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a high classification accuracy of 89.13%. The healthy 
vegetation area coverage of the area was about 78.6% 
with most healthy class as Tectona grandis and Sho-
rea robusta and its correlation with LST showed 
lower temperature range in healthy vegetation areas 
and vice versa. The study was useful in determining 
the superiority of SMACC automated endmember 
extraction and estimating the vegetation health.

Keywords  Hyperspectral · SMACC​ · Forest health · 
EO-1 Hyperion · SVM

Introduction

The pure spectral elements represent a quick synopsis 
of the vast hyperspectral image data (Thompson et al., 
2010). An endmember is the unmixed representative of 
a sample and its extraction is an utmost important pro-
cess carried out in a hyperspectral data analysis (Plaza 
& Chang, 2006). The spectral unmixing is an impor-
tant step in hyperspectral data analysis to determine 
pure spectral elements for classification (Somers et al., 
2012). According to Veganzones and Grana (2008), 
there are various methods of spectral unmixing such as 
geometric method, lattice computing method and heu-
ristic method which further have subtypes. A number 
of methods of endmember extraction were compared 
by Plaza et al. (2004) to determine the better perform-
ing algorithm, and considered the linear mixture model 
to be more appropriate. Chen et  al. (2018) used the 
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Sequential Maximum Angle Convex Cone (SMACC) 
in combination with hyperspectral data for determin-
ing the metallic-rich zone in rocks. The work done by 
Aufaristama et  al. (2018) involved the utilisation of 
SMACC for endmember selection for working on vol-
canic results considered SMACC to be quick in end-
member selection. The classification performed using 
the endmembers could help in further analysis and 
monitoring of various parameters like vegetation.

Vegetation is an important component of the eco-
system owing to their contribution in atmospheric reci-
procity and various climate change-related activities 
of the world (Pei et  al., 2018). The impact of various 
natural and man-made phenomena, viz., urban sprawl 
and climate dynamics, highly determines floral behav-
iour (Pei et al., 2018; Ekwueme & Agunwamba, 2021). 
For example, the activity of vegetation is enhanced dur-
ing carbon dioxide expansion (Piao et  al., 2012) and 
diminuted in droughts (Ji & Peters, 2003). The dyna-
micity in biodiversity stability has been due to the cli-
mate change and land use patterns (Sala et  al., 2000; 
Hansen et al., 2001). Global warming has been respon-
sible for dragging down global biodiversity under the 
threat zone (Malcolm et al., 2006) and biological altera-
tions (Parmesan & Yohe, 2003; Root et al., 2003). Stud-
ies have been carried out to determine the impact of 
global warming on biodiversity worldwide (Kappelle 
et al., 1999; Noss, 2001). Hence, it is of utmost impor-
tance to monitor the environment for detecting the 
changes in the biodiversity composition (Prasad et al., 
2010) which includes the vegetation health.

The vegetation health monitoring is essential to 
determine stress conditions in vegetation and hyperspec-
tral remote sensing plays an important role to serve the 
purpose (Kureel et al., 2021). Shafri and Hamdan (2009) 
considered the red edge-based technique better than the 
indices based while working on plant disease infection. 
However, the study by Dutta et  al. (2009) determined 
the vegetation health using vegetation indices and ran-
dom forest method and inferred the method to be reli-
able for vegetation health analysis if a threshold is pro-
vided for the vegetation indices to categorise to healthy 
or stressed class. Further, Kureel et  al. (2021) derived 
the vegetation health of Lonar forest in Maharashtra 
using the hyperspectral remote sensing and a combina-
tion of several indices and concluded the method to be 
efficient in vegetation health analysis.

Remote sensing is a promising and more efficient 
technology which has gained weightage over the 

traditional methods of mapping (Kuenzer, 2011). 
The use of multispectral and hyperspectral data has 
been popular for the determination of the dynamics of 
the ecosystem (Shippert, 2003). But in recent years, 
the use of hyperspectral remote sensing has gained 
much popularity and has been considered a very use-
ful technology (Navin & Agilandeeswari, 2020). But 
only a limited set of works have been carried out 
using SMACC for endmember extraction in com-
bination with support vector machine (SVM). The 
present study highly contributes towards highlighting 
the advantages of the automated endmember extrac-
tion method SMACC for selecting the endmembers in 
hyperspectral data classification as we hypothesised 
that SMACC is highly beneficial for endmember 
selection and further the use of various environmen-
tal variables for the estimation of vegetation health. 
Hence, the objective of the study is (1) to determine 
the efficiency of SMACC for endmember extraction 
by deriving LULC of forest from it using SVM and 
(2) to further determine the vegetation health status 
from the same.

Materials and method

Study area

We took the Barkot forest range of Dehradun district 
in the state of Uttarakhand in India as the study area 
around 30° 06′ North longitude and 78° 18′ East lati-
tude as in Fig. 1. This region is situated in the Hima-
layan foothills with an altitude range of 340 to 560 m 
above mean sea level (MSL) (Attri & Kushwaha, 
2018). It covers the parts of Rajaji national park, and 
the range of Shivaliks. The main land use land cover 
(LULC) classes are forest, urban, water body, grass-
land and cropland. The rivers Ganga, Chandrabhaga 
and Song flow around the area.

Being bounded by the lush green forest ranges of 
Motichur (southern region) and Lachchhiwala (west-
ern region) and the urban settlements of Doiwala, 
Rishikesh and Bhaniawala, the region lies into the 
Sub-Group 3C North Indian Tropical Moist Decidu-
ous Forests class of Champion and Seth’s (1968) for-
est classification of Indian forests (Attri & Kushwaha, 
2018). Tectona grandis (Teak), Shorea robusta (Sal) 
and Mallotus phillipensis (Indian redwood) are the 
main tree species of forest (Bhattacharjee et  al., 
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2019). Falling into the tropical to subtropical moist 
climate category, the temperature range varies from 
minimum of about 2 °C to maximum of about 41 °C 
with average annual precipitation of about 2300 mm 
(Nandy et  al., 2017). The area consists of gentle 
slopes with fine and loamy thermic haplustalf type of 
soil (Shah & Subudhi, 2009).

Data used

For analysis, we used the cloud-free satellite data 
which was derived from the United State Geological 
Survey (USGS) (http://​earth​explo​rer.​usgs.​gov/) open 
source geo-portal. The details of the data are given in 
Table 1.

Data pre‑processing

We performed the pre-processing of the EO-1 Hype-
rion data to derive the desired results for analysis and 
it involved the bad band removal as the first step in 
which we selected the bands with non-zero data and 
we removed the bands with noise. We carried out 
de-stripping to remove noisy lines to obtain noise-
free equivalent data. For this, we used the Tactical 

Hyperspectral Operations Resource (THOR) work-
flow. Further, we eliminated the bad column. In this, 
we selected the column and assigned them a value 
from the average values of the neighbouring pixels or 
columns.

After the elimination of the bad bands and the bad 
columns, then we performed the correction for atmos-
pheric errors using the Fast Line of Sight Atmos-
pheric Analysis of Spectral Hypercubes (FLAASH). 
It requires various parameters which vary according 
to a given set of conditions. The parameters used are 
depicted in Table 2.

Finally, we georeferenced the data using the Land-
sat 5 ETM + data.

Fig. 1   The Barkot forest range is depicted in Dehradun district of the Indian state of Uttarakhand

Table 1   Specifications of the satellite data used for the study

Satellite/sensor Number 
of bands

Acquisition date Resolution

EO-1 Hyperion 220 27th November 
2009

30 m

Landsat 5 ETM +  7 26th November 
2009

30 m
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Endmember selection

We performed the endmember selection for classifica-
tion. The endmembers signify the pure classes of an 
image that have values not lower than zero. For this, 
the method used was the SMACC. SMACC finds the 
spectral endmembers and their abundances through-
out an image with the help of the angle made with 
the current cone, of which the vector with maximum 
angle is selected for the endmember and the method 
is useful for hyperspectral dataset due to impairment 
of unmixing (Gruninger et  al., 2004). The endmem-
bers were selected for the ten classes S. robusta (Sal), 

T. grandis (Teak), mixed forest, scrub, grass, riverine 
forest, cropland, settlement, dry riverbed and water. 
Now, the selected endmembers were used to select 
region of interest (ROI). After that, we matched the 
spectra of the selected species to create its ROI. The 
classification was performed using SVM.

For the health assessment, we derived the spectral 
variables NDVI (Normalised Difference Vegetation 
Index), CRI (Carotenoid Reflectance Index), Antho-
cyanin Reflectance Index (ARI), Modified Simple 
Ratio (MSR), Modified Chlorophyll Absorption 
Ratio Index (MCARI) and WBI (Water Band Index), 
the details of which are mentioned in Table  3. We 
assigned the threshold range of values and accord-
ingly weightage favouring the healthy vegetation 
for each of the variables based on various literatures 
(Rouse, 1974; Hati et al., 2020; Chen, 1996; Peñuelas 
et al., 1993) and is depicted in Fig. 2.

Further, we calculated the Land Surface Tempera-
ture (LST) where Pv was used to derive emissivity as  
Pv =[(NDVI − NDVImin)∕(NDVImax− NDVImin)]

𝟐 (Chavez, 
1996) where Pv = proportion vegetation, NDVImin = min-
imum value of NDVI, and NDVImax = maximum value 
of NDVI.

Now, ETM6 (emmissivity) was calculated as.
E
TM6

= 0.004Pv + 0.986 (Moran et al., 1992).
Then, L (spectral radiance at sensor) calculated 

as L = [(LMAX − L
���

)∕(QCAL
���

− QCAL
���

)] ∗

(QCAL − QCAL
𝐌𝐈𝐍

) + L
𝐌𝐈𝐍

  (Brivio et  al., 2006) 
where,

QCAL = quantized calibrated pixel value in DN, 
LMAX = spectral radiance scaled to QCALMIN (here 
LMAX = 15.303  W/(m2*sr*um)), LMIN = spectral 
radiance scaled to QCALMIN (here LMIN = 1.238 W/

Table 2   Parameters used for FLAASH for atmospheric cor-
rection of EO-1 Hyperion data

Parameter Value

Scene centre latitude 230 40′ 33.60″N
Scene centre longitude 78°15′ 48.59″E
Scaling factor 400 VNIR and 800 SWIR
Sensor type Hyperion
Flight date 27th Nov 2009
Average flight time 5:2:00
Sensor altitude 705 km
Ground elevation 0.390 km
Atmospheric model MLS
Water retrieval Yes (1135 m)
Aerosol model Urban
Aerosol retrieval None
Initial visibility 40 km
Spectral policing Yes (9 bands)
Wavelength recalibration No

Table 3   The indices used for health assessment with their formulae

S. no Indices Formula References

1 Normalised Difference Vegetation 
Index (NDVI)

NDVI = ((NIR − R))∕((NIR + R))

NIR-near infrared band
R-red

(Rouse, 1974)

2 Anthocyanin Reflectance Index 
(ARI)

ARI = 1∕�
550

− 1∕�
700

  
RE1-Red Edge 1 band wavelength
G-the green band wavelength

(Gitelson et al., 2001)

3 Carotenoid Reflectance Index (CRI) CRI = 1∕�
510

− 1∕�
550

   (Gitelson et al., 2002)
4 Modified Simple Ratio (MSR) MSR = [(NIR∕R) − 1∕(

NIR

R
) + 1] (Chen, 1996)

5 Modified Chlorophyll Absorption 
Ratio Index (MCARI)

MCARI =
[(

�
700

− �
670

)

− 0.2
(

�
700

− �
550

)]

∗ (�
700

∕�
670

)   (Daughtry et al., 2000)

6 Water Band Index (WBI) WBI = �
970

∕�
900

   (Peñuelas et al., 1993)
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(m2*sr*um)), QCALMAX = maximum quantized 
pixed value in DN (here, QCALMAX = 255) and 
QCALMIN = minimum quantized pixed value in DN 
(here, QCALMIN = 1).

Then LST was calculated as  BT = (K
�
∕(ln

(K
�
∕L) + �)) − ���.� where,

K1 = band-specific thermal conversion constant 
from the metadata (here, K1 = 607.76),

K2 = band-specific thermal conversion con-
stant from the metadata (here, K2 = 1260.56) and 
L = spectral radiance at sensor. The methodology 
flowchart is depicted in Fig. 3.

Result and discussion

The LULC classification was derived along with the 
vegetation health and LST map.

The SVM classification shown in Fig.  4 resulted 
in an overall accuracy of 89.13% and fetched the 
kappa coefficient 0.87. The class S. robusta exhib-
ited an accuracy of 93.40% which was the maxi-
mum among all the classes and it was followed by T. 
grandis (92.88%) and this explains the species level 
classification efficiency of SMACC in the hyperspec-
tral data. The efficiency of SMACC has been earlier 

Fig. 2   The graph depict-
ing the assigned threshold 
values for variables used

Fig. 3   The methodology 
flowchart of the study
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considered by Chen et  al. (2018) and Aufaristama 
et  al. (2018) for classification. Also, the high accu-
racy of the abovementioned classes might be due to 
the presence of more super pixels.

Further, the combination of the variables dis-
played the majority area (78.6%) falling under the 
most healthy to moderately healthy vegetation cat-
egory (Fig.  5). The most healthy vegetation was 
found in the class T. grandis species followed by 
S. robusta. This might be due to lack of anthropo-
genic disturbances in the area and favourable envi-
ronment, topographic and climatic factors. The 
least healthy categories included the riparian for-
est, croplands, river and settlement. The variations 
of the edaphic factors of riverine or riparian forests 
due to flood conditions such as the deposition of 
new sediments, duration of existence and number of 
times of occurrence of floods challenge the adapt-
ability potential of the vegetation in those forests 
(Priyadarshana et  al., 2009). Similarly, the impact 

of climate change on the hydrological dynamics 
(Oo et al., 2020; Faye et al., 2022) could contribute 
towards limiting the vegetation health. This justifies 
the riparian forests falling under the least healthy 
category. Similar work was done and the vegetation 
health was derived where the method was consid-
ered to serve the purpose efficiently (Kureel et  al., 
2021; Dutta et  al., 2009). This may be due to the 
wide range of values that discriminate the vegeta-
tion classes according to various parameters deter-
mined by the variables, where the ones with most 
suitable values in all variables are considered to be 
healthy. This determines the effectiveness of envi-
ronmental variables in vegetation analysis.

The minimum LST range was 13.13 to 18.40  °C 
which again was for the T. grandis and S. robusta 
class (Fig.  6). In the vegetation category, the high-
est LST was of the riparian forest. This showed the 
relation of vegetation health with the LST where 
LST is lowest in case of healthiest vegetation. 

Fig. 4   The LULC map 
derived by SVM classifica-
tion depicts the different 
vegetation and other classes
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Hernández-Clemente et al. (2019) considered the use 
of hyperspectral data and thermal data to be benefi-
cial for signifying the vegetation health as they deter-
mine the biophysical changes.

The use of an efficient automated endmember 
extraction method like SMACC with one of the most 
systematic classification methods SVM into the hyper-
spectral data showcased the technological strength of 
the work. The vegetation health estimation and cate-
gorisation and correlation with LST could clear paths 
for numerous future research works based on the use 
of hyperspectral data. The hyperspectral data carries 
great potential in floral analysis on species level and 

the addition of the health estimation to it could fur-
ther enhance the decision-making strength in vari-
ous conservation plans. However, despite the perks 
of the number of bands and narrow band width, both 
the spatial and temporal limitations in the data avail-
ability of hyperspectral data are the major weakness. 
The multispectral data like Sentinel-2 cover the major 
regions on the earth and have the data repetivity which 
proves to be useful in current time data analysis but 
the same cannot be stated for the hyperspectral data 
as the coarse temporal resolution and limited region 
availability of data restricts the emergence of count-
less number of fruitful and great research works.

Fig. 5   The vegetation 
health map derived from 
the analysis depicting the 
categorisation of vegetation 
according to their health 
status
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Conclusion

The study reflected the importance of automated 
endmember extraction method SMACC for the 
hyperspectral dataset which was useful for deriving 
pure endmembers for ROI according to our hypoth-
esis. A good accuracy was observed in vegetation 
species level separability in SMACC-derived ROI. 
It was a quick method to derive the super pixels. 
The healthiest vegetation classes were T. grandis 
and D. sissoo whereas the riverine forests were cat-
egorised under the stressed category and expected 
to have deteriorating or poor health. Hence, some 
necessary measures are prescribed to drag it to 
the healthy vegetation category as it may harbour 
important, endemic and rare species which need 
conservation. The LST is inversely proportional to 
the vegetation health. Also the vegetation of poor 
health conditions lead to expansion in LST.

The global concern of climate change and global 
warming fetches the issue of biodiversity to be vul-
nerable to decline. This study contributes towards 
future studies as it is helpful for various forestry 
activities such as biodiversity conservation and 
contributes towards floral monitoring and mapping. 
However, the major limitation of the study lies in 
the lack of periodic data availability as the hyper-
spectral data are openly available for some limited 
region without regular repetivity. Also, the end-
member selection process was approximate which 
might affect the precision value.
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