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Abstract  Vibrio parahaemolyticus  (V.p) is a 
marine pathogenic bacterium that poses a high risk 
to human health and shellfish industry, yet an effec-
tive regional-scale nowcasting model for managing 
the risk remains lacking. This study presents the first 
regional-scale model for nowcasting the level of V.p 
in oysters in the marine environment by developing 
an ensemble modeling approach. The ensemble mod-
eling approach involves the integration of genetic pro-
gramming (GP) and deep artificial neural networks 
(DNN)-based modeling. The new approach was dem-
onstrated by developing three GP-DNN ensemble 
models for predicting the V.p level in North Carolina, 
New Hampshire, and the combined region. Specifi-
cally, GP was employed to establish nonlinear func-
tions between the V.p level and antecedent conditions 
of environmental variables. The nonlinear GP func-
tions and current conditions of individual environ-
mental variables were then utilized as inputs into a 
DNN model, forming a GP-DNN ensemble model. 
Modeling results indicated that the GP-DNN ensem-
ble models were capable of predicting the V.p level 
with the correlation coefficient of 0.91, 0.90, and 0.80 
for North Carolina, New Hampshire, and the com-
bined region, respectively, demonstrating the impact 
of distinct environmental conditions in the local areas 

on accuracy of the combined regional-scale model. 
Sensitivity analysis results showed that sea surface 
temperature and sea surface salinity are the two most 
important environmental predictors for the abundance 
of V.p in oysters, followed by water level, pH, chloro-
phyll-a, and turbidity. The findings suggested that the 
GP-DNN ensemble models could be utilized as effec-
tive predictive tools for mitigating the V.p risk.

Keywords  Artificial neural networks · Genetic 
programming · Antecedent environmental 
conditions · Temperature · Salinity · Oysters

Introduction

Vibrio parahaemolyticus (V.p) is a marine pathogenic 
bacterium endemic to estuarine waters. V.p may cause 
acute gastroenteritis in humans, and it is one of the 
leading causes of seafood-borne illness in the USA 
and across the globe (Daniels et al., 2000; Fernandez-
Piquer et al., 2011; Zimmerman et al., 2007). Accord-
ing to the Centers for Disease Control and Prevention 
(CDC), the annual number of reported human infec-
tions caused by V.p in the USA increased by 440% 
over the 14-year period of 2000–2014 (www.​cdc.​
gov/​vibrio/​surve​illan​ce.​html). The increasing trend in 
V.p infections poses a growing public health risk to 
shellfish consumers and beachgoers. Modeling efforts 
have been made in the development of predictive 
tools for managing and mitigating the risk.
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Urquhart (2015) presented several data-driven 
models, including generalized linear modeling 
(GLM), generalized additive modeling (GAM), and 
random forest (RF) models, for predicting the like-
lihood of Vibrio occurrence as well as abundance 
in the Chesapeake Bay by using sea surface salinity 
(SSS) and sea surface temperature (SST). Results 
indicated that a hybrid approach involving GAM for 
classification and RF for regression exhibited a good 
accuracy for predicting the abundance of V.p, as indi-
cated by a mean absolute error of 5.8 cells. Urquhart 
et al. (2016) developed a nowcasting model that can 
be used to estimate the likelihood of V.p (presence/
absence) in oysters in New Hampshire. They used 
SST, SSS, and chlorophyll-a as environmental param-
eters for the prediction of the likelihood of V.p pres-
ence in oysters. Their results showed the true positive 
rate (TPR) of 0.52, true negative rate (TNR) of 0.91, 
and Matthews correlation coefficient (MCC) of 0.46. 
Froelich et al. (2015) proposed a predictive model for 
the abundance of V.p bacteria in oysters and water 
samples in North Carolina by using a linear regres-
sion analysis. Results showed that their model can 
predict the level of V.p in water and oysters with the 
R-squared accuracy of 0.48 and 0.47, respectively. 
Paranjpye et  al. (2015) presented a multiple linear 
regression method for predicting the level of V.p in 
the Pacific Northwest (Washington) water by using 
ten biotic and abiotic environmental variables.

In spite of the scientific advances in the develop-
ment of local models, there are no regional-scale 
models that could be applied generally to differ-
ent regions for providing near real-time predictions. 
Therefore, there is a need to develop regional-scale or 
even global-scale models. By using SST and SSS as 
model input variables, Namadi and Deng (2021) pre-
sented a series of random forest-based regional-scale 
forecasting models with the lead-time ranging from 
1 to 4 days for predicting the V.p abundance in oys-
ters. While the forecasting models are useful for plan-
ning purposes, nowcasting models are also needed 
to provide near real-time predictions. The need for 
regional-scale nowcasting models motivates this 
paper. Specifically, this paper is intended to fill the 
knowledge gap in regional-scale nowcasting models 
by using advanced machine learning and particularly 
deep-learning methods.

Artificial neural networks (ANNs) and genetic pro-
gramming (GP) have proven to be effective modeling 

methods particularly for describing nonlinear rela-
tionships (He & He, 2008; Sætrom et al., 2005; Wang 
& Deng, 2019). Chenar and Deng (2018a) presented 
a GP-based model for predicting daily risks of oyster 
norovirus outbreaks along the Northern Gulf of Mex-
ico coast using environmental indicators including 
SST, gage height, SSS, solar radiation, rainfall, and 
wind. Prediction results showed that the GP model 
was capable of predicting oyster norovirus outbreaks 
with the true positive and negative rates of 78.53% 
and 88.82%, respectively, demonstrating the efficacy 
of the GP model. Similarly, Chenar and Deng (2018b) 
proposed an ANN model with a 2-day lead time for 
forecasting norovirus outbreaks by utilizing epide-
miological and environmental data. The ANN model 
was capable of forecasting norovirus outbreaks with 
the positive and negative predictive values of 76.82% 
and 100%, respectively. ANN models also have been 
successfully applied for prediction of fecal coliform 
concentrations in oyster-harvesting areas along the 
Louisiana Gulf coast (Wang & Deng, 2019).

The overall goal of this study was to present an 
effective and efficient predictive tool for nowcasting 
the V.p abundance in oysters and thereby mitigating 
the risk of V.p infection to the human health and oys-
ter industry. To that end, the specific objectives of this 
paper were (1) to identify the functional relationships 
between the V.p abundance in oysters and individual 
environmental predictors (such as SST, SSS, water 
level) by means of GP modeling and (2) to develop 
ensemble models for nowcasting the V.p abundance 
by integrating the GP-based functional relationships 
and the Deep learning-based Artificial Neural Net-
works (DNN), producing three GP-DNN ensemble 
models for three study areas. The scientific signifi-
cance of these models is that the GP-DNN models 
can be utilized to explore some important research 
and management questions including but not limited 
to: What are the major environmental drivers for V.p 
abundance? Where is the high-risk area of V.p con-
tamination to oysters? How will the climate change 
(particularly the global warming) impact the temporal 
variation and spatial distribution of V.p? This paper 
provides insightful discussion on how the GP-DNN 
models can be employed to address the important 
questions. Answers to these questions provide a sci-
entific basis for the implementation of management 
intervention for mitigation of potential V.p contami-
nation and infection risks, protecting public health.
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Materials and methods

Study areas 

This study focuses on shellfish-harvesting areas in 
two environmentally distinct study areas, including 
North Carolina and New Hampshire (Fig.  1). Spe-
cifically, oysters (Crassostrea virginica) were col-
lected from six harvesting sites along the east coast 
of the United States (USA), including two sites (Oys-
ter River and Nannie Island) in the US state of New 
Hampshire and four sites (Harlowe Creek, Hoop Pole 
Creek, North River, and South River) located along 
the eastern North Carolina coast. Environmental con-
ditions in these two areas are different due to the dif-
ference in their latitudes and climate conditions. The 
average SST in New Hampshire is lower than those of 
the sampling sites in North Carolina due to the differ-
ence in their latitudes (17.78 °C vs. 19.6 °C). More-
over, the two sampling sites in the New Hampshire 
located within the Gulf of Main watershed with more 
freshwater inflow that produces a relatively low SSS 

range in comparison with that in the North Carolina 
sampling sites (22.22 ppt vs. 25.8 ppt). Furthermore, 
the average values of pH and chlorophyll-a in North 
Carolina samples were higher than the corresponding 
values in New Hampshire.

Data collection and processing

A modeling study conducted by the authors (Namadi 
& Deng, 2021) found that the V.p abundance in the 
marine environment is affected by environmental 
indicators including SST, SSS, pH, chlorophyll a, and 
turbidity, respectively. Their study also found that the 
V.p abundance in oysters is controlled by antecedent 
environmental conditions, while the antecedent envi-
ronmental conditions can be described with time-
lagged variables of each environmental indicator with 
the time lag of 1–30 days. The time lag of 1–30 days 
was considered in this study due to the fact that envi-
ronmental conditions in the marine environment 
are strongly influenced by tides that cause the peri-
odic (occurring at regular intervals (about 30  days)) 

Fig. 1   Study area map where yellow circles show the sampling points in New Hampshire, and red circles show the sampling points 
in the North Carolina
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variations (rise and fall) in the surface water level of 
marine waters (Zhang et  al., 2012). Therefore, field 
data for the five environmental indicators along with 
the water level and associated time-lagged variables 
are needed for the development of a predictive model 
for V.p. To that end, two types of data were collected 
from the literature, including the historical data on 
V.p concentration in oysters and environmental data. 
Specifically, the data for V.p concentration in oysters 
in Oyster River and Nannie Island (Great Bay, NH) 
and the data for the five environmental indicators were 
obtained from the supplementary data of Urquhart 
et  al. (2016) for the period of 2007–2013 (122 sam-
ples). Samples described in the supplementary data 
were collected bi-weekly during warm seasons and 
monthly during cold seasons (Urquhart et  al., 2016). 
Likewise, the V.p concentration and environmental 
data from 2013 to 2015 (104 samples) for the four oys-
ter-harvesting sites in North Carolina were obtained 
from the supplementary data sheet of Williams et al. 
(2017). The data from a total of 226 samples col-
lected from 2007 to 2015 at six oyster-harvesting sites 
along the US east coast were used in this paper. In 
addition to the 226 datasets from the literature, new 
data describing antecedent environmental conditions 
(up to one month prior to each field sampling day) 
for chlorophyll-a, turbidity, and pH at North Caro-
lina sites were collected from various online sources 
for the days without field samples in the same period 
of 2007–2015. The data for SST, salinity, and water 
levels were obtained from the National Oceanic and 
Atmospheric Administration Tides and Currents 
(NOAA Tides & Currents) stations located in the 
Bogue Sound (https://​tides​andcu​rrents.​noaa.​gov). The 
water level is the average of daily water surface eleva-
tion measured above mean lower low water (MLLW). 
Chlorophyll-a data for North Carolina were down-
loaded from the NOAA part of system-wide monitor-
ing program (SWMP) from 2013 to 2015.

All data were then normalized by using feature 
scaling (unity-based normalization) so that each envi-
ronmental predictor varies only in the range of 0–1 
to eliminate regional effects of datum. Daily SST, 
water level, and SSS data were reorganized into time 
series ensembles of individual predictors to describe 
antecedent environmental conditions. The potential 
time series ensemble of each environmental predictor 
consisted of a finite number of time-lagged variables 
involving daily average and covering the antecedent 

period of 1–30 days as the gravitational attraction of 
the moon and the sun to the Earth affects tides on a 
monthly basis in the marine environment.

Genetic programming‑based modeling

Genetic programming (GP) is an evolutionary algo-
rithm based on Darwinian theories of natural selec-
tion and survival of the fittest. It operates on the parse 
tree structure composed of function and terminal sets 
and approximates the solution that best describes the 
input–output relationship. A significant benefit of 
using GP is that a model developed with GP does not 
need to make explicit assumptions about the func-
tional form of relationship (Chenar & Deng, 2018b). 
GP, similar to other machine learning techniques, 
demonstrates its ability to handle dynamic and non-
linear data, especially when the process-based mod-
els are not available or underlying physical relation-
ships are not fully understood (Muttil & Chua, 2006). 
Previous studies demonstrated the capability of GP 
in solving many practical problems such as mod-
eling and predicting of norovirus outbreaks (Chenar 
& Deng, 2018b), rainfall-runoff (Mehr & Nourani, 
2018), harmful algal blooms (Sivapragasam et  al., 
2010), and uncertainty analysis of model-estimated 
longitudinal and lateral dispersion coefficients in 
open channels (Najafzadeh et al., 2021).

GP was applied in this paper first to identify func-
tional relationships between the log-transformed V.p 
level and individual environmental predictors, including 
SST, SSS, and water level, for the study areas (North 
Carolina, New Hampshire, and the combined region) 
under the impact of antecedent environmental condi-
tions. To that end, the daily average for antecedent or 
time-lagged SST, SSS, and water level was utilized to 
determine the optimal functional relationships between 
the V.p level and the daily averages of individual environ-
mental predictors. The GP was then utilized to produce 
an initial population of randomly generated programs 
(equations), calculate their fitness, and subsequently 
select the programs for reproduction and recombination 
to form a new population. The mixture of arithmetic 
operators (+ , ‒, × , ÷) and mathematical functions (sin, 
cos, log) was selected to form a set of equations for each 
generation iteration. The fitness measures, such as mean 
absolute error ( MAE = (

∑n

i=1
�̂yi − yi�)∕n , where ŷi = a 

mode-predicted value and yi = an observed value), mean 
squared error ( MSE = (

∑n

i=1
(̂yi − yi)

2
)∕n ), and root 
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mean square error ( RMSE =

�
(
∑n

i=1
(̂yi − yi)

2
)∕n ), 

must be appropriately chosen to ensure that the individ-
ual programs, which best fit the data, are selected from 
the initial population. Specifically, the programs that best 
fit the data were selected to exchange part of the informa-
tion between them for producing optimal model equa-
tions through “crossover” and “mutation” processes that 
mimic the natural reproduction process. The maximum 
tree size of 35 was used as the termination criterion. The 
adopted fitness measure was the mean absolute error 
(MAE). Table 1 presents the control parameters that were 
used in this study.

In addition to the functions describing antecedent 
environmental conditions, functional relationships 
between the V.p level and the current environmen-
tal conditions, described with current SST, SSS, the 
deviation of salinity from the optimum SSS of 28 ppt 
(Sop =|SSS -28|), pH, turbidity, and chlorophyll-a, 
were also constructed for North Carolina, New Hamp-
shire, and the combined region. GPLAB toolbox, 
developed by Silva and Almeida (2003) in MATLAB, 
was utilized for the construction of the functions. The 
functional relationships were then employed as input 
variables (functions) for ANN modeling.

Artificial intelligence‑based modeling

Artificial intelligence-based neural networks (ANNs) 
have shown promise in modeling nonlinear relation-
ships between target variables and predictor vari-
ables (Noori et  al., 2016; Zhang et  al., 2015). Since 
the relationship between the V.p abundance and envi-
ronmental predictors is complicated and nonlinear, 
nonlinear ANNs are best suited for modeling the V.p 
abundance.

A typical ANN model consists of three primary 
layers, including an input layer, a hidden layer, and 

an output layer. A deep artificial neural network (deep 
ANN) was utilized in this study to predict the V.p 
abundance in oysters. A critical difference between a 
basic ANN (shallow neural network) and a deep ANN 
is the number of hidden layers. More hidden layers 
allow deep ANN models to have multiple process-
ing layers to learn representations of data with mul-
tiple levels of abstraction (LeCun et  al., 2015). The 
adaptive gradient descent back-propagation algorithm 
was utilized for model training. The advantage of the 
adaptive algorithm over the basic gradient descent 
algorithm is the variable learning rate. In the adap-
tive gradient descent ( g ), the model determines the 
output with the initial neural network and compares 
it with observational data to calculate the error. In 
the next step, the model uses the present learning rate 
(0.01) for the second iteration to find new weights and 
biases. Then, the model calculates the new error rate 
and compares it with the previous error rate. If the 
new error increases, the new learning rate ( � ) would 
be decreased by a default ratio ( � : the ratio used in 
this study was 0.7). If the new error decreases, the 
learning rate would be increased by another default 
ratio (the ratio to increase the learning rate in this 
study is 1.05). Equation  1 shows the weight ( W ) 
update equation where �k+1 = ��k and � = 0.7 if the 
new error is higher than the previous one; otherwise, 
� = 1.05.

The deep ANN model presented in this study 
consists of five layers, including an input layer, 
three hidden layers, and an output layer. The input 
layer involves seven variables including current 
SST, SSS, chlorophyll-a, and four GP functions for 
SST( f (Ti)) , SSS( f (Si) ), water level ( f (Wi) ), and 
all current environmental predictors ( f (All) ). The 
number of neurons in hidden layers and their activa-
tion functions were determined through a trial-and-
error process until the highest prediction accuracy 
was obtained. Based on the final design of the deep 
ANN, the first hidden layer consists of 40 hidden 
neurons, and the activation function is a = tansig(n) . 
The second hidden layer consists of 40 hidden neu-
rons, and the activation function is a = satlin(n) . 
The third hidden layer consists of 20 hidden neu-
rons, and the activation function is a = logsig(n) . 
Figure 2 shows the architecture of the Deep ANN.

(1)Wk+1 = Wk − �k+1gk

Table 1   Values of GP control parameters

Parameter Value

Population size 600
Generation 600
Maximum tree size 35
Crossover rate 0.75
Mutation rate 0.25
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Eight years of data collected from North Carolina 
and New Hampshire were divided into two groups, 
including a development data group used for model 
development (60% of all data) and an independent 
validation data group (40% of all data). The devel-
opment data group was further divided into three 
subgroups, including training, validation, and test-
ing. Table  2 shows the model development dataset 
(training, validation, and testing) and the independent 
validation dataset used for the two local models and 
the regional model. Each deep ANN model was con-
tinuously trained until the highest model performance 
was achieved. The model performance was measured 
using two statistical metrics including the correlation 
coefficient and mean squared error (MSE). The top 
models of the high performance with the develop-
ment dataset were further tested with the independ-
ent validation dataset. The model of the best overall 
performance with both groups of data (dependent and 
independent datasets) was finally selected as the deep 
ANN model. In fact, three deep ANN models were 
created. Specifically, one regional-scale deep ANN 
model was presented for prediction of the V.p level 
in the US east coast. Two local deep ANN models of 
better performance were also proposed for nowcast-
ing the V.p level in the North Carolina coast and the 
New Hampshire coast, respectively.

Several performance metrics were utilized to illus-
trate the classification ability of a model as a binary 
(presence/absence) classifier, including the true posi-
tive rate (TPR), true negative rate (TNR), accuracy 
(ACC), and Matthews correlation coefficient (MCC). 
Equations 2, 3, 4, and 5 show definitions for the TPR, 
TNR, ACC, and MCC, respectively (Matthews, 1975), 
where TP is the number of true positive (presence) 
predictions that a model produced correctly; TN is the 
number of true negative (absence) predictions that a 
model produced correctly; FP is the number of false 

positive (presence) predictions that a model made, and 
FN is the number of false negative (absence) predic-
tions that a model produced.

Sensitivity analysis

Sensitivity analysis was conducted to examine the effects 
of different input variables on the model-predicted V.p 
level and thereby to identify key variables that control the 
occurrence and concentration of V.p in oysters. Two dif-
ferent methods were applied for the sensitivity analysis, 

(2)TPR =
TP

TP + FN

(3)TNR =
TN

TN + FP

(4)ACC =
TP + TN

TP + TN + FP + FN

(5)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Fig. 2   Deep artificial neural network architecture

Table 2   The duration of the dependent dataset and independ-
ent dataset for three models

Model Model development Validation

Start End Start End

North 
Carolina

2/4/2013 4/25/2014 5/1/2014 10/16/2015

New 
Hampshire

6/27/2007 6/28/2010 7/14/2010 12/5/2013

Regional 
model

6/27/2007 5/22/2013 5/28/2013 10/16/2015
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including a local sensitivity analysis method and a global 
sensitivity analysis method (Chenar & Deng, 2018b).

In terms of the local sensitivity analysis, the one-
at-a-time method (OAT) was used. Specifically, 
values of individual model input variables, includ-
ing SST, SSS, chlorophyll-a, turbidity, pH, and 
water level, were changed by ± 10% to ± 50% from 
their mean values, and then, the corresponding per-
cent changes in the model-predicted V.p level were 
recorded and compared graphically. In terms of the 
global sensitivity analysis, the perturb method was 
employed (Chenar & Deng, 2018a). Specifically, the 
model-predicted V.p levels before and after the per-
turbation were calculated, and then, the mean squared 
errors (MSE) in the model-predicted V.p levels, pro-
duced by perturbations to the input variables, were 
compared graphically. A 50% perturbation was uti-
lized for each input variable in this study.

Results and discussion

Genetic programming functions

Three GP-evolved equations, including f (Ti), f (Si) , 
and f (Wi) describing the best functions for anteced-
ent SST, SSS, and water level, are presented in Eqs, 
respectively, for the two study areas and their com-
bined region. Parameters involved in each GP func-
tion are time-lagged predictors, demonstrating the 
cumulative effect of extended favorable environmen-
tal conditions on the level of V.p in oysters. Table 3 
lists the correlation coefficients between the log-
transformed V.p level and individual environmental 
predictors (variables) as well as the GP-evolved func-
tions for the predictors.

Results indicate that the GP models created with 
the time-lagged variables improve the correlation 
between the V.p level and SST, SSS, and water level 
by 13%, 84%, and 1075%, respectively, in the regional 
model. Another important statistical metric for a pre-
diction model is mean squared error (MSE) that dem-
onstrates the model performance. The incorporation 
of the GP functions for SST, SSS, and water level 
into the regional model reduced the MSE by 29%, 
23%, and 36%, respectively, in comparison with the 
regional model involving only current environmental 
predictors. Table  3 shows the improvement percent-
ages of three models. Ta
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North Carolina:

New Hampshire:

Regional model:

(6)
f
(
Ti
)
=
(
T8 + T4

)
× T4 × [T10 + Sin

[
4
(
T11 + T6

)

× T3

11
× T6 × Sin

(
2T2

8
×
(
T24 + T8

))]

(7)f
(
Si
)
=

S17 × S3 × S10 × Cos
(

S15

S26

)
× Cos

(
S5

S25

)

Cos(Cos
(

S6

S26

)
×

S4

Cos
(

S11

S24

) ×
S24

S21×S29

(8)

f
(
Wi

)
=W30 + Cos

(
Log

(
W26

))

+

[
W30 +W6 + Cos

(
W16

W5

)]

×W25 + Cos
(
Log

(
W18

))

+ Cos
[
Cos

(
Log

(
W16 × LogCos

(
W7

)))

+W16 +W1

]

(9)

f
(
Ti
)
= [Cos

(
T3 × T30 − T6

)
+ T1]

× T2

3
× (T1 + T30) × Cos(Log

(
2T2

20

)
)

× (T3 × CosT20 + T30) × T2

1

(10)

f (Si) = (Cos(Log(Log(S25 − S29))) + Cos(S31))

× Cos(S17 × Log(Log(S31)) × S2
1

× (Cos(Log(Log(S25 − S29))) + S1)

× (Cos(Log(S31)) + S11)

(11)

f (Wi) = (Cos((2W4) + 2W11)

× Cos(W14 + Cos(Log(W1) +W16)

× (2W16 + Cos(Log(W7))

× Cos(W4 + 2W16)) ×W11

(12)

f (Ti) = [[Cos(Log(T30 × Cos(Log(T19 − T24))))]

× T29 × T4 + T3 × Sin(T7 × (T2

17
+ T7

+ T7 × T17))] × 2T2

3

In addition to the three GP functions of time-lagged 
environmental predictors for each model, GP was also 
applied in the development of prediction models with-
out considering the time-lagged effects or variables by 
using current environmental predictors (SST, optimum 
SSS, pH, and turbidity). Equations (15), (16), (17) show 
the best GP models that were finally selected for North 
Carolina, New Hampshire, and the combined region, 
respectively, describing the explicit functional relation-
ships between log (V.p) and the environmental predic-
tors. The parameters T, S, Sop, pH, Tur, and Chl denote 
SST, SSS, optimum SSS (|SSS-28|), pH, turbidity, and 
chlorophyll-a, respectively. The correlation coefficient 
between the log (V.p) level and a GP-evolved equation 
is 0.70 for North Carolina, 0.71 for New Hampshire, 
and 0.66 for the combined region, respectively.

North Carolina:

New Hampshire:

Regional-scale model:

(13)

f (Si) = [Cos(Log[[S1 + S31 × Cos(Log[S12

× Log[(S27 + S14) × S4 × S1]])]

× S3
1
] × S1 + S1)] ×

S20

S2 × S23

(14)

f (Wi) = (Cos(Log(W16)) × [Cos(W7 ×W4)

+ Cos(W9 + Log(W3) −W15)

× Cos(Log(W3 ×W12 + Log(W4)))]

× (Cos(Log(W4)) + Cos(Log(W16)))

(15)
f (All) =

|T − pH|

pH +
||||
pH×(T−S+Tur)×(T−S+

Chl

Chl−Tur
)

(T−Chl)×(pH−Chl)×Tur

||||

(16)

f (All) = [[|LogLogLog(Sop − Tur)| + Sop − Tur]

× T + Chlo + Sop] × pH × T

× (S + Tur + T) × (S + T + pH × T)

(17)

f (All) =Cos(Log(T)) × [(T + pH) × T

+ T × Cos(Log(S × T + (Tur + T)

× Cos(Log(T2 × Cos(Log(S)))))) + T

× pH × Cos(Log(Log(Sop))) × Cos(Log(S))]
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Artificial intelligence‑based modeling

The best-trained deep ANN model for each study area 
was finally selected as the prediction model for the V.p 
level in oysters. Input parameters of the deep ANN 
(DNN-GP) models include f (Ti), f (Si) , 

(
Wi

)
, f (All) , 

SST, SSS, and chlorophyll-a. Figures 3 and 4 show the 

performance of the DNN-GP models with the model 
development and independent validation datasets for 
North Carolina, New Hampshire, and the combined 
region, respectively. Specifically, Fig.  3A shows the 
comparison between the log(V.p) abundance predicted 
with the DNN-GP model and observed in four sam-
pling locations in North Carolina oyster-harvesting 

Fig. 3   Comparison between the log-transformed V.p levels predicted by the DNN-GP models with the model development dataset 
and observed in North Carolina A, New Hampshire B, and the entire region C, respectively
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areas. The correlation coefficient between predicted 
V.p levels and observed data is 0.96, and MSE for 
this model is 0.12. The performance metrics demon-
strated the high efficacy of the model in predicting the 
V.p level in the model development phase. Similarly, 
Fig.  3B displays the performance of the New Hamp-
shire model. The correlation coefficient of 0.94 and 
MSE of 0.10 confirms the very good performance of 
the New Hampshire model. Likewise, Fig. 3C provides 
a comparison between the log-transformed V.p levels 
predicted with the DNN-GP model and observed dur-
ing the 6 years from June 27, 2007, to May 22, 2013, in 
New Hampshire and North Carolina oyster-harvesting 

areas. The correlation coefficient of 0.85 and MSE of 
0.3 demonstrates the high efficacy of the model in pre-
dicting the V.p level in the model development phase 
at the regional scale. Figure 4 shows the performance 
of the DNN-GP models with the independent valida-
tion dataset. Table  4 summarizes the performance 
metrics for the models in terms of the correlation coef-
ficient and MSE. The metrics indicate that the overall 
correlation coefficients are 0.91, 0.90, and 0.80 for 
North Carolina, New Hampshire, and the combined 
region, respectively. Furthermore, the MSE is 0.27, 
0.21, and 0.48 for North Carolina, New Hampshire, 
and the combined region, respectively. It is clear that 

Fig. 4   Comparison between the log-transformed V.p levels predicted by the DNN-GP models with the independent validation data-
set and observed in North Carolina (A), New Hampshire (B), and the entire region (C), respectively
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the performance of the North Carolina model and that  
of the New Hampshire model are high and comparable.  
The performance of the combined regional model is 
impacted by the distinct environmental and climatic 
conditions in North Carolina and New Hampshire, as 
stated in the previous section. The model performance 
results suggest that site-specific models may serve as 
tools for site-specific management intervention due 
to their high accuracy, while the combined regional-
scale model may serve as a general model that may 
be applied to other regions as well, demonstrating the 
importance of both the local and the regional-scale 
models to the management of potential V.p risk to the 
general public.

The predictive DNN-GP models can also be 
employed for the purpose of classification in terms 
of whether the model-predicted V.p level in oys-
ters meets the seafood safety standard defined by the 
National Shellfish Sanitation Program (NSSP) Guide 
(FDA,  2017). According to the NSSP Guide, the 
safety standard for the V.p level in oysters is 30 MPN/
gram, while any V.p level lower than 30 MPN/gram is 
considered to be undetectable or safe. This threshold 
level was used to convert the model prediction of V.p 
level in oysters into a binary classification (presence or 
absence). That is, a model predicts the presence of V.p 
in oysters if the predicted cell count ≥ 30 MPN/gram 
and the absence if the cell count < 30 MPN/gram.

Table  5 summarizes the performance metrics for 
the three models. The receiver operator characteristic 
curve (ROC) (Fawcett, 2006) was also used to visu-
alize the performance of a binary classifier model, 
where the area under the curve (AUC) of 1 indicates a 
perfect performance, while the area of 0.5 means that 
the model is pointless. Specifically, the area under the 
curve is 0.730 for the regional-scale model, 0.973 for 
the North Carolina model, and 0.970 for New Hamp-
shire model, as shown in Fig. 5.

Sensitivity analysis

The result from the local sensitivity analysis method 
is shown in Fig.  6. The vertical axis represents per-
cent changes in SST, SSS, water level, turbidity, 
chlorophyll-a, and pH from their corresponding mean 
values, while the horizontal axis indicates how the 
model responds to the changes in individual predic-
tors in terms of percent change in the model-pre-
dicted V.p level. It is clear from Fig. 6 that SST is by 
far the most effective predictor as a 50% decrease in 
SST reduces the model-predicted V.p level by 57%. 
SSS is the second influential parameter to the model-
predicted V.p level, followed by water level, pH, and 
chlorophyll-a concentration. Turbidity is the least 
important parameter to the V.p prediction.

Figure 7 shows the global sensitivity analysis result 
from the perturb method. The figure indicates that 
temperature is again the most important environmen-
tal indicator for the V.p level with the highest MSE 
value of 1.15, followed by SSS (0.81), water level 
(0.78), pH (0.74), chlorophyll-a (0.66), and turbidity 
(0.64). It is clear that SST and SSS are the two most 
important environmental indicators, and chlorophyll-
a and turbidity are the two least important indicators 
for V.p levels. The results from two different sensitiv-
ity analysis methods are consistent, confirming that 

Table 4   Performance 
metrics of three models

Performance of model Model Model development Validation 100% of 
the dataset

Correlation North Carolina 0.96 0.84 0.91
New Hampshire 0.94 0.85 0.9
Regional model 0.85 0.74 0.8

MSE North Carolina 0.12 0.5 0.27
New Hampshire 0.1 0.37 0.21
Regional model 0.3 0.74 0.48

Table 5   Assessment metrics of three V.p models

Model 
assess-
ment

New Hampshire North Carolina Regional model

TPR 0.88 0.88 0.68
TNR 0.96 0.93 0.96
ACC​ 0.93 0.90 0.86
MCC 0.83 0.81 0.69
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Fig. 5   Receiver operating characteristic (ROC) curve for the V.p prediction models, including the regional model A, North Carolina 
model B, and New Hampshire model C 

Fig. 6   Local sensitivity 
analysis result showing the 
relative importance of six 
environmental indicators to 
model-predicted V.p level
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Fig. 7   The global sensitiv-
ity analysis result showing 
the relative importance of 
six independent environ-
mental indicators to model-
predicted V.p level based on 
the perturb method
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the V.p prevalence in oysters is affected not only by 
SST and SSS but also by other environmental factors 
(particularly water level and pH).

Discussion

While increasing Vibrio infection cases has been 
reported (https://​www.​cdc.​gov/​vibrio/​index.​html), 
our ability to predict the V.p presence and infection 
remains limited due to the lack of deep understand-
ing of environmental predictors for the V.p abundance 
and thus the lack of an effective, predictive, and par-
ticularly regional-scale model. The scientific signifi-
cance of the GP-DNN models is that these models 
can be utilized to explore some important research 
and management questions including but not limited 
to: What are the major environmental drivers for V.p 
abundance? Where is the high-risk area of V.p con-
tamination to oysters? How will the climate change 
(particularly the global warming) impact the temporal 
variation and spatial distribution of V.p?

In terms of the major environmental drivers for V.p 
abundance, Figs. 6 and 7 clearly indicate that SST is 
by far the most important environmental driver or pre-
dictor for V.p abundance, followed by SSS. While the 
results are consistent with those from previous studies 
(https://​produ​cts.​coast​alsci​ence.​noaa.​gov/​vibri​ofore​
cast/​gom/​defau​lt.​aspx; Namadi & Deng, 2021; FDA, 
2005), this study also identified the importance of 
other environmental predictors (including water level, 
pH, chlorophyll-a, and turbidity) and particularly 
their time series ensembles, demonstrating the impor-
tance of antecedent environmental conditions to V.p 
abundance and thus leading to the development of the 
hybrid DNN-GP models.

In terms of the high-risk area of V.p contamina-
tion to oysters, Figs. 4 and 5 illustrate that the hybrid 
DNN-GP models are not only capable to predict the 
V.p concentration but also the risk of V.p contamina-
tion to oysters at any oyster-harvesting areas such as 
those shown in Fig. 1. If the model predictions show 
a risk of V.p contamination to oysters or a high V.p 
concentration exceeding the threshold level (FDA, 
2005) in a particular oyster-harvesting area, manage-
ment interventions should be implemented by testing 
and potentially closing this area to shellfish harvest-
ing (Chenar & Deng, 2021).

In terms of climate change impact, Figs.  6 and 7 
clearly indicate that the model-predicted V.p concen-
tration is most sensitive to temperature changes, while 
the global warming is causing the increase in sea sur-
face temperature. Spatially, a higher SST means that 
some relatively cold regions like Alaska, where V.p 
infections were rarely reported, may experience more 
and more frequent V.p infections in the future due 
to global warming. Therefore, the global warming-
induced temperature rise will expand not only the 
spatial extent of V.p infections but also the time span 
of V.p infections from summer only to spring, sum-
mer, and even autumn.

The hybrid DNN-GP models provide new insights 
into the cumulative and time-lagged effect of six envi-
ronmental predictors on the V.p abundance in terms 
of how the antecedent conditions of the environmen-
tal predictors or time-lagged environmental predic-
tors affect the V.p abundance. As a result, the hybrid 
DNN-GP models are capable of achieving improved 
performance in predicting the V.p abundance com-
pared with some other models. For instance, the 
hybrid DNN-GP model for New Hampshire is capable 
of achieving the TPR, TNR, and MCC of 0.88, 0.96, 
and 0.83, respectively, while the generalized linear 
models (GLM) developed by Urquhart et  al. (2016) 
using the same datasets achieved significantly lower 
TPR, TNR, and MCC values of 0.52, 0.91, and 0.46, 
respectively, for the same oyster-harvesting areas. The 
hybrid DNN-GP model for the combined region is 
characterized by the area under the receiver operat-
ing characteristic curve of 0.83, 0.81, and 0.69 for the 
training, testing, and validation datasets, respectively. 
The TPR, TNR, and ACC of the regional hybrid 
DNN-GP model are 0.68, 0.96, and 0.86, respec-
tively, while the generalized additive model (GAM) 
proposed by Urquhart et al. (2016) achieved the TPR, 
TNR, and ACC of 0.48, 0.76, and 0.65 that are much 
lower than those of the hybrid DNN-GP model, dem-
onstrating the efficacy of the regional-scale DNN-GP 
model in predicting V.p levels.

The results from this study demonstrate the impor-
tance of both current and time-lagged environmental 
variables to the prediction of the V.p concentration in 
oysters. The results also suggest that the time-lagged 
variables provide an independent and, in some cases, 
superior predictive power compared to current vari-
ables. Specifically, the SST on previous 3–30  days, 
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SSS on previous 1–31 days, and water level on previ-
ous 3–16 days control the current V.p level in oysters. 
The findings provide a theoretical basis for further 
improvements of predictive tools for the management 
and particularly intervention of Vibrio infections.

Overall, this paper is unique in terms of present-
ing an effective regional-scale DNN-GP model that 
performs best among existing models and thus can be 
employed to address the important questions with the 
highest accuracy. Accurate answers to these questions 
provide a scientific basis for the implementation of 
management intervention for mitigation of potential 
V.p contamination and infection risks, protecting pub-
lic health.

Conclusions

Three hybrid DNN-GP models, including two local 
models and one regional-scale model, were created 
within the MATLAB computing environment for 
predicting V.p concentration in oysters in the marine 
environment. Based on the findings from the model 
predictions and sensitivity analysis, the following 
conclusions can be drawn:

1.	 The integration of deep artificial neural networks 
and genetic programming provides an effective 
approach to identifying important environmen-
tal predictors and particularly their time series 
ensembles describing the cumulative effect of 
antecedent environmental conditions on V.p con-
centration in oysters in the marine environment.

2.	 The antecedent environmental conditions con-
trol V.p concentration in oysters. Specifically, 
the SST on previous 3–30 days, SSS on previous 
1–31 days, and water level on previous 3–16 days 
control the current V.p concentration in oysters. 
The genetic programming-based nonlinear func-
tional relationships (time series ensembles) for 
antecedent SST, SSS, and water level improved 
model performance in terms of reducing MSE 
and increasing the correlation coefficient in com-
parison with current environmental predictors.

3.	 In addition to SST and SSS that are commonly 
included in existing models, water level, pH, 
chlorophyll-a, and turbidity are also important 
environmental predictors for V.p concentration in 
oysters.

4.	 The hybrid DNN-GP models are particularly use-
ful in terms of their classification capability as 
binary (presence/absence) classifier. The applica-
tion of the hybrid models would allow manage-
ment interventions and thereby potentially reduce 
the risk of V.p infection to human health.
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