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Abstract  Different fractions of organic matter in 
surface sediments from three transects along the east-
ern margin of the Arabian Sea (AS) were quantified 
to determine the sources of organic matter, and also 
to study its impact on microbial community structure. 
From the extensive analyses of different biochemi-
cal parameters, it was evident that the distribution 
of total carbohydrate (TCHO), total neutral carbo-
hydrate (TNCHO), proteins, lipids, and uronic acids 
(URA) concentrations and yield (% TCHO-C/TOC) 
are affected by organic matter (OM) sources and 
microbial degradation of sedimentary OM. Mono-
saccharide compositions from surface sediment was 
quantified to assess the sources and diagenetic fate 
of carbohydrates, suggesting that the deoxysugars 
(rhamnose plus fucose) had significant inverse rela-
tionship (r = 0.928, n = 13, p < 0.001) with hexoses 
(mannose plus galactose plus glucose) and positive 
relationship (r = 0.828, n = 13, p < 0.001) with pen-
toses (ribose plus arabinose plus xylose). This shows 
that marine microorganisms are the source of carbo-
hydrates and there is no influence of terrestrial OM 
along the eastern margin of AS. During the degrada-
tion of algal material, the hexoses seem to be pref-
erentially used by heterotrophic organisms in this 

region. Arabinose plus galactose (glucose free wt %) 
values between 28 and 64 wt% indicate that OM was 
derived from phytoplankton, zooplankton, and non-
woody tissues. In the principal component analysis, 
rhamnose, fucose, and ribose form one cluster of pos-
itive loadings while glucose, galactose, and mannose 
form another cluster of negative loadings which sug-
gest that during OM sinking process, hexoses were 
removed resulting in increase in bacterial biomass 
and microbial sugars. Results indicate sediment OM 
to be derived from marine microbial source along the 
eastern margin of AS.
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Introduction

Arabian Sea is among the most productive marine regions  
due to intense seasonal upwelling, as well as open water 
upwelling, deeper mixed layer, and seasonal reversal  
of surface circulation (Wyrtki, 1971; Madhupratap  
et al., 1996; Shetye & Gouveia, 1998; Prasanna Kumar 
et  al., 2002; Naqvi et  al., 2006). It is also one of the  
largest water body of oxygen-deficient waters (Wyrtki, 
1971; Naqvi et  al., 2006). Furthermore, it experiences 
quite a large precipitation, as high as ~ 400  cm during  
four summer months between June and September 
(Agnihotri & Kurian, 2008). The freshwater inputs result  
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in very strong but shallow thermohaline stratification. 
Yet, the high nutrient concentrations in the runoff and 
freshly upwelled water induce high surface biological  
productivity (Madhupratap et  al., 1996; Naqvi et  al., 
2006). The low oxygen and high productivity in the  
Arabian Sea favor accumulation of organic matter (OM) 
in the continental margin (Hedges et  al., 1999; Naqvi 
et al., 2006; Sánchez et al., 2013). Such high biological  
productivity (Madhupratap et  al., 1996, 2003) and  
sedimentation rates (Cowie & Hedges, 1994) influence  
the carbon burial/flux and composition of many  
biochemical compounds (Fernandes et  al., 2014). For 
instance, organic content and humic acids (Sardessai, 
1994) in the Arabian Sea sediment show distinct regional 
variations along the western margin of India.

The OM in the continental margin sediments can 
be supplied from autochthonous sources such as  
phytoplankton and allochthonous sources such as  
terrestrial inputs by rivers (Hedges et al., 1997; Zhang  
et  al., 2014). Bulk organic carbon, nitrogen, stable 
carbon, nitrogen isotopes, and C:N ratios or contents  
of humic material are used widely to elucidate the 
source and fate of OM in the terrestrial, estuarine, 
coastal regions, and continental margins (Bhosle & 
Dhople, 1988; Goni et  al., 2003; Guo et  al., 2020; 
Khodse et al., 2008; Krishna et al., 2013; Pan et al., 
2019). The major concern with these methods are 
the changes in C/N ratio need not be because of 
preferential loss of nitrogen but it can be also due to 
source change and inorganic nitrogen immobilization. 
Humic materials are operationally defined and are 
chemically uncertain, thus humic materials need not 
inevitably reflect bioavailability. Organic carbon used 
for comparing diagenetic maturity can complicate the 
interpretation due to physical processes (Cowie & 
Hedges, 1984).

Biopolymers derived from decayed organic mat-
ter may be more advantageous to study the stages of 
degradation and investigate diagenetic fate of organic 
matter as they differ in solubility, composition, and 
resistance to microbial attack. Compared to other 
biopolymers such as lipids, chlorophyll, lignin which 
are mostly process specific, carbohydrates and pro-
teins offer the potential benefit as they are important 
organic components of marine as well as terrestrial 
organisms.

Monosaccharide distribution on sedimentary organic 
matter (SOM), particulate organic matter (POM), dis-
solve organic matter (DOM), and humic substances in 

coastal and oceanic environments helps in understand-
ing their diagenetic fate and nature of organic mat-
ter (Amon & Benner, 2003; Benner & Opsahl, 2001; 
Khodse et al., 2008; Ogier et al., 2001; Quijada et al., 
2015; Smith et  al., 2021; Tareq & Ohta, 2011; Ware 
et  al., 2022; Zhu et  al., 2020). Individual sugars and 
sugar ratios are used to differentiate marine, terrestrial, 
silicious, and carbonaceous inputs to the particulate 
matter and sediments (Cowie & Hedges, 1984; Ogier 
et al., 2001; de Cunha et al., 2002; Duan et al., 2017; 
Nouara et  al., 2019). Characterization of OM such as 
carbohydrate concentration and monosaccharide com-
position can provide useful information on the origin of 
OM in marine sediments.

In the present study, spatial variability of biomol-
ecules such as carbohydrates, proteins, and lipids 
have been analyzed; quantitative determinations of 
the monosaccharides is done with the aim to discern 
sources and fate of these molecules in the sediments 
from the eastern Arabian Sea continental margin.

Materials and methods

Sample collection

Using a box corer, 13 box cores were collected dur-
ing the ocean research vessel (ORV) Sindhu Sankalp 
cruise (SSK-046, February, 2013) from different loca-
tions in the eastern Arabian Sea (Fig. 1). Immediately 
after collection, the cores were sectioned at 5  cm 
intervals. The top 5 cm sections were lyophilized and 
ground to a fine powder using agate pestle and mor-
tar, and stored at – 20 °C until analysis.

Analysis of various bulk parameters

Total organic carbon (TOC), total nitrogen (TN), 
total carbohydrates (TCHO), total neutral carbohy-
drates (TNCHO), total proteins, total lipids, and total 
uronic acids (URA) were quantified by following the 
standard methods described in Khodse et al. (2008). 
Briefly, sediment samples were treated with 1 N HCl 
to remove the inorganic carbon and traces. HCl was 
removed by washing the sediments several times with 
UV-Milli-Q water. The sediments were dried at 60 °C 
and then used for TOC and TN analysis. A known 
quantity of the sediment was packed into a tin foil and 
analyzed for TOC and TN using a NCS analyzer (CE 
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Instruments, Model-2500) and 2,5,bis-(5-tertbutyl-
benzoxazol-2-yl)-thiophen (C26H26N2O2S) was used 
as a standard.

TCHO was analyzed using the phenol–sulfuric 
acid method of Dubois et  al. (1956) as described in 
Khodse et al. (2008). TNCHO concentration and com-
position were determined using a capillary gas chro-
matographic (GC) method described in Khodse et al. 
(2008). The sample was treated with 12 M H2SO4 at 
room temperature for 2 h and diluted to 1.2 M H2SO4 
using cold UV-Milli-Q water, flushed with N2, sealed 
and hydrolyzed for 3 h at 100  °C. After cooling, an 
internal standard (inositol) was added. The sample 
was neutralized, treated with NaBH4, acetylated, 
and analyzed using a Shimadzu GC Model-GC-2010 
equipped with a flame ionization detector (FID), a 

programmable on-column injector and a fused silica 
column coated with CPSil-88 (25 m, i.d. 0.32 mm). 
Both the detector and injector were maintained at 
300  °C. The oven temperature was programmed as 
follows: 70 to 150 °C at 30 °C/min and then at 3 °C/
min to 230 °C, at which it was maintained for 10 min. 
Quantification of TNCHO was achieved by peak area 
integration using the data handling system installed in 
the instrument. The TNCHO concentration is defined 
as the sum of all the identified aldoses. The contri-
bution of individual aldoses to TNCHO is expressed 
as wt%. Analytical reproducibility in four replicate 
samples of the GC method was ± 8.9%. Blank sample 
was treated and analyzed using same procedure. The 
precision of the analytical method based on 6 repli-
cates was better than ± 6%. The detection limits were 
0.021–0.143 mg/ml for sugars analyzed.

Total proteins were extracted from the sediments 
using 1  N NaOH, and were analyzed by the bicin-
choninic acid method (Smith et  al., 1985). Total 
lipids from sediment samples were extracted using a 
modified method of Bligh and Dyer (1959) described 
in Harji et  al. (2008). Briefly, using dichlorometh-
ane (DCM):methanol (MeOH) (2:1), freeze-dried 
sediment samples were ultrasonically extracted 
(15 × 3 min). This step was repeated two more times. 
To remove any traces of water, the extracts were 
pooled, filtered using Whatman No. 1 filter paper, and 
treated with anhydrous sodium sulfate. The extract 
was prepared to a known volume (1  ml) by using 
rotary evaporator at 40  °C under reduced pressure. 
The pre-weighed piece of Whatman filter paper was 
then applied with a known aliquot. The paper was 
weighed after drying in a vacuum desiccator. The 
weight of the total lipids was calculated by subtract-
ing the weight of the empty Whatman paper from the 
weight of paper with solvent extract (Zaghden et al., 
2005). Acidic carbohydrate such as TURA was ana-
lyzed according to the method of Filisctti-Cozzi and 
Carpita (1991). Using this method, more than 90% 
of the added uronic acid standard (glucuronic acid) 
could be recovered. Analytical variability of the 
method based on three replicates was less than 10%.

Statistical analysis

Correlation coefficients between the parameters were 
calculated using Excel software program. To evaluate 
spatial variations, paired t test was carried out using 

Fig. 1   The sampling locations are depicted graphically. The 
sampling stations of Goa coast were G5, GS1, GS4, GS5, 
and GS6, and the sediments were collected at depths of 26 m, 
198  m, 780  m, 1045  m, and 1208  m, respectively. The sam-
pling stations on the Mangalore coast were MS1, MS2, MS8, 
and MS9, and the sediments were collected at 202 m, 418 m, 
1798  m, and 1986  m, respectively. COS1, COS2, COS8, and 
COS9 from the Cochin coast served as sampling stations, and 
sediments were collected at depths of 200 m, 400 m, 1780 m, 
and 2000 m, respectively
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STATISTICA. Principal component analysis (PCA) 
was done on concentrations of TCHO, protein, lipid, 
TNCHO, URA, and individual monosaccharides to 
decipher the OM source and its diagenetic processes. 
PCA was performed using the statistical software 
package version 5. The data matrix used for PCA 
consisted of individual degradation indicators. The 
raw data matrix was normalized to nullify the influ-
ence of the components with higher values. Required 
normalization was done using the log transformation 
of the parameters and factors were extracted when the 
eigenvalues were more than 1.

Results

Variability in TOC and TN

The TOC and TN varied from 30.1 to 95.7  mg  g−1 
dry wt and 0.5 to 7.1  mg  g−1 dry wt respectively 
(Fig. 2a, b). TOC values were generally higher in the 
slope sediments. TOC concentrations showed large 
variation within transect. Their highest observed con-
centrations were in the sediment, GS6 off Goa. Large 
variations in TOC/TN ratios from 9.5 to 47.2 were 
evident (Fig.  2c) with the lowest ratio of 9.5 in the 
sample from COS9 (2000 m) and the highest of 47.2 
in the sediment (200  m) from GS1 (Fig.  2c). TOC/
TN ratio significantly decreased from 47.2 (200  m) 
to 13.4 (1200  m) for off Goa sediments. TOC/TN 
for Mangalore and Kochi had small variation with 
increasing depth (Fig. 2c).

Total carbohydrates

TCHO concentration varied with respect to the sam-
pling location without exhibiting any particular 
trend TCHO concentrations varied from station to 
station with the maximum of 13.44  mg  g−1 dry wt 
at COS2 (400  m) and the minimum 2.88  mg  g−1 at 
COS1 (200  m) (Fig.  3). TCHO concentrations gen-
erally decreased with increasing water depth (Fig. 3) 
except at two (MS1 and COS1) locations. Higher 
concentrations of TCHO (mean = 9.8 ± 4.8  mg  g−1 
dry wt) were observed off Kochi than off Man-
galore (mean = 6.6 ± 3.8  mg  g−1 dry wt) and Goa 
(mean = 8.3 ± 1.9 mg  g−1 dry wt) (Fig. 3). The yield 
accounted for 1.5 to 12.49% in these sediments 

(Fig.  5a). TCHO yields decreased with increasing 
water column depth in the Goa sediments as well as in 
the Kochi sediments (Fig. 5a). There was no particu-
lar trend in TCHO yields in sediments off Mangalore.

Total proteins

Analogous to TCHO distribution pattern of total pro-
tein concentrations varied from 0.44 to 9.73 mg  g−1 
dry wt sediment (Fig.  3) and accounted for 0.3 to 
10% of TOC (Fig. 5a). At MS2, protein content was 
high (9.23 mg g−1 dry wt) compared to other stations. 
The ratios of protein-carbon to TOC showed signifi-
cant spatial variations and followed a trend similar to 
those of TCHO (Fig. 5a). Highest protein/TCHO ratio 
was at MS2 and the lowest at COS1 (Fig. 4). Protein/

Fig. 2   Spatial distribution of total organic carbon (TOC) (a), 
total nitrogen (TN) (b), and TOC/TN ratios (c) in the sedi-
ments along the eastern margin of the Arabian Sea
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TCHO ratio decreased with increasing depth off Goa 
and no particular trend was seen in protein/TCHO 
ratios in the samples off Mangalore or Kochi (Fig. 4).

Total lipids

With quite a lot of variability between stations, 
total lipids varied from 5.0 to 13.0  mg  g−1 dry wt 
sediment (Fig.  3). The highest concentration was 
recorded at MS2 and the lowest at MS9. Lipid- 
carbon accounted for 3.1% to 10.0% of TOC (Fig. 5a).  
Lipid/TCHO ratio, an indicator of metabolic differ-
ences of microorganisms as well as preservation of 
lipids in the sediment organic matter, increased with 
increasing water depth for sediments off Goa and 
showed a decreasing trend in sediments off Man-
galore and Kochi (Fig.  4). Corroborating with low 
TCHO and total proteins, the lipid/TCHO ratio was 
high at MS1.

Fig. 3   Variability of total carbohydrate (TCHO), protein, total 
lipid, total neutral sugars (TNCHO), and uronic acids (URA) 
in sediments along the eastern margin of the Arabian Sea

Fig. 4   Spatial variation in ratios of protein/TCHO, URA/
TCHO, lipid/TCHO in surface sediment collected from eastern 
margin of the Arabian Sea
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Total neutral carbohydrates

Large variability in total neutral carbohydrate 
(TNCHO) concentrations was evident in all the sedi-
ments analyzed during this study (Fig.  3). In sedi-
ments off Goa, their concentrations decreased with 
increasing water depth (Fig.  3). No such particular 
trend was seen in samples from off Mangalore and 
Kochi (Fig. 3). Higher concentrations were recorded 
at COS9 7.4 mg g−1 (Fig. 3). TNCHO-C yield ranged 
from 0.2 to 3.7% of TOC (Fig.  5b). TNCHO yield 
decreased with increasing depth for only off Goa 

sediments. TNCHO yield increased with sediment 
depth for off Mangalore. Kochi sediments not fol-
lowed any particular trend for TNCHO yield.

Total uronic acids

Uronic acids are acidic carbohydrates that play an 
important role in marine sediments. URA concen-
tration ranged from 0.18 to 1.92 mg g−1 dry wt sedi-
ment (Fig.  3). Generally, higher concentrations of 
URA were observed at MS2, MS8, COS2, and COS8 
(Fig.  3). URA-C yield varied from 0.11 to 1.67% 

Fig. 5   Spatial variation 
in carbon contribution of 
total carbohydrate-carbon 
(TCHO-C); protein-C, total 
lipid-C (a), total neutral 
sugars-carbon (TNCHO-C), 
uronic acid-carbon (URA-
C), and total labile carbon 
(sum of all biochemical-
carbon) (b) in the surface 
sediments along the eastern 
margin of the Arabian Sea
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(Fig.  5b). URA/TCHO ratio decreased in sediments 
in sediments only off Kochi (Fig. 4).

Concentrations of monosaccharides

Capillary gas chromatographic analysis revealed the 
presences of arabinose, ribose, galactose, glucose, 
xylose, rhamnose, fucose, and mannose in all the 
surface sediments (Fig.  6). The overall composition 
of different sugars was quite different in the sedi-
ments off Goa, Mangalore, and Kochi (Figs.  6 and 
8). Galactose was the most abundant monosaccharide 
(19 to 40 wt %), followed by glucose (10 to 37 wt %) 
and mannose (9 to 22  wt %) (Fig.  6). Among other 
sugars rhamnose (1 to 12 wt %), fucose (1 to 9 wt %), 
arabinose (3 to 13 wt %), xylose (0 to 16 wt %), and 
ribose (1 to 18  wt %) were contributed to TNCHO 
(Fig.  6). Lower concentration of glucose and high 
deoxysugars (rhamnose plus fucose) and ribose 
were recorded at COS8 (Fig. 6). Carbohydrate dige-
netic parameters were used to investigate the source 
of OM (Table  2). Monosaccharide composition was 
quite variable in the sediments off Goa, Mangalore, 
and Kochi (Fig.  7). The trend of average concentra-
tion of rhamnose, fucose, ribose, and xylose were 
increased, whereas arabinose, galactose, and glucose 
were decreased in off Goa, Mangalore, and Kochi 
sediments (Fig. 7).

Carbohydrate digenetic parameters were used 
to discern the source of OM (Table  3). Monosac-
charide concentration expressed in wt% to investi-
gate the OM sources in surface sediments of eastern 
Arabian Sea (Table  3). The ratio of rhamnose plus 
fucose to arabinose plus xylose varied 0.8 to 1.6 in 
surface sediment. The contribution of ribose plus 
fucose and arabinose plus galactose were ranged 
from 11.3 to 21.5 and 38.3 to 54.0 in all three tran-
sect sediments (Table 3). Deoxysugars had significant 
positive correlation (arabinose plus xylose = 1.333 
(deoxy sugars) − 28.16, r = 0.962, n = 13, p < 0.001) 
with arabinose and xylose in all three transect. Sedi-
mentary sugars and sugars ratios were compared 
with diagenetic indicators used for the identification 
of sedimentary OM (Table  2). Deoxysugars showed 
significant negative correlation with hexoses, galac-
tose. Average monosaccharide composition of each 
transect was quite variable in the sediments off Goa, 
Mangalore, and Kochi (Fig. 7). The trend of average 
concentration of rhamnose, fucose, ribose, and xylose 

increased, whereas arabinose, galactose, and glucose 
decreased in off Goa, Mangalore, and Kochi sedi-
ments (Fig. 7).

In PCA analysis, two principal components were 
recognized that accounted for 62% of the total vari-
ance. The first principal component (PC1) accounted 
for 45% and the second principal component (PC2) 
accounted for 17% of total variance. Plot of PCA 
loadings of sediment component clearly separates 
the variables into three clusters and thus providing 
better insight into the relationships that exist among 
the variables (Fig. 8). Rhamnose, fucose, and ribose 
clustered together and projected positively on PC1. 
These results indicate high load of microbial OM in 
the samples. On the other hand, negative loadings of 
glucose, galactose, and mannose on PC1 suggest their 
utilization during degradation processes. TCHO, pro-
teins, and URA are positively correlated and clustered 
together (Fig. 8).

Discussion

Diagenetic pattern of organic matter in the sediments

Spatial and regional differences of TOC in the sedi-
ments are probably due to variable accumulation rates 
and preservation of OM in the sediments. The main 
reason for it could be the low-oxygen waters on the 
sea floor between 200 and 1500  m water depth and 
also the high sedimentation rates (Naqvi et al., 2006; 
Paropkari et al., 1992) in this area. Variability of TOC 
and TN in the sediments off Goa, Mangalore, and 
Kochi is also attributable to the difference in organic 
matter source and primary productivity along the 
eastern margin of the Arabian Sea. TOC content in 
sediment depends on sediment texture (Prakash et al., 
1999; Sakhare, 2007) and inputs from terrestrial OM 
(Cowie & Hedges, 1984; Krishna et  al., 2013). Soil 
texture is the relative ratio between percentage of 
sand, silt, and clay in a soil mass; fine-grained sedi-
ments like sandy loam and sandy clay loam have 
higher OC content than sand; soil organic matter is 
reported to increases with the increase of soil clay 
contents (Hartati & Sudarmadji, 2016). Overall, TN 
in sediment samples did not follow similar trend of 
TOC which implies that TOC and TN have differ-
ent origins. As Cowie and Hedges (1996) suggests, 
observed high TN at GS6 may favor higher bacterial 



	 Environ Monit Assess (2023) 195:414

1 3

414  Page 8 of 18

Vol:. (1234567890)

Fig. 6   Variability  
of monosaccharide  
composition in the 
sediments from off Goa (a), 
Mangalore (b), and Kochi 
(c). Rham = rhamnose, 
Fuc = fucose, Rib = ribose, 
Ara = arabinose, 
Xyl = xylose,  
Man = mannose, 
Gal = galactose,  
Glu = glucose
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biomass during the degradation of OM or/ immobili-
zation of nitrogen.

The TOC/TN ratio is a useful indicator and help-
ful for recognizing the digenetic state of OM. Usually 
in the terrestrial OM, the C/N ratio ranges from 20 to 
200 (Hedges et al., 1986; Kim et al., 2006) unlike the 
low ratio of < 4 to 6 that is autochthonously produced 
in marine ecosystem (Elser et al., 2000). The OM rich 
in nitrogenous material such as microalgae with low 
TOC/TN ratio is known to favor net bacterial miner-
alization, whereas those poor in nitrogen such as of 
terrestrial origin with high TOC/TN ratio favors net 

bacterial immobilization (Kristensen et  al., 1995). 
Lobbes et al. (2000) proposes TOC/TN ratio of 9.5 to 
fresh OM derived from phytoplankton and bacteria., 
while any ratio above 9.5 must be implicated due to 
degraded OM derived from marine detrital material 
(Lobbes et  al., 2000). In our study, COS9 showed 
TOC/TN ration of 9.5 while other stations were in the 
range of 10 to 20. TOC/TN ratio at GS1 and COS8 
showed interesting results, the ratio increased to 47. 
This contrasting behavior may be due to the abun-
dance of glycine reach plankton in the sediment sam-
ple. This behavior is explained in surface sediments 

Fig. 7   Variation in the 
average monosaccharide 
composition (wt%) in the 
sediments collected along 
the eastern margin of the 
Arabian Sea. Abbreviations 
used are given in the legend 
of Fig. 6

Fig. 8   Principal componant 
analysis (PCA) loading 
factors of TCHO, protein, 
URA, TNCHO, lipid, rham, 
fuc, rib, gal, man, glu, 
ara, and xyl in the surface 
sediment collected along 
the eastern margin of the 
Arabian Sea. The variance 
of each factor is shown on 
X and Y axis. Abbrevia-
tions used are given in the 
legends of Figs. 2 and 5
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of BOB-6 reported by Fernandes et al. (2014), where 
high proportion of glycine was reported in the sedi-
ment samples showing more degraded OM at surface 
sample compared to deeper sediments. High propor-
tion of glycine due to glycine-rich plankton was also 
responsible for the low Degradation index values in 
the sediments of Southern Ocean (Ingalls et al., 2003).

Distribution of carbohydrates in surface sediments

Carbohydrates are constituents that act as storage and 
structural polymers in marine and terrestrial sources. 
Storage carbohydrates are labile and preferentially 
utilized by heterotrophic organisms (Hernes et  al., 
1996; Khodse & Bhosle, 2011) and therefore accu-
mulation of relatively inert structural carbohydrates in 
marine sediments (Burdige et al., 2000; Khodse et al., 
2008; Lazareva & Romankevich, 2012) are observed. 
Sedimentary carbohydrates are important as energy 
source for benthic and many heterotrophic organ-
isms (Hernes et al., 1996; Lazareva & Romankevich, 
2012). TCHO and TNCHO differences are recorded 
in the sediments off Goa, Mangalore, and Kochi, sug-
gesting differences in OM quality and degradation 
state. These TCHO variability can be linked with the 
source of carbohydrate such as 40% of bacteria and 
75 wt% of vascular plants, 20–40 wt% of phytoplank-
ton (Parsons et al., 1984), 3 to 53% in benthic organ-
isms (Lazareva & Romankevich, 2012), and 3–26% 
of sedimentary organic carbon (Burdige et al., 2000; 
Khodse et  al., 2008). TNCHO are more labile and 
preferentially removed by heterotrophic organisms, 
resulting in the fewer structural carbohydrates in sedi-
ments (Hernes et al., 1996). TCHO concentrations in 
Arabian Sea sediments are higher than those recorded 
earlier for the Bay of Bengal and lower than Cretan 
Sea (Table 1). This suggests higher TCHO preserva-
tion measured in the Arabian Sea sediments probably 
because of higher phytoplankton productivity in the 
Arabian Sea (Prasanna Kumar et al., 2002) and lower 
oxygen concentration in the water sediment interface 
(Alagarsamy, 2003; Naqvi et  al., 2006). Low TOC/
TN ratio associated with higher carbohydrate concen-
tration is to be taken as indicative of marine OM as 
the source of carbohydrates.

As Cowie and Hedges (1984) reported, the high 
TOC/TN ratio associated with low TCHO implies 
terrestrial/degraded OM as source of carbohydrate in 
these sediments. Youssef et  al. (2014) reported that 

carbohydrate distribution was also affected by inor-
ganic mineral deposits such as carbonate, fluoride, 
magnesium, and calcium content in the surface sedi-
ments. Lazareva and Romankevich (2012) suggested 
that high TCHO in benthic organisms is attributed to 
high abundance of microbenthic polychaete species in 
Kochi sediments which might be responsible for vari-
ability of biochemical parameters in the sediments 
(Musale & Desai, 2011).

Distribution of total proteins in surface sediments

In sediments, proteins are indicators of microbial deg-
radation processes (Ragusa et al., 2004; Romankevich, 
1984). At the water–sediment interface, the proteins 
are important energy source for the benthic organisms. 
Sedimentary protein concentrations are influenced by 
several factors like phytoplankton abundance, species 
compositions, and degradation state of OM. Protein 
concentrations and protein/TCHO ratios were higher 
at MS2, COS2, and COS8 perhaps due to higher pro-
tein in the OM produced during early growth phase 
(Myklestad, 1977). Diatoms produce more protein dur- 
ing early growth phase and more TCHO in stationary 
growth phase due to depleted nutrient concentration 
(Myklestad, 1977; D’souza & Bhosle, 2001). Proteins  
are mineralized faster than carbohydrate, leading to 
higher amount of fresh OM (Isla et al., 2006). Earlier  
studies suggest that protein/TCHO ratio is high in the 
productive areas such as estuaries and coastal regions 
(Pusceddu et  al., 1999; Isla et  al., 2006). Protein/
TCHO ratios in sediments off Goa, Mangalore, and 
Kochi were lower than those reported earlier from 
other marine sites (Fabiano & Danovaro, 1999; Isla 
et  al., 2006; Neira et  al., 2001). Large variations in 
protein concentrations and protein/TCHO ratios in 
sediments are due to the variability in phytoplankton 
productivity, terrestrial inputs, and microbial deg-
radation state of OM (Hernes et  al., 1996; Ittekkot 
et  al., 1984). Low protein/TCHO ratio at MS1 and 
COS1 indicates that the OM was derived during early 
growth stage or aged OM compared to other stations 
(D’Souza et al., 2005).

Distribution of total lipids in surface sediments

Lipids are important components of phytoplankton 
and bacterial cells. Total lipids and lipid/TCHO ratio 
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Table 1   Comparative data of biochemical component in surface sediments in several regions of the world’s oceans

 - = no data

Sampling site Water depth 
(m)

TCHO 
(mg g−1)

TNCHO 
(mg g−1)

Proteins 
(mg g−1)

Lipids 
(mg g−1)

URA (mg g−1) References

Atlantic  
(Porcupine 
Abyssal 
plain)

4850 1.94 to 2.21 – 0.61 to 1.42 0.14 to 0.77 – Danovaro et al. 
(2001)

Atlantic Ocean 4850 1.3 – 0.90 0.80 – Corinaldesi 
et al. (2007)

Mediterranean 
Sea

2755 4.4 – 0.9 0.3 – -do-

Mediterranean 
Sea

– 0.19 to 2.32 – 0.04 to 1.54 0.02 to 0.15 – Fontana et al. 
(2010)

Mediterranean 
Sea

– 21.81 – 11.5 5.6 – Rossi et al. 
(2003)

South Pacific 34–120 3.23 – 6.34 3.16 – Neira et al. 
(2001)

Pacific Ocean 3060 1.6 – 0.6 0.1 – Corinaldesi 
et al. (2007)

Southern 
Ocean

707 0.43 – 0.05 10.85 – Nair Manju 
et al. (2013)

South America 
(Montevideo 
Bay)

1–7 0.24 to 8.86 – 1.08 to 16.37 – – Garcia- 
Rodriguez 
et al. (2011)

Antarctica 
(Kapp  
Norvegia)

295–421 2.25 – 4.81 2.99 – Isla et al. (2006)

Antarctica 
(Four  
Seasons 
Bank)

63–107 2.13 – 3.94 1.10 – Isla et al. (2006)

Black Sea 18 0.40 to 4.0 – 3.8–7.7 – – Meyer-Reil 
(1983)

Aegean Sea 
(Greace)

– 1.19 to 11.58 – 0.40 to 6.59 0.07 to 1.29 – Danovaro et al. 
(1999)

Cretan Sea – 0.8 to 70.5 – 2.2 to 12.1 0.3 to 4.5 – Tselepides et al. 
(2000)

Bay of Bengal 50–700 2.03 to 9.67 – 0.25 to 3.40 0.16 to 0.97 – Bhosle and 
Dhople (1988)

Bay of Bengal – 2.8 to 4.7 – 0.65 to 1.04 – Kumar et al. 
(1990)

Arabian Sea 30–200 14.42 to 111.2 – 0.2 to 68.65 0.24 to 7.22 – Nair Manju 
et al. (2013)

Arabian Sea 
(Goa)

26–1200 5.64 to 10.23 0.59 to 3.51 1.61 to 6.24 6.0 to 9.0 0.64 to 1.12 This study

Arabian Sea 
(Mangalore)

200–2000 3.76 to 10.55 0.82 to 2.55 0.60 to 9.23 5.0 to 13.0 0.18 to 1.59 This study

Arabian Sea 
(Kochi)

200–2000 2.88 to 13.44 0.30 to 7.30 0.44 to 9.73 5.0 to 7.30 0.45 to 1.92 This study
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in sediments have been used to describe the energetic 
quality of OM (Grémare et  al., 2002). Higher lipid 
concentration of 13  mg  g−1dry wt observed at MS2 
coupled with low C/N ratio and high concentration 
of TCHO and protein may imply fresh derivation of 
OM from marine detritus (Henderson et  al., 1991). 
Muhlebach and Weber (1998) reported that zooplank-
ton fecal pellets concentrate lipids (e.g., Sterols) and 
reduce nitrogen during the transport of OM into the 
sediments. Sedimentary lipid concentration reported 
in this study is relatively higher compared to other 
locations (Table 1). For instance, total lipid concen-
tration can be influenced by several factors viz. abun-
dance of phytoplankton, bacteria and terrestrial plant 
material (Harji et al., 2010).

Uronic acids

Many marine organisms including bacteria, fungi, phy-
toplankton, microalgae, as well as plants and animals 
produce uronic acid (Abad et  al., 2011; Bergamaschi 
et al., 1999; Decho, 1990). Available information on the 
distribution and cycling of uronic acids in the marine 
environment is quite sparse. URA showed significant 
positive correlation (R = 0.914, p < 0.001) with TCHO 
and (R = 0.847, p < 0.001) proteins suggesting that these 
compounds originated from common origin. URA con-
centrations and URA/TCHO ratios observed from the 
eastern Arabian Sea are relatively lower than earlier 
reported from surface sediments (Khodse et al., 2008). 
Variations of URA/TCHO ratios from sediments off 
Goa, Mangalore, and Kochi are not consistent with any 
particular trend with increasing water depth suggesting 
that URA are not accumulated owing to their utilization 
by heterotrophic organisms. Due to the negative charge, 
URA forms a complex with sedimentary particles, thus 
microbial utilization and degradation and ionic binding 
are the factors that may influence the concentration of 
URA in the marine sediments.

Normalized carbon concentration of TCHO, 
TNCHO, proteins, lipids, and URA and diagenetic 
state of organic matter

Normalized carbon compound (TCHO-C/TOC %) con-
centrations allow estimating their reactivity with respect 
to total organic material and to understand the digenetic 
state of organic matter (Kerhervé et  al., 2002; Kaiser 

& Benner, 2009). Biological polymeric carbon (BPC) 
is considered as sum of TCHO, TNCHO, proteins, 
lipids, and URA-carbon and accounted 7.1 to 37.2% 
(mean = 18.3 ± 9.1) of TOC accumulated in the bottom 
sediments. BPC supports the feeder communities which 
get benefited from the highly nutritious food source. 
The TCHO, TNCHO, proteins, lipids, and URA car- 
bon contribution is higher off Kochi (except# GS) sedi-
ments probably due to higher phytoplankton abundance 
(Sardessai, 1994). Higher TCHO, proteins, lipids, and 
URA yield associated with low TOC/TN (12.1) at GS 
implies the presence of higher quantities of microbially 
derived material at this station. The BPC carbon yield 
is 37% of TOC; this value is lower than those reported 
(70% of TOC) for sediments in other environments 
(Grémare et al., 2002; Isla et al., 2006).

Surface sediment carbohydrate sources

Individual sugar and sugar ratios allow distinguishing 
marine and terrestrial sources because neutral sugar pat-
tern for metabolically active organisms are more vari-
able than vascular plant tissue (Cowie & Hedges, 1984; 
Schulz and Boyle, 2005). Ribose plus fucose are diagnos-
tic components to separate marine and terrestrial carbo-
hydrate sources. Ribose plus fucose accounted > 10 wt% 
of TNCHO off Goa, Mangalore, and Kochi sediments 
which indicates that marine OM is the source of TNCHO 
(Table 2). Fucose is a major component of phytoplank-
ton and bacteria and rarely present in terrestrial plants 
(Cowie & Hedges, 1984; Kappelmann et  al., 2019). 
Ribose is a vital component of nucleotides which is com-
monly found in small organisms than terrestrial plants. 
Glucose content in surface sediments varied from 10 to 
36 wt% of TNCHO, and this wide variation is reported 
due to the heterotrophic removal of glucose during the 
transport of surface OM to deep sediments (Ittekkot 
et al., 1984). Low glucose and high abundance of rham-
nose, fucose, and ribose recorded at COS8 implies loss 
of glucose, also supported by Opsahl and Benner (1999). 
Low glucose in water column is explained by Ogier 
et  al. (2001), where the author mentioned that glucose 
being a storage polysaccharide for cyanobacteria, dur-
ing its decay glucose can be easily removed by aquatic 
biota during sinking. Also, lower abundance of glucose 
indicates preferential or selective removal of glucose by 
heterotrophic microorganisms (Khodse & Bhosle, 2012).

Xylose and arabinose are major components of ter-
restrial plants than marine organisms (D’Souza et  al., 
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2005). The ratio of rhamnose plus fucose to arabinose 
plus xylose is > 0.5 off Goa, Mangalore, and Kochi sug-
gesting marine microbial biomass as source of carbohy-
drates (He et al., 2010). Galactose was most abundant in 
TNCHO pool. Bacteria and diatoms cell wall polysac-
charides are major source of galactose (Bernaerts et al., 
2018; Decho, 1990). Both arabinose plus galactose con-
tribution in sediments were used to investigate woody 
and non-woody source of carbohydrates. Pectin rich 
non-woody tissue (leaves and grasses) have more ara-
binose and galactose monomers than woody (Aspinall, 
1970; Kögel-Knabner, 2002). The contributions of both 
monomers in Table 2 reflect non-wood (phytoplankton, 
zooplankton, angiosperm leaves, and grasses) carbohy-
drate source (Guggenberger et al., 1994; Tareq & Ohta, 
2011) Table 3.

Monosaccharides in sediments off Goa, Mangalore, 
and Kochi (Fig.  7) imply that monosaccharide compo-
sition is controlled by microbial processes in the water 
sediment interface (Guggenberger et  al., 1994; Opsahl 
& Benner, 1999; Panagiotopoulos & Sempere, 2005a, 
b). Rhamnose, fucose, and ribose increased from Goa to 
Kochi (Fig. 7) and may be due to the higher phytoplank-
ton productivity (Jyothibabu et  al., 2010; Madhupratap 
et al., 1996) and bacterial abundance () in southern than 

northern locations. The Arabian Sea is known for oxy-
gen minimum zone (200 m to 1500 m) along the eastern 
margin. Perhaps rhamnose, fucose, and ribose are mostly 
derived by heterotrophic bacteria growing in anoxic 
water during the organic matter degradation (Johnson & 
Cummins, 1972; Ogier et al., 2001). The preservation of 
microbial synthesize sugars might have supported prefer-
ential consumption of protein rather than TCHO during 
anoxic degradation of OM (Harvey et al, 1995).

PCA is useful to suggest high positive factors load-
ing for ribose, fucose, rhamnose, URA, protein, and 
TCHO, which indicate that their quantities are affected 
by fresh OM derived from marine microbial source. 
Marine phytoplankton and bacteria contain large 
amount of carbohydrates viz. rhamnose, fucose, ribose 
(Hicks et al., 1994; Bergamaschi et al., 1999; D’Souza 
et al., 2005; Khodse & Bhosle, 2010), URA, and pro-
teins (Khodse & Bhosle, 2010). The negative loadings 
for mannose, galactose glucose, and TNCHO are use-
ful to interpret simultaneous decrease of these stor-
age sugars that are readily removed by in situ organ-
isms during sinking (Handa, 1969; Panagiotopoulos 
& Sempere, 2005a, b). More studies are needed for 
understanding the biochemical preservation, fate, and 
cycling in the Arabian Sea sediments.

Table 2   Carbohydrate diagenetic parameters used for source indicators in marine environments

Abbreviations used are given in the legend of Fig. 6

Classification of OM Parameters Values Indicators References

Marine /terrestrial (Rham + Fuc)/(Ara + Xyl) 
ratio

 < 0.5 Terrestrial OM Cowie and Hedges (1984), 
Ittekkot and Arain 
(1986), Tareq and Ohta 
(2011)

0.8 ± 0.2 Marine OM Goa (This study)
1.0 ± 0.4 Marine OM Mangalore (This study)
1.6 ± 0.8 Marine OM Kochi (This study)

(Rib + Fuc) wt% glucose free 
basis

 > 10% Marine OM Cowie and Hedges (1984), 
Tareq and Ohta (2011)

11.3 ± 6.0 Marine OM Goa (This study)
12.0 ± 3.0 Marine OM Mangalore (This study)
21.5 ± 7.2 Marine OM Kochi (This study)

Woody and non-woody 
tissue

(Ara + Gal) wt% glucose free 
basis

 > 20 Non-woody tissue  
(phytoplankton,  
zooplankton, leaves and 
grasses)

Cowie and Hedges (1984), 
Tareq and Ohta (2011)

54.0 ± 6.8 Non-woody tissue Goa (This study)
48.4 ± 1.5 Non-woody tissue Mangalore (This study)
38.3 ± 8.4 Non-woody tissue Kochi (This study)
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Conclusions

Preservation processes of biochemical compositions 
in the surface sediments allow us to investigate the 
sources and variability of OM concentration. In  situ 
environmental and microbial processes in the eastern 
margin of the Arabian Sea appear to be the governing 
factors responsible for the observed variability in all of 
the bulk OM parameters. Terrestrial sources seem to 
be important as far as their contribution to preserved 
OM in this part of the eastern margin of the Arabian 
Sea. Concentrations and carbon-normalized yields of 
TCHO, TNCHO, proteins, URA, and lipids showed 
wide spatial variations. This can be attributed to dif-
ferences in biological production, sources, terrestrial 
inputs, and microbial degradation. Higher concen-
tration of TCHO, proteins, URA, rhamnose, fucose, 
and ribose could be linked to higher phytoplankton 
productivity and bacterial abundance in the southern 
location. Carbohydrate digenetic parameters suggest 
that sedimentary OM is derived from marine origin 
and non-woody source material. Further, persistently 
low oxygen concentration in the surface layers of the 
water column might be responsible for distribution 
and preservation of biochemical compounds in the 
water–sediment interface in the eastern Arabian Sea.
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