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utilized a geographical detector model (with spa-
tial scale effects and spatial data discretization tests) 
to quantify the influence of the detected natural and 
human factors. Results showed that average annual 
FVC was 0.30–0.75 for ~90% of the study area over 
the 19-year study period with a heterogeneous spatial 
distribution. FVC variation trend displayed stability 
and improvement. Areas with higher FVC displayed 
greater stability. All 10 detected natural and anthro-
pogenic factors were responsible for changes in FVC. 
The primary factors causing FVC to change were pre-
cipitation (in 2001) and slope (in 2018), followed by 
landform type, distance to water, and nighttime light 
(NTL) (in 2018). Precipitation and slope consistently 
displayed the largest interaction across all years. The 
interaction between human and topographical fac-
tors had gradually increasing significance on changes 
in FVC over the research period. The range and type 
of factors suitable for promoting vegetation growth 
were detected in the study area. Results of this study 
can provide a scientific basis for developing effective 
strategies for local vegetation protection, restoration, 
and land resource management.

Keywords Vegetation · Attribution analysis · 
Natural factors · Human activity · Hanjiang River 
Basin

Abstract The middle and lower reaches of Hanji-
ang River Basin (MLHB), areas that have an impor-
tant ecological function in China, have experienced 
great changes in the vegetation ecosystem driven by 
natural environmental change and human activity. 
Here, we explored the spatio-temporal dynamics of 
fractional vegetation coverage (FVC) and quantita-
tively analyzed its driving factors to advance current 
understanding of how the ecological environment 
has changed. Specifically, we used the dimidiate 
pixel model to calculate the FVC of the MLHB from 
2001 to 2018 based on Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Enhanced Veg-
etation Index (EVI) data. We then used Theil–Sen 
median slope (Sen’s slope) and coefficient of varia-
tion (CV) to explore spatial and temporal variations, 
as well as characteristics in fluctuations. Finally, we 
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Introduction

Vegetation is an important component of the terrestrial  
ecosystem and plays a significant role in climate 
change, carbon cycle, water retention, and soil erosion 
prevention (De Boer, 1983; Kong et  al., 2018; Sun 
et al., 2015; Walther et al., 2002; Zuazo & Pleguezuelo, 
2008). As such, vegetation is regarded as an integrated 
indicator for monitoring changes to the ecological 
environment (Wang et al., 2015). Under the influence 
of both natural and human activities, the process of 
vegetation change exhibits complex characteristics 
(Piao et  al.,  2003). Consequently, a hot topic in 
academic research involves developing ways to obtain 
a detailed understanding of this process, including 
analyses of response mechanisms of changes to 
vegetation in relation to natural and human activity at 
regional and global scales (Feng et al., 2020; Xu et al., 
2020b; Zhao et  al., 2018). Therefore, mapping time 
series of vegetation change and comprehending the 
change mechanism are essential for global and regional 
ecological environmental protection and restoration.

Fractional vegetation coverage (FVC) defined as 
the ratio of the vertical projected area of green veg-
etation (including leaves, stems, and branches) on the 
ground (Shoshany et al., 1996; Wu et al., 2019) is an 
important index for describing vegetation growth and 
for reflecting ecosystem changes (Iizuka et al., 2019; 
Purevdorj et  al., 1998). It is widely used to monitor 
ground vegetation coverage at different scales (Li 
et al., 2004; Wang et al., 2016a). Detecting trends in 
changes to FVC, and associated spatial variation, pro-
vides information on the dynamic of vegetation cov-
erage, allowing areas subject to degradation or requir-
ing restoration to be identified. In this regard, FVC is 
a good indicator for reflecting vegetation condition.

Remote sensing technology provides dynamic real-
time information, allowing wide coverage and repeat-
able observations (Verbesselt et  al., 2012; Volpe 
et  al., 2011). As such, it provides technical support 
for monitoring and evaluation of vegetation coverage 
and has become the main technology used in vegeta-
tion coverage research (Yang et al., 2013). Remotely 
sensed vegetation indices based on the dimidiate 
pixel model (DPM) are most widely used to estimate 
FVC (Yan et  al., 2022). This method is widely and 
successfully applied for extracting vegetation cover 
at multiple scales for its simplicity and high accu-
racy (Ding et  al., 2016; Wu et  al., 2014; Yan et  al., 

2022). Therefore, the FVC estimated by remote sens-
ing images and DPM has become a feasible method 
of vegetation ecosystem monitoring.

Vegetation coverage is sensitive to changes in the 
natural environment and human activity, reflecting 
the impact over a certain period (Jiang et  al., 2021; 
Tang et  al., 2021; Zhang et  al., 2021). The mecha-
nisms by which vegetation changes are influenced 
in complex ways by both natural and human factors 
vary across regions (Li et al., 2021; Peng et al., 2019; 
Yang et  al., 2021; Zhang et  al., 2022). It is a great 
challenge to identify the underlying driving factors to 
vegetation coverage change and quantify their influ-
ence. Most existing studies have primarily evaluated 
how natural factors impact FVC, rather than human 
factors. Furthermore, existing research tended to 
adopt multivariate statistical analysis to identify rela-
tionships between vegetation coverage and potential 
driving factors (Feng et  al., 2020; Li et  al., 2017; 
Qu et al., 2020) without consideration of spatial het-
erogeneity. Moreover, traditional statistical methods 
require linearity and normal distribution. In contrast, 
the geographical detector model can detect numeri-
cal and qualitative data without needing to follow the 
requirements of multivariate statistical methods (Yun 
et  al., 2019) and can be used to identify spatial dif-
ferences in environmental change effectively. Thus, 
this approach has been widely and successfully used 
to assess the individual influencing factors and their 
interactions on vegetation change and can elucidate 
the mechanism of vegetation change in terrestrial 
ecosystems (Liu et al., 2021; Nie et al., 2021).

The Hanjiang River is an important tributary of 
the Yangtze River in China (Zhang et al., 2013). The 
Hanjiang River Basin is a typical area that is sensitive 
to climate change (Jin et al., 2021) and has a fragile 
ecological environment (He et  al., 2015). The basin 
is also an area of key ecological function nationally, 
as it is a strategic area guaranteeing water resources 
(Deng et al., 2021; Hong et al., 2016). Consequently, 
protection of the ecological environment in this area 
is a major responsibility (Wang et  al., 2018). Over 
the last half century, the middle and lower reaches 
of Hanjiang River Basin (MLHB) have been subject 
to drying through various factors, including regional 
climate warming, the construction and operation of 
the Danjiangkou reservoir and cascade dams, water 
diversion by the Middle Route Project of South to 
North Water Diversion (Zhuan et  al., 2018), and 
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socio-economic development. As such, habitat condi-
tions in this region are complex, with regional eco-
systems being disturbed in ways never previously 
encountered. Vegetation coverage is an important 
indicator of change to the terrestrial ecological envi-
ronment at a regional scale (Cao et al., 2014). Several 
studies have previously assessed change to the pat-
tern of vegetation cover and potential driving factors 
in the MLHB. However, factors driving spatial and 
temporal changes to vegetation cover have not been 
comprehensively assessed, with a stronger focus on 
individual natural factors.

Therefore, in this study, we used the geographical 
detector model to quantify the factors driving changes 
to vegetation, and the influence of their interactions, 
in a humid river valley plain in China. The objectives 
of this study were (1) to determine temporal and spa-
tial variations in FVC, (2) to identify the main natu-
ral and human factors driving changes to FVC, (3) 
to evaluate how interactions of detected driving fac-
tors alter FVC, and (4) to explore the suitable range 
or type of detected factors for FVC. This study is 
expected to advance current understanding on spa-
tial distribution characteristics, driving factors, and 
interactions of changes to FVC and to identify areas 
at risk. Results of this work might provide a reference 
for studies on FVC change in other humid river val-
ley regions. It was also conducive to further research 

involved in predicting changing trends of FVC, 
allowing development of proper vegetation restora-
tion measures. It could also be applied to quantita-
tive evaluations on ecological environmental protec-
tion and restoration at regional scale. Understanding 
the spatial and temporal dynamics in characteristics 
of vegetation cover and potential driving forces is 
expected to provide beneficial baseline scientific 
information for protecting and restoring the regional 
ecological environment, as well as harmonious devel-
opment of economic and social environments in the 
Hanjiang River Basin.

Materials and methods

Study area

The MLHB encompasses the Hanjiang hydrological 
basin downstream of Danjiangkou Reservoir (Tian 
et al., 2019; Yang et al., 2020). The area covers approx-
imately 6.4 ×  104  km2 (110–115° E, 30–34° N; Fig. 1). 
The river flows through Danjiangkou, Laohekou, 
Xiangyang, Yicheng, Zhongxiang, Shayang, Tianmen, 
Qianjiang, Xiantao, Hanchuan, and Caidian, including 
the counties under their jurisdiction (Rao, 2012). The 
MLHB belongs to the subtropical monsoon region and 
is subject to both drought and flooding. In general, 75% 

Fig. 1  Location of the 
middle and lower reaches 
of Hanjiang River Basin 
(MLHB) in China
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of total annual precipitation (range: 700–1200  mm) 
occurs from May to September, with average annual 
temperatures of 15–17  °C (Wang et  al., 2016c). The 
terrain comprises of hills and plains, of which 51.6% is 
plains and platform areas, 25.4% is mountainous, and 
23% is hilly (Zhang et al., 2020b). This region encom-
passes a variety of soil types, including yellow brown, 
red, aquic, paddy, and purple soils (He et  al., 2015). 
The main vegetation type of the basin is subtropical 
evergreen broad-leaved forest (Wang et al., 2019a). As 
one of the key economic development areas in Hubei 
Province, the ecological environment in the MLHB is 
of great importance (Chen et  al., 2007). This region 
is impacted by changes to both natural environmental 
conditions and increasing human activity. Due to fast 
growth of the human population and rapid develop-
ment of the local economy and urbanization, the eco-
logical environment of the study area has noticeably 
changed (Zhan et al., 2021).

Data sources

Enhanced vegetation index (EVI), precipitation, tem-
perature, digital elevation model (DEM), slope, land-
form type, soil type, vegetation type, land use type, 
population density (Pd), and nighttime light (NTL) 
data were used.

Moderate Resolution Imaging Spectroradiometer 
(MODIS) product MOD13Q1 EVI data (h27v05), 
with a temporal resolution of 16  days and a spatial 
resolution of 250 m, from 2001 to 2018 was acquired 
from the Atmosphere Archive & Distribution System 
Distributed Active Archive Center (LAADS DAAC) 
of the National Aeronautics and Space Administra-
tion (NASA) (https:// ladsw eb. modaps. eosdis. nasa. 
gov/). In total, 414 EVI images were used for this 
analysis with data of high quality that had been pro-
cessed with radiation, atmospheric, and geometric 
corrections and widely used for studying regional 
vegetation previously. Images were further projected 
to UTM WGS 84 Zone 49 N with MODIS Reprojec-
tion Tool (MRT), to preserve spatial resolution and 
further extract them to the extent of the study area. 
The maximum value composition (MVC) method 
(Holben, 1986) was used to obtain monthly MODIS 
EVI data. Then, average of monthly data yielded 
annual EVI data to avoid the influence of extreme cli-
mate on vegetation growth (Qu et al., 2020).

Based on MODIS EVI data, FVC was derived 
using the dimidiate pixel model (Gutman & Ignatov, 
1998; Mu et al., 2018), which assumes spectral infor-
mation of one pixel is linearly weighted synthesized 
by only two components (Carlson & Ripley, 1997). 
The calculation formula is as follows:

where EVI is the enhanced vegetation index of a 
mixed pixel, and EVIveg and EVIsoil are values of pure 
vegetation and bare soil pixels, respectively (Zhang 
et  al., 2013). Due to differences in environmental 
backgrounds and image quality, EVIsoil and EVIveg 
changed with time and space. In the actual calculation 
process, the maximum and minimum EVI values of 
each land use type in the corresponding period were 
used to replace EVIsoil and. EVIveg Based on land use 
types, 5% and 95% confidence levels were used to 
select the maximum and minimum thresholds of EVI 
data in the corresponding periods (Li et al., 2004).

Climate factors affect surface vegetation coverage, 
especially changes in precipitation and temperature 
(Sun et  al., 2020). The meteorological data (yearly 
precipitation and air temperature) from 2001 to 2018 
were acquired from the Chinese Meteorological 
Administration (http:// data. cma. cn/). Approximately 
700 meteorological stations in China were selected. 
Spatial distribution of precipitation and air tempera-
ture was predicted using ANUSPLIN interpolation 
software.

Elevation and slope were used as topographic fac-
tors to examine changes to the spatial pattern of veg-
etation. They were obtained using images from the 
NASA Shuttle Radar Topography Mission (SRTM) 
dataset, with a spatial resolution of 90 m, and down-
loaded from the Geospatial Data Cloud (http:// www. 
gsclo ud. cn/).

Landform, soil, and vegetation type in the study 
area were extracted from 1:1,000,000 thematic maps 
delivered by the Data Center of Chinese Academy of 
Resources and Environmental Sciences (http:// www. 
resdc. cn/).

Human influence was determined from distribution 
of population density and nighttime lighting. Popula-
tion density data were downloaded from WorldPop 
(https:// www. world pop. org/ proje ct/ categ ories? id= 18) 
with 1 km resolution. Nighttime light data were down-
loaded from Harvard Dataverse (https:// datav erse. 

(1)FVC = (EVI − EVIsoil)∕(EVIveg − EVIsoil)
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harva rd. edu/ datas et. xhtml? persi stent Id= doi: 10. 7910/ 
DVN/ YGIVCD) at 500  m resolution. Land use type 
data (including water body distribution) were acquired 
from the Chinese Academy of Resources and Environ-
mental Sciences at a resolution of 30 m.

All data were reprojected to UTM 49 N WGS 84 
and were resampled to 250  m to be consistent with 
the EVI data.

Methods

Temporal fluctuation characteristics of FVC

To detect the trends in changes to regional vegetation 
coverage, the Sen trend (Sen, 1968) degree of vegeta-
tion coverage from 2000 to 2018 was calculated, and 
the Mann–Kendall (MK) test (Fernandes & Leblanc, 
2005; Kendall, 1948; Mann, 1945) was performed.

The Sen trend analysis is a method with nonpara-
metric statistical testing and is free from data noise 
(Gilbert & Richard, 1987). The trend is calculated as

where � represents the tendency of FVC, i and j represent 
the time series, and xi and xj denote FVC value at time 
i and j , respectively. When, 𝛽 > 0 change to vegetation 
coverage increases, and when, 𝛽 < 0 change declines.

The Mann–Kendall statistics were used to test the 
significance of the change trend (Kendall, 1948). 
Based on Sen’s slope and MK test results, annual 
mean FVC values were allocated to five classes 
(Table 1 in the Appendix).

Spatial fluctuation characteristics of FVC

The coefficient of variation (CV) is used to describe 
fluctuation degree in time series data (Xu, 2002). We 
applied CV to represent the stability in FVC change. 
The formula for CV is

where Cv is the CV, i is the time series (year), xi is FVC 
value at time i , and x represents the average FVC during 
the study period. Obtained Cv values were further divided 
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)
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�
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n
∑
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into five levels: low fluctuation ( Cv < 0.05 ), relatively 
low fluctuation ( 0.05 ≤ Cv ≤ 0.10 ), moderate fluc-
tuation ( 0.10 ≤ Cv ≤ 0.15 ), relatively high fluctuation 
( 0.15 ≤ Cv ≤ 0.20 ), and high fluctuation ( Cv ≥ 0.20).

Geographical detector model

The geographical detector model is a new statistical  
method used to detect spatial stratified heteroge-
neity (Wang et  al., 2016a; Xu et  al., 2020a) and to 
reveal the factors driving it (Wang et al., 2010). The  
main principle of the model is that if an independent 
variable has an important influence on the dependent 
variable, then spatial distributions of the independent 
variable and the dependent variable should be simi-
lar in spatial distribution (Han et al., 2021; Wang & 
Hu, 2012; Xu et al., 2018). The geographical detector 
model has four modules (Wang et  al., 2010): factor, 
risk, interaction, and ecological detectors. We used 
the factor, interaction, and risk detectors to detect 
which factors have greater influence on FVC change, 
determine how different factors interact with each 
other, and identify where vegetation grows better.

FVC values in 2001 (first year of the study period), 
2009 (midpoint year of the study period), and 2018 
(final year of the study period) were chosen respec-
tively as the dependent variable in the model analysis 
to represent the change process. Through a compre-
hensive consideration of possible influencing factors 
on vegetation coverage in the study area and data 
availability, 10 factors covering climate, topography, 
geomorphology, soil, vegetation, water, and human 
activity were selected as independent variables for 
further model analysis (Table 1).

Factor detector Factor detection is represented by 
q value (Wang et al., 2016b) as

where q represents the explanatory power of detect 
factor x on spatial distribution of detected factor y . 

(4)
q = 1 −

L
∑

h=1

Nh�
2

h

N�2
= 1 −
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h
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The value of q ranges from 0 to 1; a larger q value 
demonstrates a greater effect of independent variable 
x to dependent variable y . h = 1,… , L is the strata 
of variable y or factor x ; Nh and N are the number 
of cells in layer h and the entire region, respectively; 
�2
h
 and �2 are the variance of y values of layer h and 

the whole study area, respectively; SSW and SST are 
within and total sum of squares, respectively.

The factor detector was used to represent the influ-
ence of 10 selected natural and human factors on 
FVC, and a calculated q value indicates the explana-
tory power of FVC.

It is important to select the appropriate spatial 
scale and spatial data discretization method (Wang & 
Xu, 2017) to analyze changes to FVC and potential 
driving factors when using the geographical detector 
model. The parameter optimization, including opti-
mization of spatial discretization method and spatial 
scale (Song et  al., 2020), was taken into considera-
tion. Scale effects of q values and the ranks of 10  
factors were tested using eight scales (2  km, 3  km, 
5 km, 8 km, 10 km, 12 km, 15 km, and 20 km). Four 
common methods (manual, natural break, quantile 
break, equal interval break) for spatial data discre-
tization were tested to choose the optimal for the geo-
graphical detector model.

Interaction detector The interaction detector is 
used to assess the explanatory power of independent 
variables x1 and x2 to dependent variable y . q values 

of x1 , x2 , and x1 ∩ x2 are calculated, respectively. The 
interaction type between x1 and x2 can be identified 
by comparing q(x1) , q(x2) , and q(x1 ∩ x2) values. The 
detailed interactive relationship is represented in 
Table 2. The interaction detector was used to examine 
whether selected natural and human factors have an 
interactive effect on FVC change.

Risk detector The risk detector is used to compare 
a significant difference of average values between 
subregions, which is examined by t statistics. It is cal-
culated as

where Yh denotes the mean value of attributes in sub-
region h , Nh is the number of sample units in subre-
gion h , and Var represents the variance.

Results

Spatial and temporal patterns to change in FVC

The long-term average FVC was 0.52 for the whole 
study area from 2001 to 2018, and the average annual 
FVC was 0.30–0.75 for ~ 90% of the study area 
(Fig. 2a, b). Spatial distribution of FVC in MLHB was 
heterogeneous, and medium-coverage, medium–low, 
and medium–high-coverage zones were widely dis-
tributed and relatively concentrated (Fig. 2b, Table 2 
in the Appendix). Relatively high FVC values were 
primarily located in the mid-southern and western 

(6)t
Yh=1−Yh=2

=
Yh=1 − Yh=2

[

Var(Yh=1)

Nh=1

+
Var(Yh=2)

Nh=2

]1∕2

Table 1  Information on selected factors

Aspect Factor Code Unit

Climate Mean annual 
precipitation

x1 mm

Mean annual 
temperature

x2 °C

Topography Elevation x3 m
Slope x4 °

Geomorphology Landform type x5 Categorical
Soil Soil type x6 Categorical
Vegetation Vegetation type x7 Categorical
Water Distance to water x8 km
Human activity Population density (Pd) x9 People/km2

Nighttime light (NTL) x10 W/km2

Table 2  Types of interaction between two variables and their 
interactive impact

Interaction relationship Interaction

q(x
1
∩ x

2
) < min

(

q(x
1
), q(x

2
)
)

   Weaken; nonlinear

Min
(

q(x
1
), q(x

2
)
)

< q(x
1
∩ x

2
) < max

(

q(x1), q(x2)
)

  
Weaken; univariate

q(x
1
∩ x

2
) > max

(

q(x
1
), q(x

2
)
)

   Enhanced; mutually
q(x

1
∩ x

2
) = q(x

1
) + q(x

2
)   Independent

q(x
1
∩ x

2
) > q(x

1
) + q(x

2
) Enhanced; nonlinearly
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parts of the study area. Relatively low FVC values 
were located in the northern part of the study area and 
along the banks of the northernmost and southern-
most sections of MLHB.

Figure 3a shows significant changes to spatial dis-
tribution in FVC from 2001 to 2018. Basically stable 
zones were widely distributed throughout, cover-
ing 51.99% of the study area. Areal proportion was 
the largest of all significance classes (Table  3). FVC 
declined in 23.45% of the total area, of which 18.25% 
showed a significant decline. These areas were mainly 
distributed along the banks of Hanjiang River and 
its tributaries in the central and southern parts of the 
study area. FVC increased in 24.56% of the total area, 
of which 19.21% showed a significant increase. These 
areas were relatively dispersed throughout the study 
area, but were mainly distributed on the northern plain.

FVC in the study area was relatively stable from 
2001 to 2018 (Fig.  3b, Table  4). Areas with higher 

FVC displayed greater stability. Furthermore, rela-
tively high fluctuation areas tended to be distributed 
in areas with slight and significant increases (Fig. 3a, 
b). Low-fluctuation, relatively low-fluctuation, and 
moderate-fluctuation areas generally occurred in sta-
ble or significantly decreasing areas. Overall, 35.06% 
of the study area exhibited moderate fluctuation, which 
was mainly distributed in medium–low-, medium-, 
and medium–high-coverage zones (Fig.  4). Moderate  
fluctuations mostly occurred along riverbanks in 
the north-central part of the study area. Overall,  
27.50% of the study area exhibited relatively low 
fluctuation, which was mainly distributed in the  
west, northernmost, and central-east parts. Low fluc-
tuation mostly occurred in medium–high-coverage and 
medium-coverage zones. Overall, 19.78% of the study 
area had relatively high fluctuation, which was mainly 
distributed in the medium-coverage and medium–low-
coverage zones. Overall, 16.38% of the study area 
exhibited high fluctuation, which was mainly distrib-
uted in medium–low- and low-coverage zones in the 
northeastern and southernmost parts of the study area.

Detection of influencing factors

Parameter optimization

In the aspect of spatial scale effect, q values of nearly 
all factors tended to increase with increasing grid 

Fig. 2  a, b Characteristics of annual mean FVC in MLHB from 2001 to 2018.

Table 3  Percentage area with different trends in FVC

Type of change Percentage 
area (%)

Significant decrease 18.25
Slight decrease 5.20
Insignificant change 51.99
Slight increase 5.35
Significant increase 19.21
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size, but with high fluctuation. In contrast, q values 
were relatively moderate and stable at a 5 km × 5 km 
scale (Fig. 5a). Ranks of most factors, especially fac-
tors with higher influence, remained relatively stable 
at the 5 km × 5 km grid size (Fig. 5b). Moreover, this 

scale provided meaningful information on geographic 
variation in FVC at the ecological scale. Thus, 5 km 
was chosen as the optimal grid size for geographical 
detector analysis in this study.

Fig. 3  a, b Change characteristics of annual mean FVC in MLHB from 2001 to 2018

Fig. 4  Area statistics of 
changes to stability in 
FVC for different variation 
types in MLHB during 
2001–2018
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For the spatial data discretization effect, q values 
varied with classification method used (Table  3 in 
the Appendix), while no specific relationships were 
found between q values and zoning methods. For 
instance, the natural break and quantile methods pro-
duced relatively consistent results for both natural and 
human factors. Based on the characteristics of factors 
and spatial data, the natural break (Jenks) method 
was used to classify precipitation (eight grades, rep-
resented as A1–A8), temperature (eight grades), and 
population density (five grades). Prior knowledge, 
range, and distribution characteristics of the data 
were considered when manually classifying the other 
factors. Detailed classification information in 2018 is 
provided in Table 4 in the Appendix.

Influence of natural and human factors

All 10 factors had a significant impact on changes 
to FVCs (p < 0.05) over three time periods (2001, 
2009, and 2018). In 2018, q values of various natu-
ral and anthropogenic factors were ranked as fol-
lows: slope > landform type > distance to water >  

NTL > elevation > vegetation type > precipitation > Pd  
> temperature > soil type (Fig. 6). For the 10 catego-
ries of natural and human factors, q values of slope 
and landform type accounted for more than 20% of 
change to FVC, respectively. q values of all other 
factors were between 10 and 20%. Therefore, both 
natural and anthropogenic factors strongly influenced 
changes to FVC since 2001 in the study area. In 
2001, the largest influencing factor was precipitation, 
explaining 42.64% of change to FVC (Fig.  6), fol-
lowed by temperature (16.22%), elevation (15.13%), 
and slope (15.13%). In 2009, the largest influenc-
ing factor was slope (24.59%), followed by landform 
type (17.90%), precipitation (15.29%), and elevation 
(13.01%). In 2018, slope had the largest influence 
(32.05%), followed by landform type (24.09%), dis-
tance to water (16.71%), and NTL (15.48%). There-
fore, precipitation was the primary factor affecting 
spatial differentiation in FVC in 2001, whereas it was 
slope in 2009 and 2018. Influence of climatic fac-
tors declined, whereas that of topography increased 
to become the dominant factor. Influence of distance 
to water and NTL also gradually increased. Distance 
to water became the third largest influential factor in 
2018, followed by NTL. Influence of human activity 
on change to vegetation coverage gradually increased.

Interaction between factors

Overall, the joint impact of any two influencing fac-
tors of change on FVC was greater than that of each 
single factor. The interaction between detected fac-
tors on FVC was bi-enhanced or nonlinear-enhanced. 

Table 4  Percentage area with different trends in FVC

CVFVC Degree in fluctuation Percentage 
area (%)

CVFVC < 0.05 Low fluctuation 1.27
0.05 ≤  CVFVC < 0.10 Relatively low fluctuation 27.50
0.10 ≤  CVFVC < 0.15 Moderate fluctuation 35.06
0.15 ≤  CVFVC < 0.20 Relatively high fluctuation 19.78
CVFVC ≥ 0.20 High fluctuation 16.38
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Fig. 5  a, b Scale effects on results of the geographical detector
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The synergic effect of human and other factors on 
FVC, for example, in 2018, was as follows: x10 ∩ x4 
(0.416) > x10 ∩ x5 (0.358) > x10 ∩ x8 (0.300) > x10 ∩ x1 
(0.277) > x10 ∩ x3 (0.266) > x10 ∩ x6 (0.260) > x10 ∩ x7 
(0.255) > x10 ∩ x2 (0.237) > x10 ∩ x9 (0.184) (Table  5 
in the Appendix). The interaction between NTL and 
soil type presented a nonlinear enhancement effect. 
However, the relationship between NTL and all other 
factors presented a mutual enhancement effect. The 
following interactions occurred between topogra-
phy and other factors on FVC, for example: x1 ∩ x4  
(0.456) > x4 ∩ x10 (0.416) > x4 ∩ x9 (0.401) > x2 ∩ x4 (0.384) >  
x4 ∩ x8 (0.380) > x4 ∩ x6 (0.378) > x4 ∩ x7 (0.364) > x3  
∩ x4 (0.357) > x4 ∩ x5 (0.339) (Table 5 in the Appendix).  
The interaction between slope and precipitation pre-
sented a nonlinear enhancement effect. In contrast, 
the interaction between slope and all other factors 
presented mutual enhancement effects.

The interaction of precipitation and slope was con-
sistently highest in 2001, 2009, and 2018 (Table 6 in 
the Appendix). In 2001, the interaction of precipita-
tion and elevation was the second highest, followed 
by the interaction of precipitation and temperature. 
In 2009 and 2018, the interaction of slope and NTL 
was the second highest, followed by the interaction of 
slope and population density. The interaction between 
precipitation and topography was more significant 

than any other two factors, or any single factor 
since 2001. Interactions occurred between human 
and topographical factors for FVC and had a gradu-
ally increasing significance on FVC change over the 
research period.

Suitable range/type of factors for vegetation coverage

The optimal range or type of factors for vegetation 
growth was explored with the risk detector module. 
Factors that had a relatively high influence and great-
est changes are discussed here.

Adaptation range of precipitation to FVC FVC 
did not always increase with increasing precipita-
tion; specifically, as precipitation increased, veg-
etation coverage first increased and then decreased. 
Maximum mean FVC was greatest in A5 during 2018 
(Fig. 7a). Overall, vegetation coverage was largest at 
a precipitation range of 1003.5–1078.4 mm. Precipi-
tation has a distinct suitable range for vegetation, and 
moderate precipitation would promote an increase of 
vegetation coverage in the study area.

Adaptation range of slope to FVC Vegetation cov-
erage fluctuated with increasing slope (Fig. 7b). Mean 

Fig. 6  Changes to the q 
value of the 10 factors in 
2001, 2009, and 2018
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FVC was largest for a slope range of 5–15° in the three 
periods. Within this range, this topographic factor was 
conducive to vegetation growth. Maximum mean 
FVC in the area was 0.62 in 2018. Mean FVC for 
slopes > 15° (slope of 15–35° and 35–55° accounted 
for 7.83% and 0.16% of the study area, respectively) 
in 2018 was 0.58 and was second to areas with slopes 
between 5 and 15°. There was little human interfer-
ence in these slope areas, resulting in high vegetation 
coverage. FVC was intermediate for all slope areas in 
low terrain slope (0–0.5°), such as valley plains. For 
slopes of 0.5–5°, where most human activity occurs, 
vegetation coverage was relatively low, particularly for 
0.5–2° slopes.

Adaptation of landform type to FVC Mean FVC 
fluctuated with landform type (Fig.  7c). Mean FVC 
of small, medium, and large undulating mountains 
exceeded 0.55, with these landform types benefiting 
vegetation growth. Small undulating mountains had 
the highest FVC (exceeding 0.60 in 2018). Platforms 
and hills had mean FVCs of less than 0.50. The low-
est FVC of 0.45 was recorded for platforms in 2018.

Adaptation range of distance to the water on 
FVC As distance from water body increased, vegeta-
tion coverage also increased (Fig.  7d). Mean FVC in 
regions 0–1 km and 30–60 km from water bodies dif-
fered to other regions. At 30–60 km from water bodies, 
mean FVC peaked at 0.65 in 2018, showing that these 
areas are more suitable for vegetation growth than 
other areas. At 0–1 km from water bodies, vegetation 
coverage was lowest in 2018 (0.44), with poor condi-
tions for vegetation growth. In fact, compared to all 
other distances to water bodies, this area had the largest 
decrease in vegetation coverage since 2001. At 1–3 km 
from water bodies, vegetation coverage showed a con-
tinuous downward trend, indicating degraded veg-
etation growth. The second highest mean FVC was 
obtained at 20–30 km from water bodies, first increas-
ing and then decreasing over the study period. Except 
for distances of 0– km1, 1–3 km, and 20–30 km from 
water bodies, vegetation coverage of all other areas 
increased since 2001, particularly at 3–20 km distance. 
In 2001, FVC at 3–20 km distance from water bodies 
was lower than that at 0–3  km distance. In contrast, 
in 2018, FVC at 3–20  km distance was much higher 
than that at 0–3 km distance, showing that vegetation 

coverage improved at 3–20  km distances from water 
bodies.

Adaptation range of NTL to FVC Vegetation cov-
erage generally decreased with increasing nighttime 
light. Mean FVC was highest for B1 (0.53) (Fig. 7e) 
than for all other regions during 2001 and 2018 and 
was considered more suitable for vegetation growth 
than other regions. Vegetation coverage was optimal 
at 0–0.1 w/m2, where human activity was low. More 
economically developed areas with brighter nighttime 
lights had lower vegetation coverage. For instance, 
NTL was highest in B7, where FVC was lowest out 
of the seven regions, which primarily contained built-
up urban areas. Thus, changes to FVC were largely 
affected by human activity.

Discussion

Improving detection of factors driving vegetation 
coverage

This study provided a first step towards understanding 
the factors driving changes to vegetation coverage in a 
small watershed of a humid valley plain, where major 
changes to the ecological environment, social econ-
omy, and their interactions have occurred since 2001. 
Quantitatively determining contribution of factors 
driving change to vegetation at multiple time periods is 
essential for implementing appropriate management of 
vegetation ecosystems. Unlike using traditional statisti-
cal methods (Fotheringham et al., 2000; Getis & Ord, 
2010; Metheron, 1963), this study used the geographi-
cal detector model to identify and differentiate the rela-
tive important driving forces and their interaction to 
FVC change based on spatial variation information and 
avoiding complex parameter settings. Input data used 
in the geographical detector model is essentially raster 
format (Wang & Xu, 2017). Thus, it is essential to cal-
culate how the actual area size represented by the grid 
affects the results of the geographical detector (Gao 
et al., 2021; Ju et al., 2016; Song et al., 2020). In con-
trast to previous studies with little consideration to the 
representation of different grid cell sizes when using 
the geographical detector, the current study considered 
the scale effect, selecting a reasonable analysis size by 
comparing the q values of different spatial units.
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Change to vegetation cover influenced by natural 
factors

Climatic factors

Climatic factors are generally considered to be impor-
tant biophysical components affecting vegetation 
growth and development (Jiang et  al., 2021; Wang 
et al., 2021). Vegetation type and quantity are closely 
associated with precipitation and temperature (Jiao 
et  al., 2021). Previous studies showed that vegeta-
tion cover is significantly correlated with precipita-
tion and temperature in Mainland China, including 
the Yangtze River Basin (Chen et  al., 2020; Jiao 
et  al., 2021). The current study showed that FVC in 
MLHB was altered by precipitation and temperature; 
however, the degree to which these two climate fac-
tors affected FVC has gradually declined since 2001, 
especially precipitation. However, q values of interac-
tion between precipitation and other factors (includ-
ing temperature, elevation, slope, landform type, and 
soil type) exceeded the arithmetic sum of their respec-
tive q values. Thus, precipitation noticeably impacted 
FVC, with this influence being primarily reflected in 
its interaction with other natural factors. For instance, 
the interaction between precipitation and slope con-
sistently had the largest q value, whereas the q value 
of precipitation in 2009 and 2018 was ranked third or 
lower out of all 10 factors.

Slope

Slope had a gradually increasing significant influence 
on FVC in the study area since 2001. It is related to 
ecological restoration measures in some slope areas; 
however, it is also related to land use and land cover 
change in different slope areas. Notably, in the imple-
mentation of ecological restoration measures, the fac-
tor slope had become an important deciding condition 
for determining the area where land use type could 
change (Zhang et  al., 2020a). The Hanjiang River 
Basin is an important ecological conservation area of 
the Yangtze River Basin (Yu, 2018). Optimal alloca-
tion of vegetation is required to implement ecological 
recovery projects. According to water conservation 
functions in the Hanjiang River Basin during 2010, 

forests, shrubs, grasslands, unused land, and farmland 
slopes (> 25°) were included in the scope of ecologi-
cal restoration (Yu, 2018). For slopes of 0.5–2°, FVC 
has declined since 2001, but noticeably increased 
for slopes 2–5° over the same period (Fig. 7b). This 
phenomenon was related to land use and land cover 
change in the areas with different slopes affected by  
the policy of returning farmland to lakes, expansion  
of built-up urban areas, and improvement of the urban  
living environment (Li et al., 2020; Liu et al., 2020). 
Analysis of land use change in the study area from 
2000 to 2015 (Table  7 in the Appendix) showed 
that the total area of residential and other construc-
tion land increased by 934  km2 and the total water 
area increased by 518  km2, whereas the total area 
of cultivated land decreased by 1399  km2. The net 
transfer of cultivated land to water areas, residential 
land, and forested land was 480  km2, 789  km2, and 
42  km2, respectively. Studies have shown that active 
areas of land use change were mainly distributed on 
both sides of the river, the plain, hinterland, and hilly 
areas (Yang, 2017). Changes to vegetation coverage 
in areas with different slopes reflect the impact of 
human activity on the natural environment, to some 
extent.

Distance to water

In the study area, vegetation grew better with increas-
ing distance from water bodies. Large areas of flood-
plains and desertified land were located in the 1-km 
buffer zone from water bodies, which were not con-
ducive to growth of vegetation (Chen et  al., 2013; 
Wang et  al., 2019b); consequently, vegetation cov-
erage was relatively low. At the 0–3 km buffer from 
waterbodies, FVC declined during 2001 and 2018. 
Construction of hydraulic facilities, such as levees 
and revetments (Zhang et  al., 2020b), on either side 
of the river weakens the direct recharging of river 
water to groundwater (Huang et  al., 2021), to a cer-
tain extent, reducing vegetation coverage in areas 
close to the river. Furthermore, areas with vegetation 
cover degradation were mainly concentrated along 
the river during 2018 and 2001, which could be seen 
from the map showing the difference of FVC between 
July 2018 and July 2001 (Fig. 1 in the Appendix).
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Influence of human factors

The influence of Pd and NTL increased over the study 
period, and their interaction with other natural factors 
was enhanced; thus, the influence of human activity 
increased over time. Human activity can either pro-
mote the increase of vegetation coverage or reduce 
it. Urban expansion and urbanization of populations 
might reduce vegetation coverage around cities. 
When urbanization reaches a certain stage, peoples’ 
requirements for green space increase, and vegeta-
tion coverage of urban areas might also increase (Pu, 
2016; Teng, 2011). This phenomenon is shown with 
respect to FVC changes in the B7 region (Fig.  7e), 
the highest NTL zone. In B7, FVC first declined and 
then increased, which might be attributed to urbani-
zation of populations and increased public awareness 
on environmental protection and ecological conserva-
tion (Cheng et  al., 2021). Statistics on urbanization 
rate of populations in two major cities, Xiangyang 
and Jingmen, located in the middle and lower reaches 
of Hanjiang River Basin, confirmed rapid urbaniza-
tion from 2001 to 2018 (Table  8 in the Appendix) 
(Hubei Provincial Bureau of Statistics, 2001–2018). 
With the influx of population to urban areas, built-
up land expanded and vegetated areas declined. With 
subsequent improvement in living standards and bet-
ter awareness of the ecological environment, people 
paid more and more attention to the living environ-
ment, and urban green space increased sharply, espe-
cially in Xiangyang City (Table  8 in the Appendix) 
(Hubei Provincial Bureau of Statistics, 2001–2018); 
an increase in the area of green land during 2009 and 
2018 was double than that during 2001 and 2009, 
with vegetation coverage increasing.

Afforestation and other ecological restoration 
measures are important artificial measures condu-
cive to increasing vegetation coverage, especially 
in degraded land areas (Fig. 2a, b in the Appendix).  
For instance, the afforested area of Xiangyang  
City exceeded 10,000  ha annually from 2001 to 
2017 (Fig.  3 in the Appendix) (National Forestry 
Administration, 2001–2018), reaching 30,000  ha 
in 2003. Furthermore, the afforested area in Jin-
gmen City has mostly exceeded 5000  ha per year 
and exceeded 15,000  ha in 2003. Increased interac-
tions between human activity and terrain also dem-
onstrated improved transformation of nature. Selec-
tion of spaces for ecological restoration of vegetation 

requires regulations on how these spaces are distrib-
uted and which tree species are planted. Particularly, 
more artificial forests than natural forests were pre-
sent in the study area (Xiao et al., 2015). Thus, better 
vegetation protection, restoration measures, and land 
resources management are needed.

Limitations and uncertainties

Compared to traditional approaches of linear regres-
sion and correlation analysis for analyzing changes to 
vegetation cover, the geographic detector model effec-
tively detects spatial changes, analyzes factors driving 
these phenomena, and identifies multi-factor interac-
tions. However, the geographic detector model is ulti-
mately a statistical model that reveals causal laws and 
cannot be used to explain causal mechanisms. There-
fore, determining reasons for the results requires fur-
ther background investigation and additional analyses. 
In addition, future studies should incorporate more 
factors contributing to FVC. Certain studies have 
shown that soil moisture is an important factor limit-
ing vegetation growth, especially in areas subject to 
soil erosion and land degradation (D’Odorico et  al., 
2007; Rodriguez-Iturbe et al., 1999). Thus, soil mois-
ture should be considered in future studies. Moreover, 
land use also largely determines changes to vegetation 
cover at regional scales. However, here, land use was 
included as a parameter to calculate FVC and was not 
considered as a human factor. Furthermore, the study 
area contained more pure forests than mixed forests. 
These pure forest ecosystems had simple plant com-
munity composition, resulting in their being highly 
fragile with poor resistance to pests. Therefore, the 
influence of insect pests should also be included as 
a factor influencing change to FVC in future studies.

Conclusions

This study explored spatiotemporal variation patterns 
of vegetation coverage and quantified how natural 
and anthropogenic factors altered vegetation cover-
age between 2001 and 2018 in MLHB using the geo-
graphical detector to map change based on MODIS 
EVI data.

The study area was dominated by medium, medium– 
high, and medium–low vegetation coverage. Spatial 
distribution characteristics of FVC in the study area 
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were relatively high in south-central and the west and 
relatively low in the north and along the banks of the 
northernmost and southernmost sections of the mid-
dle and lower reaches of Hanjiang River Basin. The 
FVC of approximately half of the study area was rela-
tively stable, while it declined and increased in about 
23.45% and 24.56% of the total study area, respec-
tively. The area with declining FVC was mainly dis-
tributed along the banks of Hanjiang River and its 
tributaries in the central and southern parts. The area 
with increasing FVC was mainly distributed on the 
northern plain. Overall, areas with higher FVC also 
had more stable FVC.

All the detected natural and anthropogenic fac-
tors had significant effects on changes to FVC 
in MLHB since 2001. The primary factors caus-
ing FVC to change were precipitation in 2001 and 
slope in 2018, followed by landform type, distance 
to water, and NTL in 2018. The degree of change 
of natural and human influence can be seen through 
the detection of influencing factors in multiple 
periods. Detected factors did not influence FVC 
independently, but interacted through reinforced 
or nonlinear enhancement. Interaction of precipi-
tation and slope was consistently the largest from 
2001 to 2018. The interaction between human and 
topographic factors impacted FVC with gradually 
increasing significance over the research period. 
These findings reminded that the impacts of various 
factors driving changes to FVC in MLHB should be 
comprehensively considered to implement appro-
priate management plans for protection, utiliza-
tion, and restoration of vegetation. Importantly, ter-
rain characteristics, water resource conditions, and 
human development should be considered to opti-
mize these practices. Ranges of precipitation, slope, 
distance to water, and NTL suitable for vegetation 
growth were 968.6–1040.9  mm, 5–15°, 30–60  km, 
and 0–0.1 W/km2, respectively. Landform type with 
largest FVC was in small undulating mountains. 
This information can be used to delineate manage-
ment approaches for habitat restoration in MLHB. 
The results of this study advance current under-
standing on factors regulating change to vegetation 
coverage in this humid valley plain of China. Our 
findings could be used as a scientific basis for the 
conservation and restoration of the ecological envi-
ronment in the Hanjiang River Basin, China.
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