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trend analysis, and a linear regression model. The 
current work additionally uses advanced machine 
learning techniques like random forest (RF) to esti-
mate flow regimes using historical time series data. 
1992 appears to be a yard mark in this continuum 
of time series datasets, indicating a significant trans-
formation in the streamflow regime. The MK test as 
well as Spearman’s rho was used to find a signifi-
cant negative trend for the average (−0.57), maxi-
mum (−0.62), and minimum (−0.48) flow regimes. 
The consistency of the flow regime has been los-
ing consistency, and the variability of flow regime 
has increased from 2.1 to 6.7% of the average water 
level, 1.5 to 6.5% of the maximum streamflow, and 
3.1 to 5.8% of the minimum streamflow in the post-
change point phase. The forecast trend using random 
forest for streamflow up to 2030 are negative for all 
four seasons with a flow volume likely to be reduced 
by 0.67% to−5.23%. Annual and monthly stream-
flows revealed very negative tendencies, according 
to the conclusions of unique trend analysis. Flow 
declination of this magnitude impacts downstream 
habitat and environment. According to future esti-
mates, the seasonal flow will decrease. Furthermore, 
the outcome of this research will give a wealth of 
data for river management and other places with 
comparable environment.

Keywords Trend analysis · Change point detection · 
Machine learning algorithm · Random forest · River 
system

Abstract Streamflow rate changes due to dam-
ming are hydro-ecologically sensitive in present 
and future times. Very less studies have done an 
investigation of the damming effect on the stream-
flow along with future forecasting, which can be the 
solution for the existing problems. Therefore, this 
study aims to use the Pettitt test as well as stand-
ard normal homogeneity test (SNHT) to discover 
trends in streamflow with the future situation in the 
Punarbhaba River in Indo-Bangladesh from 1978 to 
2017. Trend was spotted using Mann–Kendall test, 
Spearman’s rank correlation approach, innovative 
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Introduction

Climate change and anthropogenic activities are 
major influential factors determining the state of 
hydrological processes, and these circumstances 
are observational facts from different parts of the 
world (Huntington, 2006). One of the major causes 
of declining water resource availability and shift-
ing worldwide geographical distribution is climate 
change (Kundzewicz et  al., 2008; Nassery et  al., 
2021; Roy et al., 2020). Global warming is acting as a 
medium in climate change and hastens the unpredict-
ability of the atmospheric variables (Arnell, 1999). 
Climate change and anthropogenic activities, includ-
ing land use and land cover (LULC) changes, indus-
trialization, and infrastructure developments, have 
altered hydrological processes. These are collectively 
responsible for bringing noteworthy changes to water 
resources globally (Qin et  al., 2014). According to 
Walling and Fang (2003), rivers accounting for 22% 
of the world have experienced a noticeable amount 
of declination of the annual streamflow in recent 
decades, and this decrease is due to excessive water 
use, diversion, and reservoir construction, resulting 
in considerable environmental problems. Anthropo-
genic activities have caused streamflow alteration. 
Consequently, it invites hydro-ecological stress and 
complexity in LULC (Li et  al., 2009; Nada et  al., 
2021).

River water-lifting for urban uses (Rose & Peters, 
2001), green water harvesting (Pal, 2016a, b), instal-
lation of dams and barrages over rivers, and diver-
sion of water through canals (Pal & Saha, 2018; Pal, 
2016a; Talukdar & Pal, 2017), and massive with-
drawal of water through river lifting for irrigation 
(Talukdar & Pal, 2018) are some prominent examples 
of hydrological alteration. Therefore, several scholars 
from different countries have explored the historical 
time series of climatic parameters and hydrologic 
parameters for the identification of change points and 
trend detection to explore the effects of changing cli-
mate and urbanization as well as installation of engi-
neering infrastructures over rivers (Guo et al., 2020; 
Talukdar & Pal, 2020; Tan & Gan, 2015). Many aca-
demics are looking into detecting streamflow trends, 
which can help with understanding the reasons of past 
changes and bring fresh insights into management of 
water resources and water environmental conserva-
tion (Rougé et al., 2013; Zhang et al., 2015).

In the last decades, scholars have researched the 
detection of trends from time series climatic (rain-
fall, temperature, humidity) and hydrologic (stream-
flow) parameters using the linear regression model, 
Mann–Kendall (MK) test, modified MK test, and 
Spearman’s rho (Praveen et  al., 2020; Ouatiki et  al., 
2019; Dinpashoh et  al., 2019; Birara et  al., 2018; 
Bisht et  al., 2019). Furthermore, Topaloglu (2006) 
assessed the trends in annual maximum, minimum, 
and mean streamflow, as well as monthly mean 
streamflow, in 26 Turkish basins using the MK test 
and found a positive trend in basin numbers 14–16 
and 22–25; the rest of the basin also show a down-
ward trend. Yenigün et  al. (2008) applied the MK 
test and Spearman’s rho for trend detection in the 
streamflow of the Euphrates River basin. Cigizoglu 
et al. (2005) worked on Turkish rivers to detect low, 
mean, and high streamflow trends using the paramet-
ric t-test and the MK test. They reported that a posi-
tive trend was detected at a few stations. The rest of 
them were detected as a negative trend. Fathian et al. 
(2016) used the MK test, Spearman’s rho, SMK test, 
and TS method to identify the trend and magnitude in 
the Urmia Lake basin, Iran.

Sen (2012) first proposed an innovative trend anal-
ysis (ITA) and used it to detect trends in the annual 
streamflows and total precipitation of some stations in 
Turkey. Sen (2014) used an innovative trend method 
for a series of temperature data in the Marmara region 
of Turkey and suggested that ITA did not have any 
assumptions or restrictions. Therefore, it could apply 
to any time series dataset. For instance, the datasets 
could be serially correlated and non-normally dis-
tributed, or the datasets could have a short length. 
So, it can be seen that ITA has an enormous advan-
tage over the other methods. As a result, research-
ers have increasingly used ITA to identify trends in 
hydrological and climatological parameters (Mohorji 
et al., 2017; Serinaldi et al., 2020; Wu & Qian, 2017). 
Kisi and Ay (2014) applied the MK test and ITA to 
detect the trend in the water quality parameters of 
the Kizilirmak River, Turkey, and found the success-
ful application of the ITA method for trend detection. 
Kisi (2015) observed negative and positive trends in 
monthly pan evaporation data from six stations in 
Turkey using the ITA method. Caloiero et al. (2016) 
used the ITA method, MK test, linear regression 
method, and Sen’s slope estimator to detect trends in 
annual and seasonal rainfall and temperatures of the 
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Yangtze River basin, China, and reported that those 
climatic variables had increased significantly. The 
scholars concluded that linear regression and MK 
tests effectively detect many times, but ITA can.

Various ML algorithms like artificial neural net-
work (ANN), hybrid wavelet ANN, random forest 
(RF), and other sophisticated time series and arti-
ficial intelligence-based techniques explaining the 
streamflow have piqued the interest of academics, 
particularly hydro-engineers (Mehdizadeh et  al., 
2019; Mohammadi et  al., 2020). These approaches 
are not based on the data’s net time series change. But 
these approaches are based on time series variability 
and data trends, and as a result, they are more sensi-
tive and accurate in predicting future trends (Cheng 
et al., 2020; Tyralis et al., 2021). Using an ANN and 
SVM, Adnan et  al. (2021) anticipated Indus River’s 
streamflow with higher accuracy. Peng et  al. (2017) 
used ANN and wavelet transformation to estimate 
future streamflow for the Yangtze River. Several 
studies have used SVM (Adnan et  al., 2017; Yaseen 
et al., 2015; Yaseen et al., 2016) to estimate stream-
flow with improved accuracy in various river basins. 
Forecasting with RF has been widely used in several 
river basins (Pham et al., 2021; Ghorbani et al., 2020; 
Saadi et al., 2019; Pham et al., 2019). RF application 
for streamflow forecasting is a complex technology 
that many researchers have successfully deployed 
in many river basins for flow forecasting (Ali et  al., 
2020; Ni et al., 2020; Pham et al., 2019). The previ-
ous research has showed the quantification of the 
damming effect on the river using traditional tech-
niques. Also, the application of advanced ensemble 
machine learning for future forecasting with quanti-
fication of damming has not been done so far. Hence, 
in the present study, we quantified the damming effect 
with advanced techniques like innovative trend analy-
sis and machine learning algorithm like random for-
est for forecasting. The identification of problems 
with its future forecasting can be a resource for river 
management.

The present study aimed to undertake a trend analy-
sis of river flow data and a change point analysis. This 
investigation is being performed to determine whether 
any flow modification produces a change in inflow. In 
addition, the present study attempted to forecast the 
streamflow using the random forest. The originality of 
present study lies in the application of advanced trend 
detection techniques like ITA and conventional trend 

detection techniques for comparing the performance 
of the trend detection techniques to find the most suit-
able technique in terms of robust results. Most of the 
previous studies have directly applied trend detec-
tion techniques on the streamflow, but in our case, we 
first applied trend detection techniques on the annual 
and seasonal datasets, then identified the trend in the 
annual and seasonal datasets, and applied the same 
techniques on the pre- and post-change point seasonal 
and annual datasets. As a result, the exact changes of 
streamflow with quantification can be made, which is 
very difficult for the dataset without change detection. 
The present study has also made comparisons between 
change-point wise analysis and without change-point 
wise analysis. Another novelty is the application of 
advanced ensemble machine learning algorithms like 
a random forest for predicting the historical time series 
streamflow data and forecasting the future streamflow 
for annual and seasonal periods. The present study 
will promote an understanding of water resource man-
agement, bearing in mind the research gap and data-
scarce situation in developing nations for streamflow 
forecasting.

Study area

For the present study, Punarbhaba River basin has 
been taken as the study area. The total length of the 
Punarbhaba River is 160  km and its basin area is 
about 5265.93  km2 which lies on the Barind Tract of 
India and Bangladesh. The basin has an elevation that 
ranges from 89 m (in the source region) to 12 m (at 
the confluence) (Fig.  1). A single-channel meander-
ing river in its upper course characterizes the river, 
but it becomes a multi-channel river system within 
the valleys in the lower course. In its upper part, 
the Punarbhaba River has low-to-moderate sinuous-
ness, which specifies the area’s sloping surface, but 
the Punarbhaba River’s sinuosity increases abruptly 
within the valley flat. Several abandoned channels, 
ox-bow lakes, channel scars, scrolls, and loops are 
present in these valleys (Rashid et al., 2013; Talukdar  
& Pal, 2018), and these might be created because of 
neo-tectonic upliftment and consequent incision of 
channels. The annual average rainfall in this basin 
ranges from 258 to 509  mm, out of which 14.46%, 
70.16%, and 12.24% rainfalls have been occurred in 
pre-monsoon, during monsoon, and post-monsoon 
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seasons, respectively. The rainfall trend shows that 
there has been no significant difference in rainfall in 
different seasons since 1978–2016, as shown by a 
very low coefficient of determination (R2 = 0–0.046) 
while calculating the least square regression.

Materials and methods

Materials

The Punarbhaba River basin’s daily water flow data 
is gathered from relevant river monitoring sites 
of Haripur Gauge station over Punarbhaba River, 
Malda, from 1978 to 2015.

Change point detection We investigate the occur-
rence of abruptly changing points or change points 
in time series climatic and hydrological data using 
a variety of techniques (Meysam et  al., 2012). The 
Pettitt test of Pettitt (1979) as well as standard nor-
mal homogeneity test (SNHT) of Alexandersson and 
Moberg (1997) was used to detect sudden changes in 
the Punarbhaba River’s streamflow in this work.

Pettitt test The Pettitt test is a rank-based, disper-
sion test for identifying a substantial change in the 
mean of a data series, and it is especially beneficial 

when there is no need to construct a hypothesis about 
where the change point is. It has been used widely 
to detect changes in observed meteorological and 
hydrological time series data (Gao et al., 2013). The 
detailed explanation in the form equation can be 
found in Talukdar and Pal (2016).

Standard normal homogeneity test The Alexanders-
son test, also known as the SNHT, is used to detect an 
abrupt shift or the existence of a change point in climatic 
and hydrologic time series datasets. Equation 1 is used 
to determine the change point or change:

where Ts denotes the location of the change point in 
the time series as it achieves the maximum value, and 
Tm is derived using Eq. 2:

where  

where M and s refer to the mean and standard devia-
tion of the sample data, respectively.

(1)Ts = maxTm, 1 ≤ m⟨n

(2)Tm = mz1 + (n − m)z1,m = 1, 2, ...., n

(3)
−
z1 =

1

m

n∑

i=1

(Mi −M)

s

Fig. 1  Location of the Punarbhaba River basin with the location of dam and river gauge station
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Trend analysis

Mann–Kendall test

The MK test (Kendall, 1975; Mann, 1945) is a 
non-parametric rank-based test that is widely used 
to detect trends in time series hydro-climatic data 
(Yue & Wang, 2002; Yue et al., 2002) because of its 
strength for non-normally distributed data and low 
sensitivity to sudden change. This test has been per-
formed on the R studio software.

The trend test results can determine whether a time 
series of hydro-climatic variables exhibit a statistically 
significant trend or a trend that could occur coinci-
dentally. However, in order to do so, one should first 
evaluate the data series’ serial correlation (Jenkins 
& Watts, 1968). Because a positive serial correlation 
can raise the number of expected positive-false results 
for the Mann–Kendall test, the presence of serial cor-
relation can make trend detection more difficult (Von 
Storch & Navarra, 1999). Thus, before implementing 
the Mann–Kendall trend test, serial correlation must 
be eliminated. The trend-free pre-whitening (TFPW) 
method of Yue et al. (2003) removes serial correlation.

The Theil-Sen estimator (Sen, 1968) was used for 
the analysis of magnitude of the trend (Tabari & Tal-
aee, 2011; Tabari & Aghajanloo, 2013). Several pre-
vious studies have successfully used the Theil-Sen 
estimator for computing the magnitude of the trend of 
hydro-climatic variables (Schaefer & Domroes, 2009; 
Tangang et al., 2006).

Spearman’s rank correlation coefficient (rho)

We used Spearman’s rank correlation technique, a 
non-parametric method, for computing the trend 
analysis in hydro-climatic datasets. This technique 
is also comparable with the Mann–Kendall test. The 
detailed of Spearman’s rank correlation technique can 
be found in Talukdar and Pal (2016).

Innovative trend analysis

The ITA splits a data series into 2 sub-series of 
equal size and arranges them in ascending order. In 
a 2-dimensional Cartesian coordinate system, i.e., 
primary sub-series (xi) is placed on the horizontal 
axis (x-axis), while another sub-series (yi) is placed 
on the vertical axis (y-axis) (Fig.  2). The points in 

the scatterplot are gathered on the 1:1 (45) line if 
the sub-series are equal, indicating no trend. If the 
points are above the 1:1 line, the time series is con-
sidered rising. If the points aggregate below the 1:1 
line, it is assumed that the time series has a falling 
trend (Sen, 2012). The vertical or horizontal distance 
from the 1:1 line is the absolute value of the differ-
ence between a point’s y and x values. The difference 
shows the magnitude of a growing or declining trend. 
As a result, it may determine a trend, with average 
differences showing a time series’ overall tendency 
(Shahfahad et  al., 2022). The average discrepancies 
between two time series with different magnitudes 
must be normalized before they can be compared. 
Because the first sub-series is used to signify change, 
the trend indicator is calculated by separating the nor-
mal difference by the typical of the first sub-series. 
The indicator is multiplied by 10 to obtain the same 
scale as the Mann–Kendall test and linear regression 
analysis, allowing for direct comparison. The ITA 
indication is then written:

where:
D represents trend indicator, in which the positive 

value indicates a rising trend while the negative value 
reflects a falling trend;

n represents the number of annotations in each 
sub-series; while.

x represents average of the first sub-series.
If the original data series contains odd annota-

tions, the first annotation is removed before splitting 
to ensure that the most recent data is fully used.

Method for streamflow forecasting

Scholars, notably hydro-engineers, are interested in 
ML algorithms such artificial neural network (ANN),  
hybrid wavelet ANN, random forest (RF), and other 
time series and AI-based methodologies to predict  
and forecast streamflow (Mehdizadeh et  al., 2019; 
Mohammadi et al., 2020). Researchers have success-
fully applied RF for streamflow forecasting in numer-
ous river basins (Ali et  al., 2020; Ni et  al., 2020;  
Pham et al., 2019). They have found that RF model 
outperformed other models. This is why the RF 
model has been selected for forecasting streamflow 

(4)D =
1

n

n∑

i=1

10(yi − xi)
−
x
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in the present study. Random forest is customized 
bagging supervised machine learning approach often 
employed for classification and prediction (Prasad 
et  al., 2019), but it has lately been utilized for time 
series forecasting (Srivastava et al., 2019). A random 
forest is used to create an ensemble of decision trees, 
with each tree being created from bootstrap training 
samples (Breiman, 2001). The bootstrap classifier 
seems to be quite similar to the decision tree hyper-
parameter. It is critical to growing the trees to their 

maximum sizes and numbers for the forecasting model 
to operate well (Breiman, 2001). The appropriate num-
bers of selected predictors are required at each node of 
the trees. The number of observations at the tree’s ter-
minal nodes would be the smallest. The random forest 
ensemble method operates in this way. To estimate the 
discharge data for next years, the complete time series 
records for the years 1978 to 2018 were employed in 
the current research. It would have been impossible to 
anticipate future circumstances if we had not utilized 

Fig. 2  Representation of annual water level, average, maximum and minimum monthly water level
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all of the pre- and post-dam years to forecast each year. 
A time series is a collection of successive observations 
performed over time. In order to anticipate future obser-
vations, time series forecasting successfully applies 
models to past data first. For instance, the measurement 
may be used as an input to forecast the next minute, 
day, or month(s). Lag periods or lags refer to the actions 
that are thought to move the data backward in time (or 
a sequence). The input data is initially time series dis-
charge data; however, as part of the modelling process, 
the data is automatically separated and converted to lag 
in accordance with the requirements of the programme. 
In order to anticipate future discharge, we employed 5 
lags and 1 lag representing 5 years of data in the current 
research. Since the outcomes for the 5 lags are good, we 
set 5 lags by analysing 1–4 lags. The calculation param-
eters have a considerable impact on the performance 
accuracy of various forecasting models. Then, we used 
a trial-and-error technique to refine the input data and 

parameters to get the optimal model for each method. 
As a result, optimization is used to find the ideal param-
eters for generating the best forecasting model. The 
optimized parameters for RF are the following: lag: 5, 
Seed-5, number of iterations: 1000, learning algorithm: 
random tree; the number of threads: 4, depth of tree: 
100; bag size: 1003.

Validation of the model

Different error statistics, such as mean absolute percent-
age error (MAPE), root mean square error (RMSE), 
and mean absolute error (MAE), have been produced to 
measure the correctness of the model. This data helps 
determine the parameters and structures during the 
calibration phase. Equations  6, 7, and 8 were used to 
determine the RMSE, MAE, and MAPE, respectively. 
Between the observed and predicted flow data from 
1978 to 2017, Pearson’s correlation coefficient (Eq. 9) 
is calculated. If the association is statistically significant 

in this known time when ground data is accessible, it is 
expected that the anticipated outcome up to 2030 will 
be accepted as well.

The correlation coefficient approach was also used 
to assess the relationship between different models’ 
predicted data (2018–2030).

The better the function of the models, the lower the 
values.

Result

Description of streamflow

Box plots were used to assess the data distribution 
of yearly, average monthly, maximum monthly, and 
minimum monthly streamflow data from 1978 to 
2017 (Fig.  2). It is observed that the yearly water 
level has no outliers; however, the average monthly 
water level has minimal outliers in all months 
except March to June, indicating that the stream-
flow has been shifting. Similarly, minimal outliers 
were identified in maximum and lowest streamflow 
throughout the summer, winter, and post-monsoon 
months. This condition shows that there are hydro-
logical changes taking place. Non-uniform or non-
normal data distribution can be applied to all time 
series data. This anomaly is observed because of 
river damming. As a result, the river’s periodicity 
has been compromised.

(5)

RMSE =

√
1

n

n∑

i=1

(P(predicted.flow)i − Q(observed.flow)i)
2

(6)MAE =

∑n

i−1

���(P(predicted.flow)i − Q(observed.flow)i)
���

n

(7)

MAPE = (
1

n

∑ |Observed.flow - predicted.flow|
|Observed.flow| ) × 100

(8)R =
n(
∑

P(predicted.flow)i × Q(observed.flow)i) − (
∑

P(predicted.flow)i) × (
∑

Q(observed.flow)i)
�

[n
∑

P2
(predicted.flow)i

− (
∑

P(predicted.flow)i)
2] × [n

∑
Q2

(observed.flow)i
− (

∑
Q(observed.flow)i)

2]
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Change detection analysis

The year 1992 is computed as a change point in the 
data series, according to the Pettitt test and the stand-
ard normal homogeneity test (1978–2016). Figure  3 
shows that the average annual streamflow levels 
before and after the transition point are 22 and 18 m, 
correspondingly. Results show that 3.12  m of aver-
age water level has been decreased since the year of 
change point. Trend analysis was done after detect-
ing a sudden change point, which has been found in 

the year of 1992 in the 49 years’ time series datasets, 
since the trend should be differentiated from pre- to 
post-change point.

Analysis of trend detection

Annual streamflow trend analysis

The MK test and Spearman’s correlation test results 
for the yearly flow data of the Punarbhaba River for 
change point-based segmented two data series are 

Fig. 3  The identification of the change point for the average, maximum, and minimum streamflow time series datasets during the 
1978–2016

Table 1  Computation of the MK and rho tests’ values for analysing the trend in the average, maximum, and minimum streamflow 
data

Bold value denotes the significance at the level of 0.05

Time series data Streamflow MK test Spearman rank 
correlation

Indication
Kendall’s tau

Before change point (< 1992) Average water level −0.048 −0.157 Downward trend detected, but not 
noteworthy

Maximum water level −0.143 −0.264 Downward trend detected, but not 
noteworthy

Minimum water level −0.143 −0.229 Downward trend detected, but not 
noteworthy

After change point (1993–2016) Average water level −0.573 −0.776 Significant downward trend detected
Maximum water level −0.621 −0.818 Significant downward trend detected
Minimum water level −0.478 −0.676 Significant downward trend detected
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shown in Table 1 (pre-change point: up to 1992; and 
post-change point: 1993–2016). Even at a 90% sig-
nificance level, the MK test did not show any sig-
nificant change in average, maximum, or lowest flow 
levels until 1992, although a negative trend is found 
in all situations. The outcome of Spearman’s rho 
test is nearly equal to that of the MK test. For all the 

scenarios exhibiting a continuous flow regime up to 
1992, the size of the trend’s slope and percentage 
change are likewise minor.

However, in the post-change point data series, 
the findings of such tests are negative and signifi-
cant. With a 95% significance level, the Z values 
and rho values of average, maximum, and minimum 

Fig. 4  Innovative trend analysis for annual average, maximum, and minimum water level; first half of the series (1978–1997), sec-
ond half of the series (1998–2016)
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streamflow data are−0.5731 and−0.776,−0.6206 
and−0.8182, and−0.4783 and−0.6759, respectively 
(Table 1). The average (−13.46), maximum (−14.38), 
and minimum (−9.91) streamflow percentage changes 
also show that the streamflow has been falling follow-
ing the transition point.

Figure 4 shows the trend analysis for annual aver-
age (D:−0.645), maximum (D:−0.6), and minimum 
(D:−0.615) streamflow. It shows that the streamflow 
observed highly negative trend.

Monthly streamflow trend analysis

The results of the MK test and rho test of two monthly 
average streamflow data series are shown in Table 2. 
Results of the pre-dam stage indicate that a signifi-
cant negative trend was observed for April and May, 
with Z and rho values of−0.69 and−0.86, and−0.64 

and−0.82, respectively, at the 95% level of signifi-
cance. At the 95% significance level, significant posi-
tive trends were seen in July and September, with Z 
values of 0.486 and 0.421, respectively. At a p-value 
of less than 0.05, all the previous months’ trends 
were negligible. The slope and percentage change 
have notable magnitudes only in April and May. As a 
result, we may describe the flow regime before 1992 
as natural.

Table 2 reveals that a significant trend is identified 
for all months except June, with a p-value of 0.05 for 
the post-change point data series (1993 to 2017). All 
months observed a significant slope of flow change 
and relative change (−21.47 and−0.17). As a result, 
the streamflow has decreased since 1993.

The dataset’s average monthly data were regressed 
against the temporal scale to highlight the discovered 
trend further, and the regression results are shown 

Table 2  Computation of the value of MK and rho tests for monthly time series average streamflow datasets

Month MK test Rho Indication

Kendall’s tau Sen’s slope

Before change point January −0.306 −0.07 −0.38 Slightly downward trend detected
February −0.229 −0.098 −0.24 Slightly downward trend detected
March −0.249 −0.06 −0.26 Slightly downward trend detected
April −0.69 −0.17 −0.86 Strong downward trend detected
May −0.64 −0.17 −0.82 Strong downward trend detected
June 0.314 0.09 0.47 Upward trend
July 0.486 0.23 0.66 Strong upward trend detected
August 0.18 0.07 0.32 Upward trend detected
September 0.421 0.08 0.514 Moderate upward trend detected
October 0.33 0.09 0.486 Upward trend detected
November −0.28 −0.167 −0.325 Downward trend detected
December −0.01 −0.003 −0.021 No trend

After change point January −0.16 −0.03 −0.305 Downward trend detected
February −0.18 −0.04 −0.264 Downward trend detected
March −0.61 −0.24 −0.78 Strong downward trend detected
April −0.63 −0.19 −0.83 Strong downward trend detected
May −0.676 −0.24 −0.86 Strong downward trend detected
June −0.005 −0.003 −0.088 No trend
July −0.314 −0.14 −0.482 Moderate downward trend detected
August −0.26 −0.11 −0.395 Downward trend detected
September −0.324 −0.12 −0.482 Moderate downward trend detected
October −0.444 −0.1 −0.607 Moderate downward trend detected
November −0.272 −0.07 −0.452 Moderate downward trend detected
December −0.39 −0.17 −0.5 Moderate downward trend detected
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in Fig.  5 with a streamflow time series, a fitted lin-
ear model (represented by the blue line), and a model 
equation. Results showed that only January month 
had no significant trend, while all other months have 
observed a significant negative trend of historical 
monthly streamflow (Fig.  5). The ITA for the aver-
age monthly water level is presented in Fig. 6. The D 
value of the ITA for all the months varies from−0.281 
(January) to−0.94 (May) signifying a negative trend 
(Table 3).

Trend analysis for monthly maximum and minimum 
streamflow

The findings of the MK test and rho test for the two 
data series of monthly maximum and minimum 
streamflow are shown in Table  4. Except for May, 

the other months showed an insignificant trend at the 
maximum flow level at the pre-change point. May 
has a significant negative trend, with Z and rho val-
ues of−0.43 and−0.55, respectively. We detect this 
significant negative trend in April when the trend 
is analysed using minimum water level data before 
1992 (Table 5). The maximum water level change is 
negative and significant except for January, February, 
June, and November (Table 3). With minimum water 
levels, March, April, May, October, and December 
showed negative and significant trends (Table 5). Fig-
ures 7 and 8 show the maximum and minimum water 
level trends in other months.

The results showed the historical monthly stream-
flow had significant negative trend for all the months 
except November which does not show any sig-
nificant trend (Table 3). Figure 9 shows that ITA for 

Fig. 5  Trend of average flow level and fitted trend line for different months
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maximum monthly water level, with a D value rang-
ing from−0.3 (November) to−0.792 (May).

Results show that all months have observed a sig-
nificant negative trend of historical monthly stream-
flow (Table 3). The ITA for minimum monthly water 
level is presented in Fig. 10 which shows a negative 
trend with a D value ranging from−0.341 (January) to 
0.946 (May).

Seasonal trend of average, maximum and minimum 
streamflow regime

Table  6 portrays the findings of the MK test and 
Spearman’s correlation test of the seasonal average, 
maximum, and minimum flow data of Punarbhaba 
River for change point based on segmented two data 
series (pre-change point: up to 1992; and post-change 

Fig. 6  Innovative trend analysis for average monthly water level; first half of the series (1978–1997), second half of the series 
(1998–2016)
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Table 3  Computation 
of trend values using 
innovative trend analysis 
for monthly time series 
average, maximum, and 
minimum streamflow 
datasets

Monthly water level D value of ITA Indication

Annual Maximum Minimum

January −0.281 −0.437 −0.341 Downward trend detected
February −0.596 −0.551 −0.596 Significant downward trend detected
March −0.92 −0.81 −0.92 Significant downward trend detected
April −0.808 −0.781 −0.808 Significant downward trend detected
May −0.946 −0.792 −0.946 Significant downward trend detected
June −0.654 −0.687 −0.655 Significant downward trend detected
July −0.64 −0.587 −0.640 Significant downward trend detected
August −0.706 −0.597 −0.706 Significant downward trend detected
September −0.57 −0.514 −0.570 Significant downward trend detected
October −0.507 −0.458 −0.507 Significant downward trend detected
November −0.376 −0.314 −0.376 Downward trend detected
December −0.747 −0.695 −0.747 Significant downward trend detected

Table 4  Computation of the trend values using MK and rho tests for monthly time series maximum streamflow datasets

Months MK Rho Indication

Kendall’s tau Sen’s slope 
estimator

Before change 
point (1978–
1992)

January 0.11 0.016 0.21 No trend
February −0.11 −0.017 −0.18 No trend
March −0.08 −0.015 −0.165 No trend
April −0.18 −0.033 −0.19 No trend
May −0.43 −0.10 −0.55 Moderate downward trend detected
June 0.29 0.094 0.383 Upward trend detected
July 0.022 0.014 −0.11 No trend
August 0.155 0.043 0.235 No trend
September 0.354 0.15 0.41 Upward trend detected
October 0.165 0.039 0.222 Upward trend detected
November −0.165 −0.087 −0.2 Downward trend detected
December 0.033 0.005 0.011 No trend

After change 
point (1993–
2016)

January 0.124 0.024 0.104 No trend
February −0.03 −0.004 −0.074 No trend
March −0.683 −0.212 −0.85 Strong downward trend detected
April −0.57 −0.146 −0.751 Strong downward trend detected
May −0.39 −0.136 −0.538 Strong downward trend detected
June 0.01 0.004 0 No trend
July −0.45 −0.19 −0.6 Moderate downward trend detected
August −0.36 −0.17 −0.502 Moderate downward trend detected
September −0.501 −0.19 −0.63 Moderate downward trend detected
October  − 0.425 −0.15 −0.57 Moderate downward trend detected
November −0.2 −0.06 −0.3 Downward trend detected
December −0.381 −0.15 −0.54 Moderate downward trend detected

Page 13 of 27    153



Environ Monit Assess (2023) 195:153 

1 3
Vol:. (1234567890)

point 1993–2016). The MK test does not show any 
momentous change in seasonal average, maximum, 
or minimum flow levels even at the 90% level of 
significance up to 1992, except pre-monsoon, but 
we perceive a negative trend in all cases. The find-
ing of Spearman’s rho is more or less indistinguish-
able from the MK test. The magnitude of the trend 
slope and percentage change is also insignificant 
except for pre-monsoon for all the cases exhibiting a 
steady flow regime up to 1992. However, the results 
are negative and significant with post-change point 
time series data. The Z values and rho values of aver-
age and minimum pre- and post-monsoon streamflow 

data are −0.75 and −0.411, and −0.81 and −0.33, 
respectively, with a 95% significance level (Table 6). 
The streamflow data for the pre-monsoon, monsoon, 
and post-monsoon seasons all show statistically sig-
nificant negative trends at the 95% significance level. 
The percentage change and Sen’s slope estimator 
produce identical results, implying that the seasonal 
streamflow has decreased since the change point. 
Figure  11 displays seasonal, maximum, and mini-
mum water level trends.

The results of ITA for seasonal average, mini-
mum, and maximum are presented in Fig. 12. Results 
showed that all seasons for annual, maximum, and 

Table 5  Computation of the trend values using MK and rho tests for monthly time series minimum streamflow datasets

Months MK test Spearman rank 
correlation Test

Indication

Kendall’s tau Sen’s slope 
estimator

Before change 
point (1978–
1992)

January 0.27 0.06 0.355 Upward trend detected
February −0.18 −0.05 −0.24 Downward trend detected
March −0.297 −0.05 −0.442 Moderate downward trend detected
April −0.464 −0.086 −0.56 Moderate downward trend detected
May −0.253 −0.053 −0.411 Moderate downward trend detected
June 0.14 0.018 0.26 Upward trend detected
July 0.177 0.035 0.224 Upward trend detected
August −0.044 −0.003 −0.070 No trend
September −0.167 −0.046 −0.297 Upward trend detected
October 0.022 0.002 0.013 No trend
November −0.077 −0.08 −0.046 No trend
December 0.055 0.01 0.156 Upward trend detected

After change 
point (1993–
2016)

January −0.18 −0.046 −0.153 Downward trend detected
February −0.16 −0.04 −0.184 Downward trend detected
March −0.686 −0.241 −0.855 Strong downward trend detected
April −0.597 −0.166 −0.775 Strong downward trend detected
May −0.654 −0.231 −0.85 Strong downward trend detected
June 0.095 0.026 0.097 No trend
July −0.21 −0.044 −0.292 Downward trend detected
August −0.095 −0.035 −0.147 Downward trend detected
September −0.267 −0.073 −0.423 Moderate downward trend detected
October −0.350 −0.056 −0.467 Moderate downward trend detected
November −0.301 −0.076 −0.431 Moderate downward trend detected
December −0.381 −0.143 −0.491 Moderate downward trend detected
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minimum streamflow have observed a significant 
negative trend of historical monthly streamflow.

Streamflow forecasting

The RF model was used to simulate and forecast 
streamflow, and all the models projected flow based 
on their intrinsic mathematical basis. However, 
except for some days, the simulated trend in the post-
hydrological period (PHA) and forecast trend up to 
2030 are negative in all four seasons. For the win-
ter, summer, monsoon, and post-monsoon seasons 
in 2030, the mean estimated flow using random for-
est is 19.26, 16.86, 19.53, and 18.39 m, respectively 
(Fig. 13a–d). In various seasons, the flow volume is 
likely to be reduced by 0.67% to−5.23%. There is an 
extensive range of probable flow oscillations during 

winter with no discernible trend. All models suggest 
that the flow is severely decreased in all seasons in 
the post-dam period (up to 2017). The expected flow 
would reduce further in the days ahead.

Pearson’s correlation coefficient approach was 
used to determine the relationship between the mod-
els. The calculated relationships are positive to var-
ying degrees, with a very high positive (r = 0.91) 
relationship discovered between the result of the RF 
model for summer, which is significant at the 99% 
confidence level (Fig. 14). The correlation coefficient 
between the observed and simulated flow data has 
been obtained for several models individually from 
1978 to 2017 for the authentication of flow simulation 
and prediction models and computing RMSE, MAE, 
and MAPE (Table 7). In all seasons, RF can predict 
streamflow up to 2030.

Fig. 7  Trend of maximum flow level and fitted trend line for different months
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Discussion

The previous study shows that 1992 appeared as 
a change year, and the entire time series data is 
divided into two parts based on the change year. 
The trend analysis suggests a significant nega-
tive trend in the post-change point year (1992) in 
annual, monthly, and seasonal streamflow levels. 
The percentage change in the flow also supports the 
findings of the trend analysis. The identical findings 
were observed in the studies of Yue et  al. (2003), 
Zheng et  al. (2007), Xu et  al. (2010), Rougé et  al. 
(2013), Zou and Zhang (2012), Zhang et al. (2015), 

and Degefu and Bewket (2017) in their respective 
fields. Even before 1992, some of the pre-monsoon 
months before the change point showed a nega-
tive trend, owing primarily to water harvesting 
via temporary damming and lifting of water from 
the river. We analysed rainfall data from the same 
period to determine the cause of the abrupt flow 
change as rainfall feeds the river. Gao et al. (2013) 
rightly stated that climate change or anthropogenic 
control might invite such a change. The trends of 
rainfall for both pre- and post-change years do not 
show any significant change (pre-change point: 
y = −0.024x + 21.74, R2 = −0.056; and post-change 

Fig. 8  Trend of minimum flow level and fitted trend line for different months
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Fig. 9  Innovative trend analysis for maximum monthly water level; first half of the series (1978–1997), second half of the series 
(1998–2016)
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Fig. 10  Innovative trend analysis for minimum monthly water level; first half of the series (1978–1997), second half of the series 
(1998–2016)
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point: y = 0.256x + 84.22, R2 = 0.053). So, rainfall is 
the triggering factor for abrupt flow level changes. 
Talukdar and Pal (2017) accounted for that in 1992. 
The construction of Kamardanga dam on the Dhepa 
River, a major tributary of the river Punarbhaba, 
and water diversion through the canal system are the 
major reasons behind the reduction of water level 
in the post-1992 period. Pal (2016a, b) studied the 
impact of the Massanjore dam on the Mayurakshi 
River and found that the dam was the main reason 
for the declining flow in the downstream segment of 
the river. Pal (2016a) and Pal and Saha (2018) con-
demned the dam as a vector for the attenuation of 
the flow of the Atreyee River. According to Zhang 
et  al. (2015), irrigation projects in the upstream 
part are frequently responsible for a decline in flow 
volume in the downstream part. Nine river lift irri-
gation projects in the Indian part also withdraw 
water (40–400  m3/h). It is also treated as the reason 
behind the dwindling flow volume. Pal and Saha 
(2018) reported that water-lifting for irrigation from 
the Atreyee River leads to reducing the mainstream 
flow. Agricultural intensification will increase over 
time, causing the use of more water. As a result, it is 
anticipated that the volume of water will be reduced 
further in the near future. Wada et al. (2010) stated 
that lowering groundwater levels can negatively 
affect natural streamflow. Rashid et  al. (2013) say 
that, because of the scarcity of surface water, farm-
ers withdraw groundwater, and, noticeably, this rate 
has been amplified (250 times) in the last 30 years. 
The water table has progressively declined (aver-
age rate of 0.10  m/year). According to Rahman 
and Mahbub (2012), the expansion of irrigation in 
Bangladesh’s Barind Tract has depleted ground-
water. Das and Pal (2017) also say that the Bar-
ind Tract has experienced a declining trend in the 
groundwater table. As a result, these studies sug-
gest that groundwater levels may cause decreased 
streamflow. Groundwater lowering may convert the 
effluent river into an influent, specifically in the pre-
monsoon months, and it may aggravate the problem 
of curtailing surface flow.

Talukdar and Pal (2017) established that alteration 
of streamflow is a crucial factor for the ecosystem of 
the river and the riparian wetlands, and the floodplain. 
According to Talukdar and Pal (2018), flow reductions 
in the stream can create an eco-deficit situation, which 
is dangerous for the environmental state of the river and Ta
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the riparian environment. Flood frequency and the limit 
of lateral flood spilling may be reduced because of such 
flow attenuation, which may also cause gradual steril-
ity of the soil and the aggravation of soil pollutants. So, 
this incident was detrimental both economically and 
ecologically. Here, it is critical to estimate environmen-
tal flow and ensure that it continues in a river.

The methods used in this study, such as RF, are 
advanced and effective for exploring the future 
trend of flow change from historical time series data 
(1978–2017) instead of the commonly used regres-
sion analysis. The regression techniques never capture 

the other flow change properties other than showing 
net change (Adnan et al., 2021; Shafaei & Kisi, 2016), 
which employs wavelet transformation and RF models 
for flow analysis and forecasting. As described in the 
“Result” section, this model appears to be an excel-
lent simulating and predicting model in the current 
investigation.

Flow changes over ecological thresholds cause 
habitat and ecosystem vulnerabilities including stress 
and hydrological poverty (Poff & Zimmerman, 2010; 
Saha & Pal,  2019; Pal & Talukdar,  2018). Eco-
deficit in all months, as illustrated in Figs. 8, 9, 10, 

Fig. 11  Seasonal average, maximum, and minimum water level change
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11, and 12, shows the escalating hydro-ecological 
impoverishment. Reduced flow from dam diversion 
and other water extraction is a major source of the 
developing eco-deficit. Wang et al. (2017) observed a 
decline in Yangtze River flow, while Li et al. (2017) 
reported a decline in Mekong River flow. But they 

did not anticipate flow and compare it to biological 
flow needs. Sima et  al. (2021) found that flow loss 
has also degraded the riparian flood plain wetland. 
Reducing wetland habitat, reducing wetland water 
depth, extending water availability, and increasing 
uncertainty in wetland hydrological dynamics are 

Fig. 12  Innovative trend analysis for seasonal average, maximum, and minimum water level; first half of the series (1978–1997), 
second half of the series (1998–2016)
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direct results of the river’s rising eco-deficit (Yang 
et  al.,  2017; Talukdar & Pal,  2018; Ziaul & Pal, 
2017). This research does not evaluate direct influ-
ence on ecological species; however, earlier work 
has addressed species simplification and extinction. 
Diversion of water by Farakka Barrage (installed 

in  1975) on the river Ganga destroyed the breed-
ing and hunting grounds of 109 fish, amphibians, 
and other aquatic species, according to Gain and 
Giupponi (2014). Hossain and Haque (2005) found 
that 50 species became uncommon in Bangladesh 
post-Farakka.

Fig. 13  Streamflow forecasting up to 2030 using RF model for a winter, b summer, c monsoon, and d post-monsoon

Fig. 14  Streamflow prediction for 1978–2017 using random forest for different seasons. a Winter. b Summer. c Monsoon. d Post-
monsoon
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Conclusion

The present paper argues that abrupt change points in 
the yearly streamflow occurred in 1992 in the Punarb-
haba River, since then, the average, maximum, and 
minimum streamflow on an annual, monthly, and sea-
sonal scale have decreased. The MK test and Spear-
man’s rho tests reveal a significant change trend in 
this respect. We have identified the primary reasons 
for the flow change after 1992 as dam construction, 
lifting water through river lift irrigation projects, and 
lowering groundwater support. Therefore, the flow 
before 1992 could be treated as a natural flow regime, 
and the post-1992 period could be treated as an arti-
ficially controlled flow regime. Rainfall does not play 
any significant role in the abrupt flow changes, which 
causes moderate to severe damages of the habitat of 
the species of the river and disturbs the river ecology. 
This type of flow alteration benefits a specific com-
munity living upstream of the dam and throws bur-
dens on the people living downstream. The release of 
environmental flows is critical for the survival of river 
and riparian ecosystems and the health of habitats. 
The river’s hydro-ecological condition will deterio-
rate much more in the forecast period since the flow 
level will drop dramatically. This is a critical moment 
to consider and develop sensible measures for limit-
ing such changes. Estimating ecological flow might 
aid policymakers in determining the actual quantity 
of water to be released from the dam to ensure the 
ecosystem’s existence. The predicted flow has already 
said that environmental requirements would be vio-
lated if this trend continues in the near future. This 
study is critical in reassessing current flow manage-
ment tactics and determining the optimum choice for 
maintaining flow. A significant decrease in flow may 
obstruct water supply to agricultural areas, forcing 
people to migrate from river-based irrigation to more 
expensive underground water-based irrigation. Many 
species consider the current flow state unsuitable for 
them, and they may move or perish. A river is more 
than just a reservoir for irrigation; it is an essential 
environmental component with several socioeco-
nomic and hydro-ecological advantages. Given this, 
releasing an ecologically sustainable flow is critical 
for the river’s survival and the health and vitality of 
riparian habitats and ecosystems.

In spite of several applicability of the present 
research, some drawbacks are persisted in the present Ta
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study, such as lacks of daily streamflow data, which 
only can give the actual situation of the river. In addi-
tion, we used trial and error process for optimizing 
the RF. Also, recently, many advanced deep learning 
techniques like long short-term memory (LSTM) and 
recurrent neural network (RNN) have been evolved, 
which can provide accurate prediction. To overcome 
this issue, daily water-level data needs to be simulated 
using advanced techniques. Grid search optimization 
can be applied to optimize the RF algorithm. Finally, 
the deep learning should be used in the future research.
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