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a 95% confidence level. Multi-criteria decision analy-
sis (MCDA) was performed using variables like sur-
face water, slope, road network, and land use through 
GIS and remote sensing to find suitable landfill sites. 
Results of the model show no multicollinearity as 
the variance inflation factor was estimated to be less 
than 2 for each independent variable. Furthermore, 
the model provides a moderate overall fit because of 
the coefficient of determination (R2 = 0.661), which 
denotes the independent variables’ predictive capabil-
ity. The results also demonstrate that family size and 
education are the most critical variables in predict-
ing waste generation because of the values of coeffi-
cients 122.39 and − 184.72, respectively. This study 
also illustrated suitable landfill sites through MCDA, 
which can be a useful resource for the city authority 
to ensure environmental sustainability by implement-
ing effective strategies for proper MSW management.

Keywords  Solid waste generation · Multiple linear 
regression · Multicriteria decision analysis · Remote 
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Introduction

Solid waste management refers to a system through 
which the collection, treatment, and disposal of solid 
waste materials are undertaken. It has become a chal-
lenging phenomenon due to rapid urbanization and 
industrialization, especially in developing countries. 

Abstract  Municipal solid waste  (MSW) manage-
ment has been a growing problem in fast-developing 
cities. A considerable amount of solid waste is gener-
ated daily and disposed anywhere, which creates an 
unhealthy environment. This study aims to develop 
a model to determine household solid waste (HSW) 
generation using multiple linear regression and iden-
tify suitable landfill sites to ensure proper MSW dis-
posal in Rangpur City, Bangladesh. Socioeconomic 
variables data like average monthly income, educa-
tional level, family size, age of family head, and aver-
age HSW generation per day were collected from 381 
respondents through stratified random sampling with 
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For a developing city like Rangpur, it is a new term. 
As a newly developed city corporation, people from 
nearby districts gradually shift towards this city to ful-
fill their basic demands like education, income, and 
proper shelter. Rangpur City Corporation (RpCC) has 
experienced a moderate change in population, which 
increased from 225,711 to 415,707 in the last 30 years 
(World Population Review, 2021). So, with the popula-
tion, a considerable amount of solid waste is generated 
daily with no proper solid waste management system 
(Rakib et al., 2014; Tajmin et al., 2016). Furthermore, 
as the population of this city is increasing numerously, 
much household solid waste (HSW) is generated daily, 
including plastic, oil, pesticide, and bio-waste like rotten 
fruit and food, which can pose a threat to human health. 
Household waste is mainly generated from a domestic 
source at home and typically accounts for more than 
two-thirds of the municipal solid waste flow in develop-
ing countries (Abdel-Shafy & Mansour, 2018; Baldwin 
& Dripps, 2012). However, Bangladesh’s average solid 
waste generation per capita was 0.56  kg/day, which is 
0.49 kg/day for RpCC (Enayetullah et al., 2014). On the 
contrary, in developed European countries, the per cap-
ita solid waste generation was 2.12 kg/day in Denmark, 
1.75 kg/day in Norway, 1.56 kg/day in France, 1.4 kg/
day in the Netherlands, and 1.28  kg/day in the UK 
mainly due to difference in lifestyles and urban growth 
pattern (Eurostat, 2018; Hoornweg & Bhada-Tata, 2012; 
Matušková et  al., 2021; Hollins et  al., 2017). Accord-
ing to the results of other literature, the per capita solid 
waste generation in Rangpur is pretty large compared to 
different developing cities like 0.12 kg/day in Oyo City, 
Nigeria (Afon & Okewole, 2007), 0.21 kg/day for Cape 
Haitian City in the Republic of Haiti (Philippe & Culot, 
2009), 0.28 kg/day for Mekong Delta City in Vietnam 
(Thanh et al., 2010), 0.34 kg/day for Olongapo City in 
the Philippines (Bennagen & Altez, 2004), and 0.49 kg/
day for Kathmandu in Nepal (Dangi et  al., 2011). As 
there is no proper solid waste management system, these 
enormous amounts of waste are thrown open in front of 
roads or fields or open dustbins, creating an unhealthy 
environment (Rahman & Amit, 2022). In addition, there 
is no proper implementation of the 3R (reduce, reuse, 
and recycle) waste management technology in RpCC. 
As there is no proper system available to recycle this 
waste and reusing from this waste is also not available, 
the only way to cope with this problem is to reduce solid 
waste generation, which can eventually eradicate the 
need for further reuse and recycling of the solid waste.

Municipal solid waste (MSW) and its composition 
usually vary depending on social, environmental, and 
demographic factors (Intharathirat et  al., 2015; Khan 
et al., 2016). In order to reduce MSW generation, the 
factors influencing solid waste generation must be iden-
tified. Multiple linear regression (MLR) identifies the 
impact of different factors on the dependent factor and, 
as a whole, predicts the dependent factor (Abdulredha 
et al., 2018; Ghinea et al., 2016; Kumar & Samadder, 
2017; Liu et al., 2019; Rosecký et al., 2021). Moreover, 
as there is no proper waste treatment available and to 
ensure proper disposal to eradicate the open dumping of 
that waste, a landfill is necessary. A landfill is one of the 
oldest forms of waste removal and controlled disposal 
among all other municipal solid waste management 
systems (Danthurebandara et al., 2012). It consists of a 
liner system, leachate collection and treatment system, 
groundwater monitoring system, gas extraction sys-
tem, and a cap system where the movement of leachate, 
landfill gas, and limited access of vectors like rodents 
and flies are usually completely controlled (Sharma & 
Reddy, 2004). Landfills reduce the risk of environmen-
tal pollution, prevent disease transmission, protect the 
soil and water, and preserve the quality of life for future 
generations (Abed et  al.,  2011; Amit & Kafy, 2022a, 
b). In order to ensure a good environment as well as to 
protect human health, proper site selection of landfills 
is necessary, including parameters like environmental, 
economic, and social criteria, some of which can make 
landfill site selection a complex process (Amit & Kafy, 
2022a, b; Christian & Macwan, 2017). Hence, multic-
riteria decision analysis (MCDA), which considers dif-
ferent essential factors to select a suitable landfill site, is 
essential.

MCDA methods have helped assist decision-makers, 
including necessary steps for assigning values to alterna-
tives that are analyzed for a specific purpose (Abdelouhed 
et al., 2022; Alkaradaghi et al., 2020; Asefa et al., 2021; 
Bilgilioglu et  al., 2021; Islam et  al., 2020; Makonyo & 
Msabi, 2021). The MCDA technique relies on splitting 
the decision problems into smaller parts, examining each 
part separately, and finally integrating the parts coher-
ently (Chang et  al.,  2008). Spatial multi-criteria deci-
sion analysis (SMCA) applies MCDA in a GIS environ-
ment for decision-making using spatial data and value 
judgments (Jayyousi et  al.,  2014). The combination of 
GIS and MCDA techniques improves decision-making 
because it creates an atmosphere for managing and organ-
izing a large amount of geographical data (Malczewski, 
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2004; Saha et al., 2022). GIS and MCDA integration is an 
effective tool for solving landfill selection problems. GIS 
enables efficient management and display of data, and 
MCDA provides a reliable classification of landfills based 
on several criteria (Kafy et al., 2022; Sener et al., 2010).

Previous studies have shown the implications of 
MLR for forecasting all types of solid waste (Al-Salem 
et  al., 2018; Araiza et  al., 2019; Otoniel et  al., 2001; 
Popli et  al., 2021; Sun & Chungpaibulpatana, 2017; 
Verma et al., 2019; Wei et al., 2013). In addition, studies 
conducted on HSW forecasting are common in different 
cities worldwide (Al-Salem et al., 2018; Gu et al., 2015; 
S. M. Monavari et al., 2012; Popli et al., 2021; Sun & 
Chungpaibulpatana, 2017; Tassie Wegedie, 2018; 
Verma et al., 2019), but it is an entirely new approach 
in Bangladesh and RpCC. RpCC produces a huge 
amount of HSW, but no study has been conducted to 
identify the demographic and economic factors to fore-
cast HSW generation (Senan et al., 2022; Tarek, 2022). 
Moreover, MLR can identify the effect of explanatory 
variables (i.e., demographic and economic factors) on 
the response variable (HSW generation rate). In addi-
tion, previous studies have shown applications of differ-
ent MCDA methods, including analytic network process 
(ANP), analytic hierarchical process (AHP), simple 
additive method (SAM), weighted linear combination 
(WLC), and fuzzy logic, that have widely been used in 
landfill site selection but have limitations regarding data 
availability especially in developing countries (Chabok 
et al., 2020; Dolui & Sarkar, 2021; Hazarika & Saikia, 
2020; Makonyo & Michael, 2021; Manyoma-Velásquez 
et  al., 2020; Rezaeisabzevar et  al., 2020; Zarin et  al., 
2021). Similarly, several studies have shown the appli-
cation of MCDA to select a suitable site for the landfill 
with the integration of GIS (El Maguiri et al., 2016; Nas 
et al., 2009), but very limited previous works have been 
done in Bangladesh. In addition to that, RpCC generates 
about 17 tons of waste daily (Sarker & Rahman, 2018). 
Only about 77% of waste is compostable. The remaining 
waste is dumped openly without any further recycling 
or reusing, creating an unhealthy environment in dif-
ferent parts of the cities. Hence, due to a large amount 
of solid waste/day generation and lack of proper reuse, 
reduction, and recycling of that waste, RpCC has been 
selected as the study area, and data collection is per-
formed ward-wise from the whole city corporation.

Hence, this study aims to develop a model to deter-
mine HSW generation using MLR and choose a suit-
able landfill site using spatial MCDA and geospatial 

techniques for proper disposal of municipal solid 
waste in RpCC.

Materials and method

Study area

RpCC is a newly developed city corporation located 
in the northern part of Bangladesh and lies between 
25°40′ and 25°51′ north latitudes and between 89°9′ 
and 89°20′ east longitudes (Fig. 1). RpCC was estab-
lished in 2011, consisting of 31 wards with a popu-
lation of about 0.79 million people with a literacy 
rate of 61% (BBS, 2011). The climate of Rangpur 
has been generally characterized by monsoons, high 
temperatures, considerable humidity, and heavy rain-
fall (Khatun et al., 2016). However, the more pleasant 
winter season from November to February is dry with 
warm afternoons and cool mornings.

Data collection

The study aims to develop an estimation model to 
determine HSW generation using MLR. Hence, soci-
oeconomic variables like average monthly income, 
education level, family size, age of family head, and 
average household solid generation per day were 
selected. The data from the selected variables were 
collected through stratified random sampling using a 
questionnaire survey with a sample size of 381 with 
a confidence level of 95%. The questionnaire survey 
has been demonstrated in Annex I. These questions 
were cross-checked by relevant academicians, gov-
ernment officials, and private sector actors of RpCC. 
Based on their comments and further pilot testing of 
20 samples, the questions were finalized and circu-
lated for public perception.

The stratified random sampling method refers to 
the method where the population elements are divided 
into mutually exclusive, non-overlapping groups of 
sample units, called strata, and then random samples 
from each stratum are selected. This process involved 
stratifying the population into homogenous groups 
based on specific characteristics before selecting ran-
dom samples. Consequently, homogenous groups 
of sampling units reduce sampling error, ensuring 
higher precision of estimates generated within strata 
than simple random samples drawn from the same 

Environ Monit Assess (2023) 195:54 Page 3 of 28    54



	

1 3
Vol:. (1234567890)

population (Frey, 2018; Latpate et  al.,  2021). This 
study collected data from all 31 wards of RpCC (the 
smallest administrative unit in the city corporation). 
Each ward has distinct locality characteristics like its 
location or distance from the central business district 
and population density. Based on these criteria, each 
ward was defined as a separate stratum, and random 
samples were collected from each stratum using Eq. 1.

where N is the population size, e is the margin of 
error, z is the z score, and p is the standard deviation.

After estimating the MLR, spatial MCDA has been 
conducted to find suitable sites for landfill installation 
for proper disposal of HSW and other kinds of waste. 
Four criteria were identified in this study based on 
the guidelines for selecting a favorable site for solid 

(1)Sample size =

z2∗P(1−P)

e2

1 +
{

z2∗P(1−P)

e2N

}

waste disposal produced by the German Technical 
Cooperation Agency (El Maguiri et al., 2016). These 
criteria include the slope of land, Euclidean surface 
water distance, land use, and Euclidean road distance. 
Among the four criteria used to generate the slope, 
digital elevation model (DEM) was collected and to 
generate a land use map, a satellite image of Landsat 
8 was collected. The road and river shapefiles were 
collected to generate Euclidean road and surface 
water distance maps. The details of data sources are 
mentioned in Table 1.

MLR to estimate the HSW

The analysis included more than two variables, and 
these variables displayed a linear distribution. Hence, 
the MLR model was applied to determine how the 
variables impact the dependent variable and to esti-
mate the generation of HSW, which corresponds 

Fig. 1   Location map of the study area. a RpCC within Bangladesh. b Elevation, major road, and river network of RpCC
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to the values of the analyzed independent variables 
(Otoniel et al., 2001). From this, it may be ascertained 
that a multiple linear equation may explain HSW gen-
eration in Eq. 2. The required statistical analysis was 
performed with SPSS.

where:
y = dependent variable.
�
0
 = intercept.

x
1
, x

2
, x

3
, x

4
 = independent variables.

�
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, �

2
,�

3
,�

4
 = regression parameters.

ε = residuals.

Estimation of spatial MCDA

After collecting data for each factor, the data were 
analyzed in Arc Map 10.6.1 after conducting the 
MLR and finding potential landfill installation sites. 

(2)y = �
0
+ �

1
x
1
+ �

2
x
2
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3
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4
x
4
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The whole framework of spatial MCDA is shown in 
Fig. 2.

Preparation of spatial datasets

A spatial analyst tool was used to generate a slope map 
from DEM, and the image was classified using maxi-
mum likelihood classification to generate a land use map 
in Arc Map. The image was classified into five classes: 
water body, agricultural, vegetation, built-up area, and 
bare land. For the generation of the Euclidean surface 
water distance map and Euclidean road distance map, 
the “Euclidean Distance” tool was used in Arc Map to 
calculate Euclidean distance from the closest source for 
each cell. The result rasters are continuous.

Reclassification of raster

The reclassify tool was used for all the result rasters 
to reclassify the values to an integer into a standard 

Table 1   Data sources for 
various datasets used in 
spatial MCDA

Data Details or source Collection 
period

Digital elevation model ASTER Global Digital Elevation Model V003 
(spatial resolution 30 m)

2013

Landsat 8 satellite image USGS Earth Explorer (spatial resolution 30 m) 2020
Road shapefiles Hum Data Organization 2020
River shapefiles Hum Data Organization 2020

Fig. 2   Methodologi-
cal framework of spatial 
MCDA
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preference scale of 1–5, with 5 being highly suitable 
and 1 being permanently unsuitable.

Sensitivity analysis

Sensitivity analysis (SA) is a method that measures 
how the effect of uncertainties of one or more input 
variables can result in uncertainties in the output vari-
ables (Pichery, 2014). SA is often used in suitability 
analysis to determine the influence of different criteria 
weights on the spatial pattern of the suitability clas-
sification. This is useful in  situations where uncer-
tainties exist in defining the importance of different 
suitability criteria (Mair et al., 2012; Mosbahi et al., 
2015). SA is performed by applying different weight-
ing schemes to the suitability criteria and observing 
how the results change when the weights change. GIS 
integration in the SA was conducted, especially when 
a raster-based tool was developed to implement the 
SA procedure in the Arc GIS software to visualize 
the SA (Rudden & Mackenzie, 2008). Furthermore, 
Al-Mashreki et al. (2011) also indicated using GIS in 
SA, especially for crop suitability assessment. Hence, 
this study also uses GIS to conduct SA to identify the 
influence of different criteria on landfill site suitabil-
ity analysis and consequently to identify the need for 
equal weightings for different criteria for landfill site 
suitability analysis.

In the present study, unequal weightings were 
assigned to the four criteria (land use, slope, 
Euclidean road distance, Euclidean surface water 
distance) to conduct SA in GIS. About 16 weighting 
schemes were constructed and run based on unequal 
weightings using the model’s implementation. Four 
different weighting schemes were given for each 
criterion, and all the weightings of the other crite-
ria were given equal weightings. Table 2 shows the 
weighting schemes (models) for the SA. The suit-
ability maps for every weighting scheme or model 
were prepared in Arc Map 10.6.1. The outputs (suit-
ability maps) were compared to evaluate the influ-
ence of each criterion on the overall suitability of 
landfill sites. Visual evaluation of the suitability 
classes and percentage area calculation of suitabil-
ity classes were conducted to interpret the results 
of the SA. The sensitivity of the suitability criteria 
was assessed by comparing the percentage area of 
the suitability classes for the different weighting 
schemes.

Determination of weight

The weight indicates the percentage of influence of 
each raster in the weighted overlay method. The raster 
layers, in this case, were assigned an equal weight or 
25% to each layer as per SA.

Weighted overlay analysis

The weighted overlay method is considered one of 
the most useful methods for modeling suitability. The 
weighted overlay analysis was conducted using Arc 
Map 10.6.1 software’s “Weighted Overlay” tool. The 
weighted overlay tool multiplies each raster cell’s suita-
bility value by its layer weight and produces a weighted 
suitability value. Weighted suitability values are totaled 
for each overlaying cell and then written to an output 
layer (ESRI, 2014). Finally, the output layer indicates 
the suitable area for landfill installation.

For example, Table 3 shows the result of four over-
laying raster cells, slope, land use, Euclidean road 
distance, and Euclidean surface water distance as well 
as shows how it assigns suitability value to each over-
laid raster cell.

In this example, every layer’s suitability value for 
their respective cells was assigned 5, indicating the 

Table 2   Weighting schemes for the suitability criteria

Model run Land 
use (%)

Slope (%) Euclidean 
road distance

Euclidean 
surface 
water 
distance

1 10 30 30 30
2 30 23 23 23
3 50 17 17 17
4 70 10 10 10
5 30 10 30 30
6 23 30 23 23
7 17 50 17 17
8 10 70 10 10
9 30 30 10 30
10 23 23 30 23
11 17 17 50 17
12 10 10 70 10
13 30 30 30 10
14 23 23 23 30
15 17 17 17 50
16 10 10 10 70
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highly suitable for each layer’s individual cells. The 
weighted suitability value calculates each layer’s 
weight with their respective cell’s suitability value. 
The total suitability value indicates the suitabil-
ity value for that overlaid cell after overlay analysis 
which in this case is denoted as 5, indicating a highly 
suitable area in the overlaid map.

Ethical approval

The respondent’s consent was taken before the sur-
vey, and they remained anonymous. Before filling out 
the questionnaire, all contributors were informed of 
the study’s specific objectives. Participants could only 
complete the survey once and were able to terminate 
it whenever they wanted. This study’s formal ethical 
approval was taken from the respective authority (i.e., 
Rangpur City Corporation, Bangladesh). The data’s 
privacy and confidentiality were ensured.

Results and discussion

Assessment of MLR analysis

MLR analysis has been conducted to find out how dif-
ferent variables can predict or influence the dependent 
variable. The MLR analysis results have been divided 
into three parts: (a) assumption test, (b) interpretation 
of MLR result, and (c) how well the model predicts 
the average HSW generation.

Assumption test

Before conducting the MLR analysis, the assump-
tion has been tested to determine whether the data are 
suitable for multiple regression analysis. The main 

assumptions of MLR are independent observations, 
normality, homoscedasticity, and linearity (Osborne 
& Waters, 2002). Besides, multicollinearity, inde-
pendence of residuals, and outlier’s assumption 
should be fulfilled before conducting MLR.

Independent observation  A visual inspection 
of the collected data shows that each of the N = 381 
observations applies to a different person. Further-
more, these people did not interact in any way that 
should influence their survey answers. Hence, in 
this case, these have been considered independent 
observations.

Normality of residuals  The values of the residuals 
should be normally distributed, which can be tested 
by looking at the p-p plot for the model where the 
closer the dots lie in the diagonal line, the closer to 
normal the residuals are distributed. The histogram 
of residuals can also test it. The p-p plot from Fig. 3a 
shows that the dots lie closer to the diagonal line, and 
also from the histogram of Fig. 3b, it can be shown 
that the residuals are normally distributed.

Homoscedasticity  The variance of the residuals 
should be constant or similar at each point across the 
model, which is also referred to as homoscedastic-
ity, and it can be tested by plotting the standardized 
values the model would predict against the standard-
ized residuals obtained. The result from Fig. 3c shows 
that, as the predicted values increase (along with the 
X-axis), the variation in the residuals is roughly simi-
lar, which indicates the fulfillment of the assumption 
of homoscedasticity.

Linearity  The relationship between the independ-
ent and dependent variables should be linear, or 
the dependent and independent variables should be 

Table 3   Process of 
calculating total suitability 
value

Layer Weight (as a 
percent)

Cell suitability 
value

Weighted 
suitability 
value

Slope 25 5 1.25
Land use 25 5 1.25
Euclidean road distance 25 5 1.25
Euclidean surface water distance 25 5 1.25
Total suitability value 5
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strongly correlated. The result from the correlation 
table (Table  8) shows that, as per the Pearson cor-
relation, there is a moderate relationship between 

the independent and dependent variables, which 
in this case can be counted as the fulfillment of the 
assumption.

Fig. 3   Assumption test results. a Normal p-p plot. b Histogram of standardized residual. c Scatter plot
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No multicollinearity  The predictors or independ-
ent variables should not be highly correlated, which 
can be tested through variation inflation factor (VIF). 
VIF is a measure of the amount of multicollinearity 
in a set of multiple regression variables. VIF formu-
las are given for each predictor, which is supposed to 
identify that predictor’s contribution to a collinearity 
problem (Eq. 3).

where Ri
2 represents the unadjusted coefficient of deter-

mination for regressing the ith independent variable on 
the remaining one. The coefficient of determination 
(R2) indicates the proportion of variance in the depend-
ent variable that can be predicted from the collection 
of independent variables in a multiple regression equa-
tion. The higher Ri

2 values indicate higher VIF values, 
leading to higher degrees of multicollinearity (Abro 
et al., 2019; Akinwande et al., 2015; Shrestha, 2020). 
The reciprocal of VIF is known as tolerance (Murray 
et al., 2012). Table 4 shows that the VIF for each pre-
dictor variable is less than 5, representing no multicol-
linearity among the predictor variables.

Independence of residuals  The values of the 
residuals should be independent or uncorrelated, 
which can be checked through Durbin-Watson sta-
tistics, which can vary from 0 to 4, and to meet 
the assumption, this has to be close to 2 (Hassan 
et  al., 2019). The result from Table  7 shows that 
the Durbin-Watson statistics is 1.955; the residuals 
can be referred to as independent.

(3)VIFi =
1

1 − R2

i

= 1∕tolerance

Absence of outliers  There should be no influencing 
cases or outliers biasing the model that can be tested 
through Cook’s distance statistic. Any individual 
sample’s value greater than 1 represents a significant 
outlier that may influence the model (Dı́az-Garcı́a & 
González Farías, 2004). The result from the residu-
als statistics table (Table 5) shows that the maximum 
Cook’s distance statistics is 0.043, representing no 
significant outliers present in the model.

Interpretation of MLR result

After the assumptions were met, the MLR was con-
ducted using SPSS to determine the impact of inde-
pendent variables on the dependent variable and 
Table 4 shows that the average monthly income, fam-
ily size, and education level variables are statistically 
significant as the p-values of the � coefficient of the 
independent variables are less than 0.05 or p-values 
˂ 0.05. It also shows that the p-value of the age of the 
family head is 0.289, which is greater than 0.05, and 
hence it has no statistical significance. The result also 
reveals that the intercept ( �

0
 ) is 163.044, which indi-

cates the minimum amount (grams) of average HSW 
generation per day in the case where all other inde-
pendent variables will be 0.

The result from Table  4 also shows a positive 
impact of family size on average HSW generation as 
1 person increase in the family will increase the aver-
age HSW generation by 122.398 g. Figure 4b shows 
the quantity of solid waste generated per day by dif-
ferent sizes of families based on the MLR results, 
where it is pretty clear that an increase in family size 

Table 4   Coefficients of per day average HSW generation

Dependent variable: the average HSW generated per day

Model Unstandardized 
coefficients

Standardized 
coefficients

t Sig Correlations Collinearity 
statistics

B Std. error Beta Zero-order Partial Part Tolerance VIF

1 (Constant) 163.044 43.602 3.739 .000
Average monthly 

income in 
household

−.001 .000 −.126 −3.319 .001 −.201 −.169 −.100 .629 1.590

Family size 122.398 5.048 .749 24.247 .000 .650 .781 .728 .944 1.059
Age of family head .558 .525 .032 1.063 .289 −.028 .055 .032 .991 1.009
Education level −184.725 16.682 −.415 −11.073 .000 −.362 −.496 −.332 .641 1.559
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is accompanied by an increase in the amount of solid 
waste generated per day because of more consumption 
of more family members (Khan et  al., 2016; Sankoh 
et al., 2012; Suthar & Singh, 2014).

Consequently, the average monthly income in the 
household has a negative impact on average HSW gen-
eration as 1 BDT (Bangladeshi Taka) increase in aver-
age monthly household income will decrease 0.001 g 

Table 5   Residual statistics

Dependent variable: the 
average HSW generated 
per day

Minimum Maximum Mean Std. deviation N

Predicted value 142.42 1155.60 567.03 180.258 381
Std. predicted value −2.356 3.265 .000 1.000 381
Standard error of predicted value 9.279 27.843 14.385 3.728 381
Adjusted predicted value 144.47 1162.27 567.05 180.308 381
Residual −318.328 355.333 .000 129.025 381
Std. residual −2.454 2.739 .000 .995 381
Stud. residual −2.472 2.778 .000 1.002 381
Deleted residual −322.859 365.297 −.013 130.850 381
Stud. deleted residual −2.489 2.803 .000 1.004 381
Mahal. distance .947 16.512 3.990 2.778 381
Cook’s distance .000 .043 .003 .005 381
Centered leverage value .002 .043 .010 .007 381
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of average HSW generation (Table 4). Figure 4c shows 
the quantity of solid waste generated per day by dif-
ferent families of different household monthly income 
based on the MLR results, where it is also quite clear 
that an increase of 10,000 BDT of monthly house-
hold income will eventually decrease the amount of 
solid waste generated per day by 10 g because of more 
improved living style of families with higher aver-
age monthly household income. The negative impact 
of average household monthly income on solid waste 
generation per day is also caused due to higher income 
group’s seriousness towards the well-being of society 
as well as their ability to eat outside the house fre-
quently, eventually generating less waste (Monavari 
et al., 2011; Sujauddin et al., 2008; Trang et al., 2017).

Again, education level has also negatively impacted 
the average HSW generation, as being a graduate will 
decrease the average HSW generation by 184.725  g 
(Table 4). Figure 4a shows the quantity of solid waste 
generated per day by different families of the different 
average minimum educational levels of family mem-
bers based on the MLR results, where it is pretty clear 
that the average minimum education level of being 
graduate in a family decreases the average HSW gen-
eration than in the family of average minimum educa-
tion level being undergraduates. The educational status 
influences the inhabitants by creating awareness of the 
adverse impacts of improper solid waste management 
and the impact of waste in their health, which even-
tually leads to less waste generation (Gu et al., 2015; 
Ojeda-Benitez et al., 2008).

Consequently, the standardized coefficient reveals 
that 1 standard deviation (SD) movement of family size 
will increase by 0.749 units of the standard deviation of 
average HSW generation, and 1 unit standard deviation 
movement of average household monthly income and 
education level will decrease by 0.126 and 0.415 unit 
of standard deviation respectively for any HSW genera-
tion (Table 4). Based on the regression analysis result, 

the regression equation was obtained as it is shown in 
Eq. 4:

Model performance in predicting the average HSW 
generation

The model was significant in predicting average HSW 
generation per day (F (4,376) = 183.472; p˂0.000), as 
shown by ANOVA in Table  6. The R2 for the over-
all model was 0.661 with an adjusted R2 of 0.658 
(Table 7), which indicates the model explains 66.1% 
of the variation in the dependent variable.

Assessment of spatial MCDA

After estimating the MLR (Table  8), spatial MCDA 
has been conducted to find suitable sites for landfill 
installation and ensure proper disposal of HSW and 
other waste types. The suitable sites have been identi-
fied by considering the four criteria: the slope of the 
land, land use, Euclidean surface water distance, and 
Euclidean road distance. This part includes the result-
ing raster of each of these criteria, the result of the 
SA, justification for assigning equal weight to each 
criterion, and potential site result for future landfill 
installation through weighted overlay analysis.

Land use map

The land use map (Fig. 5a) was developed primarily 
based on remote sensing data and is essential to iden-
tify proper places for landfill installation to protect 
the people and other living beings from harm caused 

(4)

Predicted average HSW = 163.044 − 0.001

× Average monthly household income + 122.398

× Family size + 0.558 × Average of family head

− 184.725 × Education level

Table 6   ANOVA table

Dependent variable: the average HSW generated per day
a Predictors: (constant), education level, age of the family head, family size, average monthly income in the household

Model Sum of squares df Mean square F Sig

1 Regression 12,347,330.976 4 3,086,832.744 183.472 .000a

Residual 6,326,017.580 376 16,824.515
Total 18,673,348.556 380
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by the landfill (Mallik, 2022; Rahaman et al., 2022). 
Landfill sites must exclude protected areas such as 
local woods and wildlife or plant conservation areas. 
For the land to not have other conflicting uses, it has 
been recommended to choose bare land for landfill 
installation (Delgado & Tarantola, 2006). Hence, the 
water bodies, agricultural, and vegetation areas were 
given a lesser rank, and bare land was given as rank 
5, which is a highly suitable site for landfill selection.

Slope map

The slope indicates the angle between the terrain and 
the horizontal surface, where lower values indicate 
flatter terrain and higher values indicate steeper ter-
rain. The proper slope on which to build a landfill 
is less than 4°, and if the slope is too steep, it would 
be challenging to build and excavate landfill com-
ponents, and if it is steeper than 15°, rain flow will 
increase, resulting in greater travel distance for con-
taminants (Higgs, 2006). So, the least steep or flat 
slope was taken as a highly suitable site for landfills 
(Fig. 5b).

Euclidean road distance map

Aesthetic consideration and a good environment are 
necessary for good planning; hence, landfills should 
not be located within 150  m of main paved roads. 
However, the landfill should not be located too far 
from the existing major road network to avoid high 
transportation costs (Kaya et  al., 2006). Hence, the 
150-m distance from the existing major road was 
chosen as permanently unsuitable, and the distance 
between 600 and 750 m was chosen as highly suitable 
for the landfill sites (Fig. 5c).

Euclidean surface water distance map

Landfill sites should not be located within surface 
water or water resource protection areas to protect sur-
face water from contamination by leachate, and hence 
safe distance from rivers should be achieved to pre-
vent waste from eroding into rivers and major streams 
(Sarptaş et al., 2005). Hence, the minimum distance of 
400  m from major streams was identified as the per-
manently unsuitable option. A distance greater than 
1600  m from the major stream was identified as a 
highly suitable option for landfill sites (Fig. 5d). Ta
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Assessment of SA

The SA is categorized into five classes starting from 
permanently unsuitable (S1), currently unsuitable 
(S2), marginally suitable (S3), moderately suitable 
(S4), and highly suitable (S5). Figures 6 and 7 show 
the SA of land use based on the multiple weighting 
values. Land use is a highly sensitive element in the 
suitability classification for landfill sites. In other 
words, the more the land use influence is increased, 
the more the suitability classes’ output changes. For 
instance, in the case of 10% land use weighting, the 
significant portion comprises permanently unsuit-
able (S1), currently unsuitable (S2), and marginally 
suitable (S3) classes (1.14%, 12.89%, and 46.6%, 
respectively). However, in the case when the land 
use weighting has been increased to 70%, there is a 
significant decrease in these classes. In contrast, the 
permanently unsuitable (S1), currently unsuitable 
(S2), and marginally suitable (S3) classes have been 
decreased to 0.59%, 6.01%, and 23.08% respectively. 
In addition, there are a gradual increase in moderately 

suitable (S4) and highly suitable (S5) classes from 
10% land use influence to 70% land use influence. In 
contrast, the moderately suitable (S4) and highly suit-
able (S5) classes increased from 35.01 and 4.37% to 
52.26 and 18.06%, respectively.

As a result, the data shows that the overall suit-
ability classification is changed due to the variation 
of land use weightings. This change is expected to 
take place in the study area. The implication drawn 
from such significant findings is that the land use fac-
tor demands suitable weighting, possibly reflecting its 
importance for the suitability of landfill sites in the 
study area.

The SA for the slope criteria is conducted in the 
current study, as shown in Figs. 8 and 9. The results 
reveal that the slope criteria are also highly sen-
sitive, as all the suitability classes are drastically 
changed according to changes in slope weightings. 
For instance, when the importance of slope is given 
10%, the significant portion of the overlaid map com-
prises permanently unsuitable (S1), currently unsuita-
ble (S2), and marginally suitable (S3) classes (2.09%, 

Table 8   Correlation table of MLR

The average HSW 
generated per day

Average monthly 
income in 
household

Family size Age of 
family 
head

Education level

Pearson correlation The average HSW generated 
per day

1.000 −.201 .650 −.028 −.362

Average monthly income in 
household

−.201 1.000 .228 .004 .594

Family size .650 .228 1.000 −.041 .167
Age of family head −.028 .004 −.041 1.000 .069
Education level −.362 .594 .167 .069 1.000

Sig. (1-tailed) The average HSW generated 
per day

.000 .000 .293 .000

Average monthly income in 
household

.000 .000 .466 .000

Family size .000 .000 .212 .001
Age of family head .293 .466 .212 .090
Education level .000 .000 .001 .090

N The average HSW generated 
per day

381 381 381 381 381

Average monthly income in 
household

381 381 381 381 381

Family size 381 381 381 381 381
Age of family head 381 381 381 381 381
Education level 381 381 381 381 381
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Fig. 5   Criteria of spatial MCDA. a Land use map. b Slope map. c Euclidean road distance map. d Euclidean surface water distance 
map
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23.24%, and 42.91%, respectively). However, when 
the slope weighting has been increased to 70%, these 
classes significantly decrease. In contrast, the perma-
nently unsuitable (S1), currently unsuitable (S2), and 
marginally suitable (S3) classes have been decreased 
to 0.80%, 11.97%, and 8.57%, respectively. Further-
more, moderately suitable (S4) and highly suitable 
(S5) classes have gradually increased from 26.09 and 
5.67% to 53.38 and 25.28%, respectively, in the case 
of 10% slope influence to 70% slope influence.

Overall, the result shows that the suitability classi-
fication of all classes is also changed due to the vari-
ation of slope weightings. This implies that the slope 
factor also demands suitable weighting reflecting its 
importance and effect on the suitability of landfill 
sites in the study area.

Figures 10 and 11 show the SA of Euclidean road 
distance based on the multiple weighting values. The 
result reveals that Euclidean road distance is a highly 
sensitive element in the suitability classification for 
landfill sites, as all the suitability classes are drasti-
cally changed according to changes in Euclidean 
road distance weightings. The result reveals that, in 
the case of 10% Euclidean road distance weighting, 
only a few portions of the overlaid map comprise of 
permanently unsuitable (S1) and currently unsuit-
able (S2) classes (1.00% and 5.22%, respectively). 
However, when the Euclidean road distance weight-
ing has been increased to 70%, these classes gradu-
ally increase. In contrast, the permanently unsuitable 

(S1) and currently unsuitable (S2) classes have been 
increased to 2.69% and 39.53%, respectively. The 
changes in marginally suitable classes (S3) have 
also been found through changes in Euclidean road 
distance weightings. In addition to that, there is a 
gradual decrease in moderately suitable (S4) and 
highly suitable (S5) classes from 10% Euclidean road 
distance to 70% Euclidean road distance influence, 
whereas the moderately suitable (S4) and highly suit-
able (S5) classes decreased from 42.76 and 10.47% to 
19.07 and 9.57%, respectively.

Overall, the result shows that the suitability clas-
sification of all classes is also changed due to the 
variation of Euclidean road distance weightings. This 
implies that the Euclidean road distance factor also 
demands suitable weighting reflecting its importance 
and effect on the suitability of landfill sites in the 
study area.

The SA for the Euclidean surface water distance 
criteria is conducted in the current study, as shown in 
Figs. 12 and 13. The results reveal that the Euclidean 
surface water distance criteria are also highly sensi-
tive, as all the suitability classes are significantly 
changed according to changes in Euclidean surface 
water distance weightings. Result reveals that, in the 
case of 10% Euclidean surface water distance weight-
ing, only a few portions of the overlaid map comprise 
of permanently unsuitable (S1) and currently unsuit-
able (S2) classes (0.17% and 5.76%, respectively). 
However, when the Euclidean surface water distance 
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Fig. 6   SA for land use criteria
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weighting has been increased to 70%, there is a grad-
ual increase in these classes, whereas the permanently 
unsuitable (S1) and currently unsuitable (S2) classes 
have been increased to 2.06% and 31.58%, respec-
tively. Furthermore, the result also reveals that there 
is a gradual increase in highly suitable classes, as it 
has increased from 4.63% of the total suitable portion 
in 10% Euclidean surface water distance weighting 
case to 22.26% of the total suitable portion of the area 
in 70% Euclidean surface water distance weighting 
case. In addition to that, there is a gradual decrease in 
marginally suitable (S3) and moderately suitable (S4) 
classes from 10% Euclidean surface water distance 
to 70% Euclidean surface water distance influence, 
whereas the marginally suitable (S3) and moder-
ately suitable (S4) classes decreased from 46.17 and 
43.27% to 23.41 and 20.69%, respectively.

The result shows that the suitability classification 
of all classes is also changed due to the variation of 
Euclidean surface water distance weightings. This 
implies that the Euclidean surface water distance 
factor also demands suitable weighting reflecting its 
importance and effect for the suitability of landfill 
sites in the study area.

Based on the sensitivity analyses, it is revealed that 
all criteria (e.g., land use, slope, Euclidean road dis-
tance, Euclidean surface water distance) are highly 
sensitive to the suitability of landfill sites. Hence, 
all criteria demand suitable weighting based on their 
importance and effect on the suitability of landfill 

sites in the study area. Hence, all criteria have been 
assigned equal weight for the SA of landfill sites.

Potential future landfill sites

The weighted overlay analysis of all generated ras-
ters with equal weights reveals potential solid waste 
landfill sites (Fig.  14). The final site validation also 
heavily depends on the study of existing land tenure 
results. The final suitable map was classified into 
five categories: highly suitable, moderately suitable, 
marginally suitable, currently unsuitable, and perma-
nently unsuitable based on the suitable characteristics 
of the resulting rasters.

Highly suitable land  The bare land with the least 
stiff or flattest slope of up to 1° has been considered 
highly suitable. This zone is also very far from sur-
face water, which ranges from 1600 m upwards from 
the existing surface water, ensuring the least probabil-
ity of leachate contamination into freshwater sources. 
The zone is also 600–750 m far from existing major 
roads to ensure both accessibility as well as aes-
thetic consideration for the surrounding environment. 
The area of highly suitable land is 7.703 km2, which 
contributes about 6.61% of the total suitable area 
obtained from overlay analysis (Table 9).

Moderately suitable land  This zone includes a 
slope comparatively stiffer than the highly suitable 
area, which ranges from 1.11° to 1.91°. The zone is 
also moderately far from surface water, which ranges 
from 1200 to 1600 m from the existing surface water. 

Fig. 7   SA maps for land use criteria (land use weighting 
schemes, a 10%, b 30%, c 50%, and d 70%)
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Fig. 8   SA for slope criteria
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Fig. 9   SA maps for slope criteria (slope weighting schemes, a 10%, b 30%, c 50%, and d 70%)
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This indicates a slightly greater possibility of lea-
chate contamination into freshwater sources than 
in highly suitable areas but falls into the acceptable 
possibility range of contamination. The zone primar-
ily consists of bare land and a built-up area. How-
ever, this area is also 450–600  m far from existing 
major roads ensuring higher accessibility but less 
aesthetic consideration for the surrounding environ-
ment than a highly suitable area. The moderately 
suitable area is 49.904 km2 which contributes about 
42.82% of the total suitable area obtained from over-
lay analysis (Table 9).

Marginally suitable land  Most of this area 
includes built-up land, whereas some portions include 
bare land. This zone includes a comparatively stiffer 
slope than a moderately suitable area ranging from 
1.92° to 2.77°. The zone is also medium far from sur-
face water which ranges from 800 to 1200  m from 
the existing surface water, which indicates a slightly 
greater possibility of contamination of leachate into 
freshwater sources than in moderately suitable areas 
but falls into an acceptable possibility range of con-
tamination. This area is also 300–450  m far from 
existing major roads ensuring higher accessibility 
but less aesthetic consideration for the surrounding 
environment than a moderately suitable area. The 

marginally suitable area is 51.455 km2, contributing 
about 44.16% of the total suitable area obtained from 
overlay analysis (Table 9).

Currently unsuitable land  This zone of land includes 
a slope comparatively stiffer than the marginally suit-
able area, which ranges from 2.78° to 4.13°. Also, some 
of this zone falls in an unacceptable region as the proper 
slope to build a landfill is less than 4°. This zone covers 
mostly agricultural and vegetation land which is currently 
unsuitable for landfill installation. Furthermore, the zone 
is also not too far from surface water which ranges from 
400 to 800 m from the existing surface water, indicating a 
great possibility of leachate contamination into freshwater 
sources; hence, it falls into unacceptable landfill installa-
tion regions. The area is also only 150–300 m far from 
existing major roads indicating less possibility for main-
taining aesthetics and a good environment because of the 
area being too close to major roads. The currently unsuit-
able area is 7.381 km2, which contributes about 6.33% 
of the total suitable area obtained from overlay analysis 
(Table 9). Though in the case of most of the factors, i.e., 
surface water, road, and land use, this zone is currently 
unsuitable, this zone can be converted into the least suit-
able zone for landfill installation by providing a proper 
road network inside the city to ensure more accessibility 
from any location into the city to the area.
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Fig. 10   SA for Euclidean road distance criteria
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Permanently unsuitable land  The permanently 
unsuitable land covers 0.088 km2 area, contributing about 
0.08% of the total area obtained from the weighted over-
lay analysis (Table 9). The zone includes a stiffer slope 
than any other land in the study area, ranging from 4.14° 
to 12.86°, where the whole land falls in an unacceptable 
slope region for landfill installation. Furthermore, the 
zone is also less than 150 m from existing major roads, 

indicating the least possibility for maintaining aesthetics 
and a good environment because the area is much closer 
to the road, which also falls in the unacceptable region 
for landfill installation. Moreover, because of its proxim-
ity of less than 400 m from surface water, the zone is too 
vulnerable to environmental and water quality-related 
problems through leachate contamination. Hence, this 
zone falls into a permanently unsuitable area. This zone 
also primarily covers water bodies and protected areas 
like vegetation and small forest areas; hence, this zone 
also falls into permanently problematic areas for landfill 
site selection.

Fig. 11   SA maps for Euclidean road distance criteria (Euclid-
ean road distance weighting schemes, a 10%, b 30%, c 50%, 
and d 70%)
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Fig. 12   SA for Euclidean surface water distance criteria
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Fig. 13   SA maps for Euclidean surface water distance criteria (Euclidean surface water distance weighting schemes, a 10%, b 30%, 
c 50%, and d 70%)
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Fig. 14   Potential suitable 
landfill site map

Table 9   Area and 
percentage of different 
types of suitable land

Category Contribution to the total suitable 
area (km2)

Contribution in the 
total suitable area 
(%)

Highly suitable land 7.703 6.61
Moderately suitable land 49.904 42.82
Marginally suitable land 51.455 44.16
Currently unsuitable land 7.381 6.33
Permanently unsuitable land 0.088 0.08
Total 116.531 100
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Conclusion

This study’s main focuses are to estimate the HSW 
generation in RpCC and further identify the suitable 
sites for landfill installation for proper disposal of 
those HSW and other types of solid waste. The analy-
sis revealed the potential factors for HSW generation, 
such as monthly household income, family size, and 
average minimum education level of family members 
as well as the contribution of those factors to HSW 
generation. Furthermore, from the analysis, mini-
mum education level and monthly household income 
negatively affect HSW generation. In contrast, family 
size has a positive relationship with HSW generation, 
which overall indicates the pattern of HSW genera-
tion in RpCC.

The spatial multicriteria decision analysis 
revealed the potential sites for landfill installation 
for disposal of that HSW as well as other types of 
waste, where the highly suitable land was consid-
ered bare land with the least stiff or flattest slope of 
up to 1°, which is also minimum 1600 m far from 
surface water and 600–750  m far from existing 
major roads. The highly suitable sites, as a result, 
indicate the least probability of contamination of 
leachate into freshwater sources, ensuring accessi-
bility from all portions of the study area and aes-
thetic consideration for the surrounding environ-
ment as well as the exclusion of protected areas and 
water bodies, which overall indicate a sustainable 
location for landfill installation.

Based on the study’s results and discussions, Rang-
pur City’s local government and related policymakers 
can consider the HSW generation pattern and use it 
to make policies to reduce HSW generation, which 
comprises a big portion of solid waste in RpCC. This 
output will make Rangpur a relatively clean city by 
identifying alternatives for reducing the HSW genera-
tion, where the solid waste management is inadequate 

and waste recycling and reuse practice are insuffi-
cient. Furthermore, the study also focuses on identi-
fying suitable sites for landfill installation, which can 
ensure the proper disposal off all types of solid waste, 
including HSW, and consequently can solve the burn-
ing issue of unplanned solid waste management in 
this region to create an environmentally sustainable 
city. Further research may focus on urban growth 
and solid waste management interactions to develop 
a more comprehensive solid waste management plan 
for fast-developing cities considering the factors of 
HSW generation mentioned in this study. The results 
will improve the understanding of city planners and 
policymakers in making a city-level sustainable solid 
waste management plan for ensuring sustainability at 
the regional level.
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Ward no: Interview No: Date:

Factors related to HSW generation
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