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Abstract  Urban areas often struggle with deterio-
rated water quality because of complex interactions 
between landscape factors and climatic variables. 
However, few studies have considered the effects of 
landscape variables on water quality at a sub-500-m 
scale. We conducted a spatial statistical analysis of six 
pollutants for 128 water quality stations in four water-
sheds around Portland, Oregon, using data from 2015 
to 2021 for the wet season at two microscales (100 m 
and 250 m buffers). E. coli was associated with land 
cover, soil type, topography, and pipe length, while 
lead variations were best explained by topographic 
variables. Developed land cover and impervious sur-
face explained variations in nitrate, while orthophos-
phate was associated with mean elevation. Models for 
zinc included land cover and topographic variables 
in addition to pipe length. Spatial regression models 
better explain variations in water quality than ordi-
nary least squares models, indicating strong spatial 
autocorrelation for some variables. Our findings pro-
vide valuable insights to city planners and research-
ers seeking to improve water quality in metropolitan 
areas by manipulating city landscapes.

Keywords  Urban land use · Spatial analysis · 
Heavy metals · Nutrients · E. coli · Total suspended 
solids

Introduction

Many studies have examined spatial relationships 
of water quality patterns and landscape or anthro-
pogenic factors, concluding that the ability of land-
scape metrics to explain water quality depend largely 
on which spatial scale is used (Mainali et al., 2019). 
Mainali and Chang (2018) found that a 100-m scale 
and 1-km upstream scale best explained variations in 
water quality in a large river basin, while Shi et  al. 
(2017) found varying abilities of catchment, riparian, 
and reach scales to explain degraded water quality 
(Mainali & Chang, 2018; Shi et al., 2017). However, 
relatively few studies have examined relationships 
between water quality and landscape variables at mul-
tiple microscales (smaller than a 500-m radius buffer) 
within an urbanized region. Given that the urban 
landscape is spatially heterogeneous (Cadenasso 
et al., 2007), water quality can exhibit a large spatial 
and temporal variation within a city (and even within 
a neighborhood). Thus, it is important to understand 
what microscale landscape factors are associated with 
the variations (Sliva & Dudley Williams, 2001).

Water quality is in part determined by the presence 
of physical pollutants, both aqueous and particulate 
(Lintern et  al., 2018). Escherichia coli (E. coli) is a 
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fecal coliform that inhabits the intestinal tract of ani-
mals and humans and commonly contaminates water 
sources in areas of high population density, thus pos-
ing significant public health risks in urbanized envi-
ronments (Jang et  al., 2017). A 2018 evaluation by 
the City of Portland Bureau of Environmental Ser-
vices concluded that E. coli is the main pollutant that 
exceeds water quality standards in Portland streams 
and rivers, with the highest recorded concentrations 
occurring in the summer and during storms. This 
report contrasts with McKee et  al. (2020), whose 
study of recreational areas and the surrounding water-
shed in Atlanta, Georgia, found that E. coli concen-
trations were highest during the winter (McKee et al., 
2020). Spatial differences were observed for concen-
trations of E. coli concentrations in Portland as well; 
concentrations were found to be “significantly lower 
in the Willamette Streams and Columbia Slough” 
than in most other watersheds sampled in the Port-
land area (Fish & Jordan, 2018). Accounting for “land 
use and stormwater management policies” helps to 
explain variations in fecal coliform levels at a multi-
watershed scale in North Carolina (Vitro et al., 2017).

Phosphorus and nitrogen are organic nutrients 
that occur naturally in vegetation and soil, but excess 
amounts in water bodies can lead to eutrophication 
and subsequent water body impairment, among other 
ecosystem problems (Smith et  al., 1999). Although 
phosphorus and nitrogen excesses commonly result 
from agricultural runoff, they are also important pol-
lutants in urban environments (Billen & Garnier, 
1997; Sonoda et  al.,  2001; Withers et  al., 2014; Yu 
et  al., 2012). For instance, urbanized watersheds in 
St. Paul, Minnesota, were found to experience major 
pollution from household nitrogen and phosphorus 
runoff (Hobbie et  al., 2017). Furthermore, multi-
ple studies have found that a lack of street sweep-
ing for trees lining streets in urbanized areas greatly 
increases nitrogen and phosphorus loads in stormwa-
ter runoff (Taguchi et al., 2021). However, no previ-
ous studies examined the spatial variations in nutri-
ent concentrations in relation to various microscale 
landscape factors with spatially intensive monitoring 
data.

This study examines relationships between water 
quality, anthropogenic and landscape factors, and sea-
sonality at a microscale in Portland, Oregon, using a 
unique set of monitoring data. We address the follow-
ing research questions:

1.	 How do selected water quality parameter concen-
trations vary spatially between the wet and dry 
seasons? We expect that E. coli concentrations 
are likely to be highest in developed (including 
open and recreational) areas during the dry sea-
son, heavy metal concentrations are higher in the 
wet season for areas in close proximity to roads, 
and total suspended solids (TSS) concentrations 
are likely to be greatest in steep areas with high 
foot traffic.

2.	 Which landscape variables explain spatial vari-
ations in water quality between the wet season? 
We expect that areas with larger percentages of 
sandy clay loam soil are likely to be negatively 
associated with pollutant concentrations and that 
total storm pipe length would be positively asso-
ciated with pollutant concentrations. We antici-
pate that land cover variables such as impervious-
ness and road density are likely to be important 
explanatory variables of water quality in accord-
ance with previous literature.

Materials and methods

Study area

This study was conducted in the metropolitan area 
of Portland, Oregon, a city that has recently under-
gone accelerated population growth and urbaniza-
tion (Goodling et al., 2015; Jun, 2004). The region’s 
climate consists of relatively dry and warm summers 
and wet, cool winters. Average annual precipita-
tion and temperature are approximately 965 mm and 
12 °C, respectively (Chang, 2007; Cooley & Chang, 
2017). Historical climate and future climate projec-
tions show increasing winter precipitation intensities 
with rising air temperatures (Cooley & Chang, 2021), 
likely to result in increased surface runoff, which can 
potentially decrease water quality.

Local soil types vary widely in texture between 
clay, silt, silt/loam, and gravel, creating a range of 
sizes that impact water infiltration flow rates (Baker 
et al., 2019). Most of Portland is in low-lying foothills 
situated between the Columbia and Willamette Rivers 
(O’Donnell et al., 2020). Forest Park, a largely unde-
veloped, slightly higher-elevation conservation area 
popular with hikers and bicyclists, comprises much 
of the western side of the study area. The Columbia 
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Slough, a flat, low-elevation, slow-moving water 
body, comprises the northern side of the study area 
(Fig. 1). Many small urban streams have been heavily 
modified by human activities, resulting in rerouted, 
straightened, or buried streams (Post et  al., 2022). 
Previous studies have found significant seasonal and 
spatial variability in water quality for Portland’s water 
bodies, including the Columbia and Buffalo Sloughs 
(Fish & Jordan, 2018; McCarthy, 2006). Zinc con-
centrations generally increase downstream of Johnson 
Creek, while lead concentrations do not show clear 
spatial patterns (Chang et  al., 2019). While streams 
in Forest Park, Tryon Creek, and Johnson Creek are 
flash and fast-moving, flow in Columbia Slough is 
stagnant or slowly moving due to flat topography and 
wetlands.

Data

Water quality data were obtained from the City of 
Portland Bureau of Environmental Services’ Port-
land Area Watershed Monitoring and Assessment 
Program (PAWMAP) (City of Portland, 2019). The 

data originated from 128 water quality monitoring 
stations located on the outskirts of the City of Port-
land (Fig.  1), situated within the Willamette River, 
Columbia Slough, Johnson Creek, and Balch Creek 
watersheds. Pollutant concentration data were col-
lected according to the protocol developed by the 
United States Environmental Protection Agency 
(USEPA) through the Environmental Monitoring 
and Assessment Program (City of Portland, 2019; 
USEPA, 2019). Samples were analyzed in the City of 
Portland’s water chemistry laboratory following the 
standard USEPA methods for lead (EPA 200.8), zinc 
(EPA 200.8), nitrate (EPA 300.0), and orthophosphate 
(EPA 365.1). Standard Total Coliform Membrane Fil-
ter Procedure (SM9222G) was used for E. coli, and 
standard methods SM2540D (total suspended solids 
dried at 103–105 ˚C) was used for total suspended 
solids, respectively (Supplementary Table 2A).

Generally, water quality measurements were 
taken for at least one monitoring station at least 
once a month by the City of Portland from July 2015 
through May 2021. The PAWMAP program routinely 
rotates active stations, which include 20 perennial 

Fig. 1   Distribution of 
PAWMAP water quality 
station locations around the 
City of Portland used in the 
study. The lack of streams 
in the center of the study 
area reflects the outcome 
of removing, piping, and 
burying streams in the mid-
twentieth-century urban 
development plans (Post 
et al., 2022)
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and 12 intermittent stations; as such, the complete-
ness of data varied, with some station records con-
taining data for multiple years, and others for less 
than 1 year (City of Portland, 2019). Thus, we had to 
take into account the possibility of interannual varia-
tion when analyzing means for each station. Further-
more, no station data was documented from March 
through most of May of 2020, likely due to the onset 
of the COVID-19 pandemic in the USA in March 
2020, which temporarily impeded field work (Oregon 
Department of Transportation, 2021).

Six water quality parameters representing physical, 
chemical, and biological importance were selected 
for this study: E. coli (MPN/100  mL), lead (ug/L), 
nitrate (mg/L), orthophosphate (mg/L), total sus-
pended solids (TSS) (mg/L), and zinc (ug/L). Nitrate 
and orthophosphate were chosen because they were 
reported more frequently in the dataset compared to 

other measures of nitrogen and phosphorus. Most 
but not all data entries reported consistent detection 
limits for each pollutant; thus, majority detection lim-
its are reported in Figs.  3 and 4 and Supplementary 
Table  2A, B. The data available to us measured E. 
coli directly as opposed to fecal coliform levels as a 
proxy, providing an uncommon opportunity to meas-
ure a water pollutant of direct relevance to human 
health (Vitro et al., 2017).

Explanatory spatial variables

Explanatory variables were chosen based on hypothe-
sized relationships with water quality (Table 1). Using 
ESRI ArcGIS Desktop 10.8, we initially defined a cir-
cular buffer area of 100  m in diameter around each 
water quality station to derive explanatory variables 
(Table 1) (ESRI, 2021). We chose the 100-m distance 

Table 1   Landscape characteristics selected as potential explanatory variables and summarized literature review of variable relation-
ships with water quality

*Evaluated from station XY coordinates without consideration of buffer area
**Evaluated only at the 250-meter scale

Variable Relationship with pollutant 
concentration

Supporting literature Data source

Land cover
Imperviousness (%) ( +) Brabec et al. (2002); 

Salerno et al. (2018)
Dewitz and U.S. Geological 

Survey (2021)
    Developed (%) ( +) Brabec et al. (2002)  Dewitz and U.S. Geological 

Survey (2021)
    Forested (%) ( −) Shi et al. (2017) Dewitz and U.S. Geological 

Survey (2021)
Infrastructure
    Total storm pipe length (meters)☥ ( +) Hatt et al. (2004);  

Meierdiercks et al. (2017)
Oregon Metro (2021)

    Total road length (meters) ( +) Hallberg et al. (2007); 
Huber et al. (2016)

Oregon Metro (2021)

Soil and geomorphology
    Hydrologic soil group C (sandy 

clay loam) (%)
(+ / −) Phillips et al. (2019);  

Wilson et al. (2015)
USDA NRCS (2019)

    Mean slope (meters) ( +) (undeveloped)
( −) (developed)

Lintern et al. (2018) City of Portland (2008)

    Standard deviation in slope (meters) ( +) (undeveloped)
( −) (developed)

Lintern et al. (2018) City of Portland (2008)

    Mean elevation (meters) ( +) (undeveloped)
( −) (developed)

Kim et al. (2015); Lintern 
et al. (2018)

City of Portland (2008)

    Standard deviation in elevation ( +) (undeveloped)
( −) (developed)

Lintern et al. (2018) City of Portland (2008)

    Stream order* ( +) Lintern et al. (2018) Derived from 3-foot DEM from 
the City of Portland (2008)
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to avoid spatial overlap in buffer area between sta-
tions that are in close proximity to one another, and 
the circular buffer area was deemed adequate because 
of the relatively flat, urban land cover of the areas sur-
rounding the water quality stations. However, some 
explanatory variables, road length and pipe length, 
became insignificant at the 100-m scale. Therefore, 
we introduced a 250-m-diameter circular buffer scale, 
with the added benefit of allowing for a multiscalar 
analysis at the microscale by comparing the 100-m 
scale to the 250-m scale (Fig. 2).

We calculated all candidate explanatory variable 
measurements for each water quality station at the 
250-m and 100-m buffer scales (pipe length was ulti-
mately calculated only at the 250-m scale because of 
the lack of pipe presence at the 100-m scale). While 
it is more appropriate to use catchment scale in 
more natural settings, since our study region’s flow 
paths are heavily modified by anthropogenic activi-
ties such as storm pipes and disappeared streams 
(Post et  al., 2022), we used circular buffers for our 
analysis. Also, PAWMAP sampling sites are found 
within areas with heterogeneous land cover, allow-
ing for substantial variation in explanatory variable 
measurements. Strahler stream order was calculated 

using ArcGIS Hydrology tools in the Spatial Analyst 
toolkit (Horton, 1945; Strahler, 1952).

For land cover variables, we defined “developed” 
to be the total percentage of pixels classified as 
“Developed” by the NLCD land cover classification 
system, which included four categories of varying 
development intensities (i.e., amounts of impervious 
surface) (Dewitz & U.S. Geological Survey,  2021). 
Despite correlation between imperviousness and 
developed land cover types, we included both vari-
ables as candidate predictors because developed land 
encompassed a wide range of urban land use types. 
As shown in Supplementary Table 1, developed land 
areas include much of open and low-density devel-
oped areas, which can potentially function as a sink 
of pollutants as well as sources.

We defined wet season measurements as any data 
recorded in October through April, and dry season 
measurements as any data recorded in May through 
September, considering rainfall distribution in the 
study region (Chang et  al., 2021). Mean pollut-
ant concentrations for each station were calculated 
after we evaluated relative amounts of interannual 
variation in pollutant concentration for each station, 
which creates some inherent noise in our analysis 

Fig. 2   Microscale deline-
ation at the 100-m and 
250-m scale around each 
water quality station 
through which explana-
tory variable metrics were 
calculated. Background 
demonstrates streams and 
30-m resolution NLCD land 
cover raster data
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(Supplementary Table  2). We only considered sta-
tions with at least three measurements taken in the 
duration of the study period, which consisted of 36 
stations in the dry season and 128 stations in the wet 
season. Most of the eligible stations exhibited pollut-
ant concentrations that were consistently high or low 
(i.e., standard deviation less than the mean for each 
pollutant for each station). Furthermore, most of the 
mean concentrations for each of these stations was 
above the detection limit for that pollutant. Only dry 
and wet season measurements for the 36 stations with 
at least three measurements for both seasons were 
analyzed for spatial variation in pollutants, excluding 
the other 92 eligible wet season stations for the pur-
pose of direct seasonal comparison (Fig. 3a, b).

Statistical analysis

We used R version 4.1 to observe the distribution shape 
of pollutant concentrations across stations and produce 
pairwise correlation coefficients for explanatory and 
dependent variables. We tested the correlation between 
explanatory and dependent variables at the 95% con-
fidence interval (RStudio Team, 2021). We used the 
Spearman rank correlation analysis for all correlation 
tests, to account for possible non-linear trends in water 
quality measurements (Shrestha & Kazama, 2007). We 
then generated heatmaps for each season at the 100-m 
and 250-m scales for visual comparison.

Because of the lack of data in the dry season, we 
only performed regression analysis for measurements 
taken in the wet season. Upon observing that the con-
centrations for E. coli, lead, nitrate, orthophosphate, 
TSS, and zinc were positively skewed, we applied the 
transformation log10(concentration + 1) to the origi-
nal data when performing regression analysis. We 
introduced multiple linear regression to evaluate the 
influence of multiple landscape factors on each pol-
lutant. To rule out autocorrelated explanatory vari-
ables when determining the model that best explains 
variations in pollutant concentrations, we employed 
the Exploratory Regression Tool in ArcMap. This 
geoprocessing tool takes a shapefile input and applies 
the Global Moran’s I spatial autocorrelation test to 
models that fit user-specified criteria (e.g., minimum 
R2 value and minimum Jarque–Bera p-value) to pro-
duce candidate ordinary least squares (OLS) models 
for analysis. For this preliminary step, we used the 
k-nearest neighbor’s approach with k = 8, the default 

value, to calculate spatial weights for Global Moran’s 
I. We recorded the “best model” for each pollutant in 
the wet season based on highest R2, lowest Akaike 
information criteria, and variation inflation factor 
(VIF) value less than 10 (Kutner et al., 2004).

We created a weights matrix for the wet season 
measurements (n = 128) in GeoDa using the distance 
band method and the software’s default bandwidth 
value. We input the best OLS model detected by 
exploratory regression into GeoDa 1.18.10’s Regres-
sion tool, running the tool twice more to incorporate 
the weights matrix for the spatial lag and spatial error 
models (Matthews, 2006). From the results output, 
we formatted the variable coefficients into multiple 
linear regression equations (Table 2).

Results

Spatial variations of pollutants

There were clear seasonal differences in mean pollutant 
concentrations across different regions in the study area 
when averaged across all measurements for each season. 
In both the wet and dry seasons, mean E. coli concen-
trations tended to be higher in Portland’s southern met-
ropolitan area. However, the area around the Columbia 
Slough demonstrated higher E. coli concentrations in the 
dry season than in the wet season (Fig. 3a).

Lead concentrations tended to be high in the mid-
dle of the study area close to Interstate Highways 5 
and 405, but more stations overall, exhibited higher 
concentrations in the wet season than in the dry sea-
son (Fig. 3a). Similar to lead, overall mean zinc con-
centrations were higher in the wet season, with the 
southern study area exhibiting the highest concentra-
tions in both seasons (Fig. 3b).

Mean nitrate concentrations were consistently 
higher by the Columbia Slough and a small developed 
area directly east of the Willamette River in both sea-
sons, although overall concentrations were higher in 
the wet season (Fig. 3a). Mean orthophosphate con-
centrations were highest in the dry season and were 
consistently high in the same area around the south 
part of the Willamette River in both seasons (Fig. 3b). 
There did not appear to be clear seasonal variation 
in TSS concentrations at the scale of the study area, 
although certain areas were consistently high in both 
seasons (Fig. 3b).
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Fig. 3   a Relative proportions of mean E. coli, lead, and nitrate 
concentrations for each water quality station with background 
NLCD Land Cover Classification (National Land Cover Data-
base 2019  | NLCD, 2019  Legend, n.d.). Larger circles cor-
respond to higher mean concentrations. DL, detection limit 

(majority value). b Relative proportions of mean orthophos-
phate, TSS, and zinc concentrations for each water quality sta-
tion with background NLCD land cover classification (Dewitz 
& U.S. Geological Survey, 2021). Larger circles correspond to 
higher mean concentrations. DL, detection limit (majority value)
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Fig. 3   (continued)
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Table 2   Ordinary least squares and spatial regression results for each pollutant in the wet season

Pollutant concentrations were transformed using log10(concentration + 1). Explanatory variables for each regression are 
listed in order of significance. R2 values are equivalent to adjusted R2 for OLS only. AIC = Akaike Information Crite-
ria, OLS = Ordinary least squares, SL = Spatial lag, SE = spatial error; W_“pollutant”_“ season”= spatial lag coefficient; 
LAMBDA_“pollutant”_“season” = spatial error coefficient. Table adapted from Mainali and Chang (2018) (Mainali & Chang, 2018)
*insignificant at the 90% confidence level
**insignificant at the 95% confidence level

Model R2 AIC Equation

E. coli OLS 0.44 93.75 1.45 + 0.0052(developed_250m)—0.055(mean_slope_250m) + 0.12(std_dev_
slope_250m)—0.0022(soil_100m) + 0.072(stream_order)

SL 0.50 87.97 0.0042(developed_250m) + 0.11(std_dev_slope_250m)—0.049(mean_
slope_250m) + 0.86 + 0.35(W_ecoli_wet) + 0.070(stream_order)—
0.0018(soil_100m)

SE 0.49 88.17 1.47 + 0.0051(developed_250m) + 0.10(std_dev_slope_250m)—0.045(mean_
slope_250m) + 0.39(LAMBDA_ecoli_wet)—0.0025(soil_100m) + 0.066(stream_
order)

Lead OLS 0.15 -209.42 0.12 + 0.00015(pipe_length) + 0.0011(mean_elev_100m) + 0.022(std_dev_
slope_250m)—0.0097(mean_slope_250m)—0.00097(impervious_100m)

SL 0.22 -212.50 0.00015(pipe_length) + 0.022(std_dev_slope_250m) + 0.33(W_lead_wet)—
0.0097(mean_slope_250m) + 0.0011(mean_elev_100m) + 0.12*—0.00097(imperv
ious_100m)**

SE 0.22 -213.57 0.12 + 0.00014(pipe_length) + 0.023(std_dev_slope_250m) + 0.0010(mean_
elev_100m)—0.0094(mean_slope_250m) + 0.33(LAMBDA_lead_wet)—
0.00087(impervious_100m)*

Nitrate OLS 0.14 -131.64 0.46—0.0025(developed_250m) + 0.0030(impervious_100m)
SL 0.19 -135.79 0.14—0.0021(developed_250m) + 0.0028(impervious_100m) + 0.33(W_nitrate_wet)
SE 0.18 -136.60 0.44—0.0022(developed_250m) + 0.0025(impervious_100m) + 0.28(LAMBDA_

nitrate_wet)
Orthophosphate OLS 0.13 -881.09 0.014—9.21E-5(mean_elev_250m) + 5.12E-5(soil_100m) + 0.0029(std_dev_elev_1

00m) + 4.23E-5(developed_250m)
SL 0.32 -899.98 0.54(W_ortho_wet) + 0.0077—7.01E-5(mean_elev_250m) + 0.0019(std_dev_elev_1

00m)* + 2.22E-5(developed_250m)** + 1.76E-5(soil_100m)**
SE 0.33 -903.33 0.66(LAMBDA_ortho_wet) + 0.021—7.25E-5(mean_elev_250m) + 0.0014(std_

dev_elev_100m)** + 2.67E-5(developed_250m)**—1.81E-5(soil_100m)**
Total suspended solids OLS 0.08 25.06 1.03—0.0033(impervious_250m) + 0.00029(pipe_length)—0.061(std_dev_

slope_100m) + 0.044(std_dev_slope_250m)
SL 0.12 26.54 0.89—0.061(std_dev_slope_100m) + 0.00028(pipe_length)—

0.0030(impervious_250m) + 0.046(std_dev_slope_250m) + 0.13(W_tss_wet)**
SE 0.12 24.67 1.02—0.061(std_dev_slope_100m) + 0.00029(pipe_length)—

0.0032(impervious_250m) + 0.047(std_dev_slope_250m) + 0.12(LAMBDA_tss_
wet)**

Zinc OLS 0.33 42.87 0.0060(developed_250m) + 0.47—0.0073(impervious_100m)—
0.032(mean_slope_100m) + 0.069(std_dev_slope_250m) + 0.00029(pipe_
length) + 0.0018(soil_250m)

SL 0.46 27.05 0.47(W_zinc_wet) + 0.0046(developed_250m)—
0.0054(impervious_100m) + 0.062(std_dev_slope_250m)—0.024(mean_
slope_100m) + 0.00026(pipe_length) + 0.0011(soil_250m)** + 0.12**

SE 0.47 26.56 0.59(LAMBDA_zinc_wet) + 0.0054(developed_250m) + 0.47 + 0.056
(std_dev_slope_250m)—0.0042(impervious_100m)—0.019(mean_
slope_100m)* + 0.00023(pipe_length)* + 0.00097(soil_250m)**
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Correlation analysis

More variables were significantly correlated in the 
wet season than in the dry season. In the wet season 
at both scales, E. coli, followed by zinc, was associ-
ated with the highest number of explanatory variables 
at the 95% confidence level (Fig.  4a, c). The strong-
est correlations in the wet season occurred between 
E. coli and percent developed ( +), percent forested  
( −), and percent imperviousness ( +) at both scales. 
Zinc was correlated most strongly with pipe length 
( +), road length ( +), and percent developed ( +). 
Orthophosphate was most strongly correlated with 
pipe length ( +) and mean elevation ( −) at the 250-m 
scale in the wet season. Pipe length was positively  
associated with all dependent variables in the wet 

season except nitrate, which showed negative correla-
tion, and TSS, which showed no significant correla-
tion. Lead was only significantly correlated with road 
length and pipe length in the wet season, the latter 
only at the 250-m scale. Nitrate and TSS were barely 
correlated with any candidate predictors in the wet 
season.

Somewhat different explanatory variables were 
correlated with water quality parameters in the dry 
season than in the wet season. E. coli continued to 
demonstrate the highest number of significant asso-
ciations with explanatory variables, while lead was 
negatively associated with mean slope and mean 
elevation, but the latter only at the 250-m scale 
(Fig.  4b, d). Orthophosphate was positively associ-
ated with percent forested and negatively associated 

a) b)

c) d)

Fig. 4   a-d Spearman rank correlation coefficient heatmaps for 
the 100-meter and 250-meter scales in the wet (n = 128) and 
dry seasons (n = 36). Correlation values significant at the 95% 

confidence level are shown in black while insignificant values 
are in gray. OP = orthophosphate; TSS = total suspended sol-
ids.
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with percent imperviousness at the 250-m scale. Pipe 
length and road length were less significant overall in 
the dry season than in the wet season, although zinc 
was still positively associated with pipe length. There 
were no significant correlations between explanatory 
variables and nitrate or TSS in the dry season.

Correlations between pollutants and explanatory 
variables did not necessarily increase at the 250-m 
scale compared to the 100-m scale. Slope and eleva-
tion measures became more significant at the 250-m 
scale, especially in the dry season. In the dry season, 
nitrate and TSS were significantly correlated with 
more variables at the 250-m scale than at the 100-m 
scale. In the wet season, orthophosphate was signifi-
cantly correlated with more variables at the 250-m 
scale than at the 100-m scale.

Exploratory regression analysis

The model with the highest R2 value was produced for 
E. coli (Table 2). As demonstrated through the impor-
tance of spatial weights terms and improvements in 
R2 values and reductions in AIC values for the spa-
tial error/spatial error models, E. coli concentrations 
exhibited a relatively low amount of spatial auto-
correlation in the wet season (Table  2). Significant 
explanatory variables in the wet season were percent 
developed (250  m) ( +), standard deviation in slope 
(250 m) ( +), mean slope (250 m) ( −), stream order 
( +), and percent soil group C (100 m) ( −) (Table 2). 
The E. coli model was the only model to include 
stream order as a significant explanatory variable.

Models for lead exhibited relatively high spa-
tial autocorrelation in the wet season (Table 2). Pipe 
length ( +) was the most significant predictor of lead, 
followed by standard deviation in slope (250 m) ( +), 
mean slope (250 m) ( −), and mean elevation (100 m) 
( +) (Table  2). R2 values were relatively low, indi-
cating that most of the variation in lead concentra-
tion between water quality stations was unable to be 
explained using the chosen predictors.

Nitrate exhibited slightly lower spatial autocorre-
lation than lead, although like lead, models had rela-
tively low R2 values (Table 2). All selected explana-
tory variables were significant at the 0.05 level for 
all models in both the wet and dry seasons. Signifi-
cant explanatory variables were percent developed 
(250  m) ( −) and percent imperviousness (100  m) 
( +) (Table  2). Orthophosphate demonstrated strong 

spatial autocorrelation, indicated by leading spatial 
terms, significant decreases in AIC values, and large 
increases in R2 values for the spatial lag/spatial error 
models (Table  2). Significant explanatory variables 
for the spatial lag and spatial error models at the 0.05 
level were mean elevation (250 m) ( −) and standard 
deviation in elevation (100 m) ( +) (Table 2). Percent 
soil group C (100  m), standard deviation in eleva-
tion (250 m), and percent developed (250 m) became 
insignificant when the spatial models were applied, 
suggesting that these variables are highly spatially 
autocorrelated.

TSS models had low R2 values compared to models 
for other pollutants, but all selected explanatory vari-
ables were significant at the 95% confidence level and 
spatial autocorrelation was low (Table 2). Significant 
explanatory variables for spatial lag/spatial error mod-
els at the 95% confidence level were standard devia-
tion in slope (100 m) ( −), pipe length ( +), and per-
cent imperviousness (250 m) ( −) (Table 2). Standard 
deviation in slope at the 250-m scale ( +) was border-
line significant for the spatial lag/spatial error models.

Models for zinc exhibited relatively strong spatial 
autocorrelation, with leading spatial terms, decreases 
in AIC values, and large increases in R2 values for 
the spatial lag and spatial error models (Table 2). Six 
explanatory variables best modeled zinc, more than 
for all other pollutants. Significant explanatory vari-
ables were percent developed (250  m) ( +), percent 
imperviousness (100  m) ( −), standard deviation in 
slope (250 m) ( +), mean slope (100 m) ( −), and pipe 
length ( +), the last of which bordered on insignificant 
for the spatial regression models. Percent soil group 
C became insignificant when spatial models were 
applied, suggesting that there is significant spatial 
autocorrelation attributable to this variable.

Discussion

Spatial and seasonal variation in water quality

E. coli

As averaged for each water quality station over the 
study period, E. coli concentrations were highest in 
the southern portion of the study area, which encom-
passes the Tryon Creek State Natural Area in addition 
to a number of Portland suburban neighborhoods, yet 
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were comparatively low in many parts of the north-
western portion, which includes Forest Park, a natu-
ral area frequented by hikers and their pets (Fig. 3a, 
b). As such, E. coli contamination appears to be het-
erogeneous even across recreational areas within the 
same geographic locale, complicating our hypoth-
esis that recreational areas in general will experience 
higher E. coli contamination than non-recreational 
areas. This unexpected pattern may result in part from 
the significance of slope variables and stream order 
in wet season E. coli models (Table 2). The negative 
association with mean slope and positive associa-
tion with stream order in the wet season indicate that 
E. coli organisms tend to proliferate most in high-
order, low-elevation streams during seasonal periods 
of increased streamflow. Positive associations with 
standard deviation of slope might relate to the forma-
tion of puddles that form in the wet season for areas 
with more irregular inclines and facilitate E. coli sur-
vival. E. coli exhibited higher concentrations in the 
dry season, which previous research has suggested is 
related to warmer summer temperatures that enable 
growth (Chen & Chang, 2014). However, a recent 
study of southern Oregon wetlands found that E. coli 
concentrations were much more associated with live-
stock grazing than with seasonality, which calls for an 
examination of whether increased outdoor recreation 
and animal activity in the summer months as opposed 
to inherent seasonal climatic variation predominantly 
influence seasonal variation in E. coli within Portland 
urban and suburban areas (Smalling et al., 2021).

Heavy metals

As hypothesized, both lead and zinc were positively 
associated with road length and pipe length nega-
tively associated with mean slope, and positively 
associated with standard deviation in slope, com-
plementing a recent Portland City report that heavy 
metal concentrations were correlated with each other 
in Portland area watersheds (Fish & Jordan, 2018). 
However, R2 values were relatively low, particularly 
for lead, raising further questions about the differ-
ences in landscape and anthropogenic factors that 
contribute to lead as opposed to zinc contamination 
in the study area (Ramirez et al., 2022). However, the 
same report noted that heavy metals were also corre-
lated with total suspended solid concentrations. Pipe 
length and percent imperviousness are significant 

predictors for both lead and TSS in the wet season, 
similar to the findings of previous work that focused 
on Johnson Creek (Chang et al., 2019).

Despite previous literature tracing zinc to the dete-
rioration of asphalt, car tires, and brake pads, road 
length was not included in models for zinc (Sörme 
& Lagerkvist, 2002). Other sources of zinc, such as 
industrial operations and galvanized building mate-
rials, have been found to be significant contributions 
to storm runoff and thus should be investigated as 
potential influencing factors in future studies (Brown 
& Peake, 2006; Sörme & Lagerkvist, 2002). These 
sources of zinc would occur in highly developed 
areas with anthropogenic activities, but not necessar-
ily around roads and other areas of high impervious 
surface.

Nutrients

Developed area and impervious surface best explained 
variations in nitrate for both seasons, even as devel-
oped area was negatively associated and impervious 
surface positively associated with nitrate. This unex-
pected relationship with percent imperviousness and 
percent developed may result from the disproportion-
ate placement of water quality monitoring stations in 
or near parks and other urban green spaces, which the 
NLCD land cover classification system nevertheless 
designates as “Developed-Open Space” for areas with 
less than 20% impervious surface (Dewitz & U.S. 
Geological Survey, 2021) (Supplementary Table  1). 
Low-intensity developed areas include open spaces, 
which may serve as nitrogen sinks with a buffering 
effect. At the same time, impervious surfaces such 
as urban and suburban roads and sidewalks facilitate 
increased nitrogen runoff despite lower densities of 
vegetation. Important nitrogen sources in urban areas 
include household fertilizer and dead leaves from 
urban street trees, as documented by previous studies 
(Hobbie et al., 2017; Taguchi et al., 2021).

The positive association of orthophosphate with 
developed area for the OLS model may relate to low-
intensity developed areas serving as a source for phos-
phate from lawn fertilizer applications, while positive 
relationships with soil type C may have to do with low 
infiltration rates creating higher overland flow. How-
ever, soils in developed areas are spatially autocorre-
lated, causing them to become insignificant in spatial 
regression models. The lack of significant explanatory 
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variables for spatial lag and spatial error models in 
either season indicates that there are factors unex-
plored in this analysis that affect phosphorus concen-
trations. Such factors might include high flow events 
and decreased drainage density, which was found to 
reduce nutrient runoff in urbanized watersheds (Pratt 
& Chang, 2012). For instance, decreased drainage 
density reduces nutrient runoff in urbanized water-
sheds, and locally, high phosphorus levels in Fanno 
Creek, on the outskirts of our study area, are known 
to increase total phosphorus concentrations during 
storms (Anderson & Rounds, 2002; Meierdiercks 
et al., 2017).

Total suspended solids (TSS)

TSS concentrations did not follow any clear spatial 
patterns between regions of the study area. However, 
there was a negative association between TSS and 
standard deviation in slope, indicating that unpaved 
areas with consistent inclines tend to have higher 
concentrations with TSS. This is consistent with our 
prediction that areas with high foot traffic have the 
greatest TSS concentrations, as less paved areas are 
more likely to deposit sediment. This result is further 
supported by Pratt and Chang’s findings that standard 
deviation of slope is negatively associated with total 
solids across seasons and scales for watersheds in 
the greater Portland, Oregon region (Pratt & Chang, 
2012; You et al., 2019). Furthermore, Lintern et al.’s 
literature review also suggests a negative correlation 
of slope with TSS for developed areas (Lintern et al., 
2018). The failure of spatial regression tools to find 
a model with adequate explanatory power for TSS 
suggests that analysis of TSS concentrations at this 
microscale may require including additional explana-
tory variables accounting for human activity—for 
instance, population density (Xu et al., 2021).

Predictive power of landscape variables

Percent developed, percent imperviousness, and 
percent forested had the highest Spearman correla-
tion coefficients overall, emphasizing the impor-
tance of land cover on water quality variability even 
at the microscale. However, the spatial lag and spa-
tial error models confirmed that percent impervious-
ness and percent developed were spatially autocor-
related, which decreased their explanatory power for 

orthophosphate in both seasons and zinc in the dry 
season. In the dry season at the 250-m scale, pipe 
length and road length exhibited high positive cor-
relation with E. coli. Thus, it is interesting that road 
length was not a significant predictor of any pollutant 
in the spatial regression, although this could be due to 
correlations between pipe and road density ruling out 
road length as a predictor.

Hydrologic soil group C was negatively corre-
lated with E. coli and TSS for the Spearman tests in 
the wet season. However, for all other spatial lag and 
spatial error models, soil group C was ruled out as a 
significant predictor when it was initially included in 
OLS models; in other words, soil group C is highly 
spatially autocorrelated within the study area, thus 
reducing our ability to assess the predictive power of 
hydrologic soil group using the assumptions of lin-
ear regression. Because hydrologic soil group C has 
“relatively high runoff potential” when wet, negative 
correlation with E. coli suggests that even relatively 
impermeable soil still serves a purpose in influencing 
E. coli concentrations (Phillips et  al., 2019; USDA, 
2007). Furthermore, soil is also a growth medium for  
E. coli under certain conditions and E. coli trans-
port through soil is a function of soil water content  
(Byappanahalli & Fujioka, 1998; Dwivedi et al., 2016).  
Future studies evaluating the effects of hydrologic 
soil group on E. coli colony formation would benefit 
analysis in this regard.

Scale effects

The 250-m scale produced a higher number of signifi-
cant correlations and higher correlation coefficients 
between water quality parameters and explanatory 
variables in both seasons, suggesting that a larger 
microscale is more indicative of water quality than 
a more immediate microscale, at least when using a 
circular buffer. Future studies could employ multi-
ple riparian buffers to further compare spatial deter-
minants of water quality across microscales (Pratt 
& Chang, 2012). Such studies should also calculate 
landscape fragmentation metrics using software such 
as FRAGSTATS (McGarigal & Marks, 1995) for 
more robust explanatory power (Chang et  al., 2021; 
Fernandes et al., 2019).

Because we conducted analysis at the microscale, 
we were unable to incorporate sociodemographic fac-
tors as explanatory variables in our analysis of water 

Page 13 of 17    219



Environ Monit Assess (2023) 195:219

1 3
Vol:. (1234567890)

quality. Another important next step of this research 
is to perform a multi-level analysis at the census 
block group scale to evaluate how income, race, edu-
cation, and other socioeconomic variables are associ-
ated with water quality parameters at multiple spatial 
scales (Baker et  al., 2019; Chan & Hopkins, 2017; 
Garcia-Cuerva et al., 2018).

Conclusions

Correlation and spatial regression analyses were 
conducted for samples of six pollutants originating 
from 128 water quality stations around the Portland, 
Oregon area, from 2015 to 2021. We examined the 
ability of various land cover, infrastructure, and soil 
and geomorphological factors to act as explana-
tory variables at the microscale between the wet 
and dry seasons. We found that there were seasonal 
and spatial differences in water quality parameters 
that can be attributed to differences in land use and 
land cover at the chosen scale, which were often 
associated in opposite directions from initial Spear-
man correlation coefficients. Using a distance band 
weights matrix, spatial lag and spatial error models 
best explain variations in water quality and uncov-
ered strong spatial autocorrelation for hydrologic 
soil group C, imperviousness, and percent devel-
oped variables. E. coli was associated with land 
cover, soil group C, and topographic variables, 
while pipe length primarily explained variations in 
lead concentrations. Nitrate was primarily affected 
by percent developed area as well as impervious 
surface in both seasons. Spatial regression mod-
els for orthophosphate ruled out several strongly 
spatially autocorrelated predictors, though mean 
elevation maintained a negative association. Total 
suspended solids were also affected by topographic 
variables and pipe length. Models for zinc included 
topographic variables in the wet season and land 
cover variables in both seasons.

Unexpected relationships of imperviousness and 
developed area with pollutants might result from 
the large amount of urban green spaces in Port-
land, which we considered “developed” but with 
low amounts of impervious surface. To address this 
result, our methodology could be modified to better 
evaluate the effects of the amount of development 

on pollutant concentrations. Observations of the 
effects of hydrologic soil group C on water quality 
were limited by spatial autocorrelation that ruled 
out significance, although multiple OLS models 
included soil as a significant variable. By incor-
porating precipitation data and comparing other 
hydrologic soil groups in the future, we could bet-
ter examine the effects of hydrologic soil groups on 
concentrations of E. coli and other pollutants.

Our research adds to the body of knowledge 
regarding local hydrology, urban infrastructure, 
and ecosystem services in Portland, Oregon. Facing 
unprecedented environmental and social challenges 
as a result of climate change, city planners hoping to 
improve water quality in metropolitan areas can uti-
lize the findings of this study to better evaluate water 
pollution in a metropolitan city with. Researchers in 
the field can use findings from this study to under-
stand how anthropogenic and natural variables inter-
act to affect water quality across space and time.
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