B2, 
B12, B8A, EVI, B5 and their VIMP scores were 6.6, 
3.89, 3.84, 3.57, 3.48, 3.41, 3.39, 3.3, 3.16 and 2.93, 
respectively.

The RF model of 2015, the top 10 important vari-
ables were CRSI, SAVI, B5, SI4, NDVI, SI-II, B6, 
SI1, B2 and SI6, and their VIMP scores were 6.18, 
6.15, 5.85, 5.58, 5.45, 5.14, 4.58, 4.33, 4.29 and 4.27 
respectively. In 2009, the top 10 important variables 
were NDSI, SI1, B5, GDVI, B1, SI6, B7, NDVI, EVI 
and CRSI and their score of importance was 7.29, 

7.21, 7.05, 6.80, 6.42, 6.29, 6.23, 5.76, 5.45 and 5.35 
respectively (Fig. 4).

The spatial extent of salt‑affected lands

SAL of Thoothukudi District was identified using 
the RF model (Fig. 5). The total SAL in 2020, 2015 
and 2009 was 134.4 sq. km, 128.42 sq. km and 
120.41 sq. km respectively (Table 3). Of the SAL of 
134.44 sq. km in 2020 (Fig.  6a), 75.94 sq. km was 
the moderately saline area, 42.97 sq. km was highly 
saline, and 15.53 sq. km was extremely high saline. 
The overall training accuracy was 99%, whereas vali-
dation accuracy was observed to be 91%. Also, the 
fivefold cross-validation result shows overall train-
ing and validation accuracy of 96% and 93%. As the 
number of soil samples was very less in moderately 
saline, highly saline and extremely saline region, very 
less samples were used in the training and valida-
tion process of the model. The accuracy assessment 
of soil salinity classes is given in Table  4. Classifi-
cation errors mostly appear in the slightly saline and 
extremely saline regions (31 and 66% respectively).

Of the total SAL of 128.42 sq. km in 2015, moder-
ately saline area occupies 82.51 sq. km, highly saline 
area 24.22 sq. km and 21.69 sq. km area as extremely 
high saline area (Fig. 6b). Of the total area of 120.41 
sq. km in 2009, 43.35, 54.63 and 22.43 sq. km were 
moderately saline, highly saline and extremely high 
saline regions, respectively.

Fig. 4   Variables of impor-
tance ranking of model 
predictors in 2009, 2015, 
and 2020
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Fig. 5   Soil salinity prediction of Thoothukudi District in 2009, 2015 and 2020

Table 3   Spatial extent of various soil salinity classes using different satellite data

Extent of different levels of soil salinity (Sq. km)

Sl.no Year Data used Non-saline Slightly saline Moderately saline Highly saline Extremely saline Total salt-
affected soil 
area(sq.km)

1 2020 Sentinel-2 4447.95 3.66 75.94 42.97 15.53 134.44
2 2015 Landsat-8 OLI 4399 31.52 82.51 24.22 21.69 128.42
3 2009 Landsat-5TM 4411.93 6.46 43.35 54.63 22.43 120.41

Fig. 6   a Total salt-affected land in different years. b Classwise salt-affected land distribution in different years



	 Environ Monit Assess (2023) 195:418

1 3

418  Page 10 of 15

Vol:. (1234567890)

The performance of the RF model was evaluated 
based on the validation accuracy of the predicted soil 
salinity category with the collected soil sample salin-
ity category. The overall validation accuracy of the 
model was 91.06% when tested with the sample data 
of 2020.

Discussion

Optical remote sensing imagery and advanced machine 
learning technique have been used to identify areas 
of salt-affected land (SAL) of the coastal district in 
India as a model case study. Remote sensing data play 
a significant role in analysing EC because the influ-
ence of soil salt leads to specific reflections that form 
the basis for the prediction of SAL. Regions covered 
with white salt crust indicate highly SAL (Wang et al., 
2020). However, in Sentinel-2 multispectral satellite 
data, each band’s high spectral reflectance does not 
always indicate high salinity. This creates difficulties 
in using the multispectral band and its spectral indices 
in assessing soil salinity directly (Davis et  al., 2019). 
However, the RF model evaluates VIMP, and it repre-
sents each factor’s importance in model prediction. In 
the present study, we used the RF model and evaluated 
VIMP to represent the factors of high importance to 
the least importance on the model prediction accuracy. 
With this method, each tree grows separately without 
being pruned, and this does not overestimate the final 
model. Several other studies suggested the RF model 
as the best model with high accuracy level in soil 

salinity monitoring (Fathizad et  al., 2020; Yahiaoui 
et al., 2021).

In the present study, vegetation indices, salinity 
indices and topographical factors were used to assess 
the SAL. The spectral indices of vegetation and salin-
ity were the most commonly used indices to assess 
soil salinity (Peng et  al., 2019), but vegetation indi-
ces are usually more sensitive to soil salinity changes 
under high vegetation coverage (Peng et  al., 2019). 
Vegetation spectral indices’ and soil salinity spectral 
indices’ responses to EC are influenced by many fac-
tors, including salt tolerance, vegetation cover, soil 
type and moisture (Metternicht & Zinck, 2003). The 
outcome may differ significantly under different envi-
ronmental conditions. So far, no spectral indices can 
assess soil salinity in all environmental conditions 
(Allbed et al., 2014).

There are many strategies followed to get bet-
ter accuracy results, such as (a) selection of existing 
spectral indices based on the environmental condition 
of the study area; (b) creation of new spectral indi-
ces based upon the local environmental conditions 
and (c) selection of sensitive spectral indices based 
upon vegetation coverage, for example in less vegeta-
tive area, spectral indices of salinity should be given 
priority and vegetative area spectral indices of vegeta-
tion should be considered.

Considering the study area environment in the 
present study, the RF model was applied with all 
the variables (indices of vegetation, soil salinity and 
topographical characteristics). As the major land 
use of the study area (Thoothukudi District) was 

Table 4   Accuracy assessment of soil salinity classes using Sentinel 2 data of 2020

Salinity class Predicted Producers’ 
accuracy 
(%)Non-saline Slightly saline Moderately 

saline
Highly saline Extremely 

saline
Total sample

Non-saline 134 0 0 0 0 134 100.00
Slightly saline 10 5 0 1 0 16 31.25
Moderately 

saline
1 0 13 0 0 14 92.86

Observed Highly saline 0 0 1 7 1 9 77.78
Extremely 

saline
0 0 0 2 4 6 66.67

Total sample 145 5 14 10 5 179
User’s 

accuracy (%)
92.41 100.00 92.86 70.00 80.00



Environ Monit Assess (2023) 195:418	

1 3

Page 11 of 15  418

Vol.: (0123456789)

agricultural land, with saltpan, coastal plantation, 
industries, aquaculture, built-up, mudflat and sandy 
beach areas, we have used both vegetation and soil 
salinity indices to detect SAL over the district.

The important vegetation indices were NDVI 
and GDVI in 2020, SAVI and NDVI in 2015 and 
NDVI in 2009. Likewise, the important salinity 
indices were SI6 and NDSI in 2020. CRSI and SI4 
in 2015, and NDSI and SI1 in 2009. Researchers 
have used vegetation and salinity indices to identify 
SAL worldwide (Fathizad et al., 2020; Gorji et al., 
2017; Ijaz et al., 2020; Peng et al., 2019; Scudiero 
et al., 2014; Wu et al., 2014). Of the spectral bands 
of Sentinel 2, near-infrared (B8), blue, shortwave 
infrared 2, narrow near-infrared (B8A) and veg-
etation red-edge (B5) bands played an influencing 
role in the assessment of SAL. Also, near-infrared 
(B5), shortwave infrared 1(B6) and blue (B2) were 
the important bands in Landsat 8. Of the Landsat 5 
spectral bands, shortwave infrared-1 (B5) and blue 
(B1) and shortwave infrared-2 (B7) have influenced 
the assessment of SAL. Various studies world-
wide suggested that near-infrared, blue and short-
wave infrared bands were useful in detecting SAL 
(Nguyen et al., 2020; Khan & Sato, 2001). Among 
the topographical variables, hillshade, aspect and 
elevation were found to be not important for all 
3  years, as the study region’s topography is plain 
or flat terrain. Less rainfall limited the surface run-
off region and has weakened topographical factors 
in the redistribution of soil salinity (Akramkhanov 
et al., 2011).

The prediction results of SAL from 2009 to 2020 
show an increasing trend. The total SAL increased 
by 11.66% during the entire study period. Out of the 
total SAL in 2020, 56% were moderately saline, 32% 
highly saline, and 12% extremely saline respectively, 
whereas in 2009, 36% of the total SAL was moder-
ately saline, 45% highly saline, and 19% extremely 
saline. It was noticed that there was no mix between 
the saline and non-saline categories. Also, the produc-
er’s accuracy of saline soil (98.27%) and non-saline 
(99.33%) class was improved which indicated the 
capacity of the model to differentiate the salt-affected 
and non-saline regions. Of the saline soil classes in 
2020, the moderately saline class had the highest pro-
ducer’s accuracy (92.86%), followed by highly saline 
(77.78%) and extremely saline (66.67%).

In the north-eastern part of the district nearby the 
Vaippar river region, most of the salt-affected regions 
were non-saline during 2009 and were covered with 
vegetation, but from 2015 onwards, these regions’ 
surface vegetation cover was reduced, and the sur-
face energy and water balance were changed which 
increased surface albedo and soil salinity, and the sur-
face soil gradually becomes bare land devoid of veg-
etation. The saline areas were mostly distributed in the 
mining surrounding regions, urban landscapes, nearby 
saltpan and river mouths of both the rivers Thamiraba-
rani and Vaippar river regions. An increase in the SAL 
area over the study region was caused by many factors 
such as tsunamis, meteorological drought, shoreline 
change and seawater intrusion. In the present study, we 
found high to extreme soil salinity in and around the 
saltpan region and the Thamirabarani river surround-
ings. As the seawater flows through the Thamirabarani 
River to the inland coastal regions, the surrounding 
regions became moderate to highly saline. The salt 
deposition happening over the surface soil occurs due 
to saline groundwater and high evaporation rate, which 
turns the land into saline. Researchers have observed 
seawater dominance in the sub-surface water chemistry 
in the Thamirabarani delta region (Satheeskumar et al., 
2021; Selvam et al., 2013) and the conversion of sandy 
beaches, dunes and mudflats to saltpan (Gangai & 
Ramachandran, 2010). According to Singaraja (2017), 
a lower concentration of electrical conductivity (EC) 
values was observed in groundwater samples of north-
western and southern parts of the district, whereas 
very high EC values were found in in the groundwater 
samples of north-eastern and central part of the district 
due to seawater intrusion, saltpan activities and other 
industrial activities. In addition, increasing EC trend 
along the groundwater flow direction indicates the 
leaching of secondary salts and anthropogenic impact 
by industrial activities, apart from seawater intrusion. 
During the ground truth verification, it was noticed 
that the bridge of about 2.5 km length was constructed 
on the southeastern side of the district to arrest the sea-
water flow from the Karumeni river mouth landward. 
Compared to the southeastern part, the north-eastern 
side is a low-lying region, and salt pans are present.

Soil salinity differs from place to place as the 
movement and salt accumulation are determined by 
geological, ecological, hydrological and climatic 
factors (Wang et  al., 2020) which influence the 
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soil–water balance. Researchers worldwide argued 
that identifying salt-affected land through remote 
sensing techniques is very complex as the spec-
tral range of mineral species that cause soil salinity 
does not have a single spectral signature to identify, 
and confused surface cover causes mixed spectral 
responses associated with salt deposits. Also, hetero-
genetic surface cover, soil EC values and sodicity pre-
vented success in determining the surface soil salinity 
using moderate spatial resolution satellite images of 
Landsat 5 and 8 and the vegetation indices and soil 
salinity indices (Kilic et al., 2022). Long-term annual 
rainfall patterns can also be included for understand-
ing the SAL over the study area in the future. The 
demarcation of SAL will help the local stakeholders 
to manage and make alternate livelihood options and 
restrict the extent of the saltpan area to protect other 
coastal ecosystems. The present study model can be 
applied to other coastal regions to demarcate the SAL 
at a state or national level to draw action plans to 
manage and control SALs.

Conclusion

Advanced remote sensing and machine learning tech-
niques coupled with field-level EC measurements 
have been used to measure the SALs of different cat-
egories from high to low saline. Various spectral indi-
ces of vegetation, soil salinity and topographical char-
acteristics have been used as input variables for the 
RF model. Hyperparameter was used to calculate the 
optimum number of trees and bag fraction to improve 
the model accuracy assessment. The model can be 
applied at a different regional to national scale to 
draw policy measures to control and also make use of 
salt-affected regions for different purposes. Through 
soil salinity assessment using moderate spatial resolu-
tion satellite images such as Landsat 5 and 8 do not 
provide enough spatial resolution to reveal soil salin-
ity in large regions. High-resolution images would be 
more appropriate to demarcate soil salinity areas. In 
addition to the indices to assess soil salinity, the spa-
tial planning incorporating predicted regional level 
seawater rise, rainfall pattern and changes in land use 
can provide a better framework in the future to draw 
the policy measures to support the alternative liveli-
hood options of the coastal population.
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