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for soil macronutrient interpolation and assessments. 
Computations reveals the ranges of nitrogen, phos-
phorus and potassium that floats from 48 to 295  kg/
ha, 5.0 to 37 kg/ha, and 32 to 455 kg/ha in the study 
area. Fusion of satellite imagery by ATPRK approaches 
in soil macronutrient study at regional scale brings the 
novelty of the study.

Keywords Multispectral · Landsat 8 OLI · 
Sentine-2 · Satellite image fusion · Soil macronutrient 
study

Introduction

Satellite datasets of various resolutions and time series 
were utilized for precise interpolation and analysis for 
numerous applications (Rathore et  al., 2008). Landsat 
data owing for its free availability and periodical revisit 
features with its applications have been globally utilized 
for various environmental monitoring (Papenfus et al., 
2020). History of Landsat data reveals that the Landsat 
5 satellite armed with Thematic Mapper (TM) finds 
major concern in sorting environmental issues and kept 
monitoring until November 2011; as the descendant of 
Landsat 5, Landsat 7 evolved to take the monitoring 
role of the global issues (Brede et al., 2020). Reverbera-
tion of the failure of scan line corrector sensor of Land-
sat 7 results in furnishing of the dataset with almost 
22% dead pixel. With the further existence of Landsat 
dataset resolving the scan line corrector issue, the 
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Landsat 7 equipped with Enhanced Thematic Mapper 
(ETM +) along with Operational Land Imagery (OLI) 
sensor and Thermal Infrared Sensor (TIS) has been 
evolved as new generation Landsat 8 OLI imagery (Xu 
et al., 2021). The two sensors furnish seasonal world-
wide coverage at the spatial resolution of 30 m for visi-
ble, Near Infrared (NIR) and Short Wave Infrared 
(SWIR), whereas 100 m spatial resolution for thermal 
and 15  m for panchromatic. Capability of collecting 
725 scenes per day holding the scene size of 185-km-
cross-track-by-180-km-along-track intensifies the spec-
tral information. The revisit period is stick to 16 days 
that are found to be a hindrance for global temporal 
monitoring of soil information and most of the cases 
the acquired Landsat 8 dataset gets contaminated by 
cloud and other atmospheric hindrance (Prada et  al., 
2020). Hence, getting cloud and shadow-free imagery 
atleast once in a month is a great challenging one. 
Therefore, this particular dataset become unsuitable for 
temporal monitoring of soil properties in regional scale. 
For full-fledge utilization of Landsat 8, spectral infor-
mation spatio-temporal fusion methods need to be 
incorporated (Shen et al., 2016). Concerning the fusion 
technology, it is mandatory to study the satellite 
imagery to be fused with Landsat 8 OLI datasets. Con-
sidering the projections and downscaling factors 
involved in fusion techniques, Sentinel 2 dataset has 
been accounted as satellite image to be fused with the 
Landsat 8 OLI dataset (Zhang et al., 2021). Sentinel 2 
having similar wavelength and free availability compar-
ing to Landsat 8 OLI datasets finds an alternates to the 
disadvantages faced by the Landsat such as revisit 
period and cloud contamination (Wang et  al., 2021). 
Sentinel 2 revisits at every 5 day at a particular region 
of interest with 10-m spatial resolution. Owning broad 
swath of 290 km as well as magnificent spatial resolu-
tion of up to 10 m, Sentinel 2 dataset enhanced the Sat-
ellite Pour l’Observation de la Terre (SPOT) and Land-
sat. Being multispectral imagery, Sentinel 2 produces 
thirteen bands among which bands 2, 3, 4, and 8 pro-
duce the spectra at 10 m, bands 5, 6, 7, 8a, 11, and 12 
produce at 20 m, and bands 1, 9, and 10 produces at 
60  m of spatial resolutions. Enhanced revisit time of 
10 days with one satellite and 5 days with two satellites 
provided constant viewing angle and Sentinel 2 data 
finds great utilities in furnishing high temporal spatial 
information for real world applications. The bands of 
Landsat 8 OLI and Sentinel 2 correspond to each other. 
All the Sentinel 2 and Landsat 8 dataset products are in 

identical geographic coordinate system (Bolton et  al., 
2020). In addition, both the products are assessable at 
free of cost. These criteria tends to utilize the both the 
products for sustainable monitoring of world issues. 
With the numerous available fusion techniques, it made 
easier to utilize complete positive aspects of both the 
data products. Although the Sentinel 2 data produce the 
spectra at fine spatial resolution of 10 m and 20 m when 
compared to Landsat (30  m), the fusion data imparts  
the fine information under cloud-free conditions, multi-
ple observations of region of interest, enhanced tempo-
ral resolution, and precise spectral information (Wang 
et al., 2017). In addition, if Sentinel 2 dataset possesses 
any missing spectral information, any region of interest 
can be enhanced with the Landsat 8 spectral information 
and vice-versa (Scheffler et al., 2020). In this study, for 
the first time, the outcomes of fused Landsat 8 and Sen-
tinel 2 data were utilized for the assessment of soil 
macronutrients more specifically soil nitrogen, phospho-
rous, and potassium (NPK). From the extensive litera-
ture and various researches, it is revealed that the soil 
exhibits its inherent spectral behavior at Near Infrared 
Region (NIR: 780 to 1400 nm) and Short-Wave Infrared 
(SWIR: 1400 to 3000 nm) (Guimarães et al., 2021). Out 
of 9 bands of Landsat 8 OLI, three bands (5, 6, and7) 
fall at the NIR and SWIR regions; whereas, in the case 
of Sentinel 2 data, five bands (8, 8a, 9, 10, 11, and 12 
out of 12 bands bear the regions of NIR and SWIR 
(Adiri et al., 2020). R2 comparison for fused reflectance, 
Landsat 8 OLI, and Sentinel 2 MSI datasets with the 
in situ soil spectral reflectance was reveled in this study. 
For the measurement of in situ soil spectra, having the 
spectral range of 325 to 1075  nm, FieldSpec® Hand-
Held 2TM Spectroradiometer was used. Considering the 
fact of soil spectral behavior at NIR and SWIR, the 
wavelength range between 780 and 1075 nm was con-
sidered in the study corresponding the band 5 of Land-
sat 8 OLI, and bands 8 and 8a of Sentinel 2 were taken 
into account for analysis. Precise assessment of soil 
macronutrients study introduces the equation developed 
through linear regression analysis by setting out fused 
satellite data reflectance and field soil NPK analysis 
results. The model equation outcome of linear regres-
sion analysis rendered as the input for assessment of soil 
macronutrients for the region of interest and by render-
ing reclassification of fused Landsat 8 OLI and Sentinel 
2 MSI datasets in ArcGIS 10.2 software the reflectance 
values along with its corresponding NPK level made as 
input to interpolate the soil macronutrients for each 
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pixels for the area of interest. The outcome of the study 
reveals the significance of image fusion technique for 
assessment of soil macronutrients. Proposed image 
fusion technique called ATPRK (area-to-point regres-
sion Kriging) finds fine outcomes among the various 
geostatistical approaches such as intensity hue satura-
tion, wavelet transformation, Brovey method of image 
fusion, PCA (principal component analysis) smoothing 
filter-based intensity modulation, sparse representation, 
and high pass filter (Liu & Wang, 2020). Alluring char-
acteristics of ATPRK technique that preserves the spec-
tral information more precisely takes coarse band as 
variable where the spatial resolution as covariate (Zhou 
et al., 2021). Downscaling approaches were carried out 
to match the spatial resolution of fusing satellite images 
so as to gather fine information from the fused product. 
Exhibiting a user-friendly approach, ATPRK explicitly 
takes the size of the pixels, spatial resolution, and point 
spread function of the sensor into account during fusion 
which tends to preserve and enhance the spatial resolu-
tion and spectral information (Priem et al., 2021). Influ-
enced by the advantageous execution of ATPRK 
approach in fusion, this research paper indulged the 
fusion of Landsat 8 OLI and Sentinel 2 MSI dataset for 
assessment of soil macronutrients. Soil macronutrients, 
an essential component for plant development, energy 
metabolism and protein synthesis need continuous and 
precise monitoring. The aforementioned technique in 
remote sensing finds applications in assessing soil 
macronutrients. Local farmers get benefited because of 
continuous and precise monitoring of soil health. Pixel 
by pixel assessments of soil health provide formulated 
information such as multicropping pattern, fertilizer 
needs, and irrigation schema for agriculturist and policy 
makers. Soil assessment through fused reflectance 
through ATPRK technique fulfills the research gaps 
which were unrevealed so far.

Materials and methods

Area-to-point regression Kriging

Regression-based model (mean of spatial process which 
are spatially varying) and area-to-point Kriging residual-
based downscaling (the variations that remains after the 
spatial variation i.e. “trend”) are the two steps involved 
in ATPRK (Armannsson et al., 2021). Let’s consider Al

V 
(Xi) as a random vector for pixel V in center to Xi, where 

i ranges from 1 to N where N is considered as number 
of pixels in the coarse band l where l ranges from 1 to L 
(L denotes the number of coarse band and Ak

V (Xj) as a 
random vector for pixel C in center to Xj, where j ranges 
from 1 to NS2 (S denotes the spatial resolution) in the 
bands k (k = 1 to K, where K is the number of bands).  Al

v 
(Xi) as the primary variable at coarse spatial resolution 
and Ak

V (Xj) as covariate at fine spatial resolution were 
fed as inputs outcome variable Al

V (X) is interpolated for 
each pixels in all the coarse bands. Regression predic-
tions and the parts of ATPK were denoted as A^l

V1 (X) 
and A^l

V2 (X), the ATPRK interpolation is expressed as

Considering in band k at the determined location X0 
the interpolated Al

v (X0) is in linear transformation of 
the pixel in the corresponding band k,

Equation (2) found invariant to the spatial scale, Cl 
and Dl are the coefficients in Eq.  (2) which are esti-
mated in corresponding to the relationship among rec-
ognized coarse band l and up scaled band (Ak

V) form 
the original band k.

The Cl and Dl coefficients are calculated using least 
square method. The residual (Rl

V (X)) needs to be 
downscaled to finer spatial resolution where ATPRK 
renders nest step in order to down scale the coarse 
residual Rl

V (X) in Eq. (3) to the outcome spatial resolu-
tion. The residual at the location  X0 is assessed by

where the weight of the ith residual of coarse which 
is centered at Xi is represented as λi and N denotes the 
number of neighboring pixel of the coarse band. Then 
the weights are estimated based on the Kriging matrix

For xi and xj, their corresponding center pixels in l 
band having the coarse to coarse semivariogram are 
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∧1
V1(X) + A∧1

V2(X)

(2)A∧1
V

(
X0

)
= C1A

k
V1

(
X0

)
+ D1

(3)A1
V(X) = C1A

k
V1(X) + D1 + R1

V(X)

(4)A∧1
V2

(
X0

)
=

N∑
i=1

�iR
1
V

(
Xi

)
, s.t.

N∑
i=1

�i = 1

(5)

⎛⎜⎜⎜⎝

�lVV (X1,X1) ⋯ �lVV (X1,XN) 1

⋮ ⋱ ⋮ ⋮

�lVV (XN ,X1) ⋯ �lVV (XN ,XN) 1

1 ⋯ 1 0

⎞⎟⎟⎟⎠
x

⎛⎜⎜⎜⎝

λi
⋮

λN
θ

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�lvV (X0,X1)

⋮

�lvV (X0,XN)

1

⎞⎟⎟⎟⎠

   Page 3 of 16 916



Environ Monit Assess (2022) 194:916

1 3
Vol:. (1234567890)

denoted by γl
VV (xi, xj); for x0 and xj, their correspond-

ing center pixels in l band having the fine to coarse 
semivariogram is denoted by γl

vV (x0, xj). θ in matrix 
(5) denotes Lagrange multiplier. If Euclidean distance 
among the centroids of two pixel is taken as G and 
Ml

V (G) is sensor’s point spread function, then γl
VV 

(G) and γl
vV (G) are estimated through convolution of 

fine to fine semivariogram (γl
vv (G)) with the sensor’s 

point spread function (M.lV (G))

In Eqs. (6) and (7), * represent convolution opera-
tor. From the deconvolution of coarse semivariogram, 
the γl

vv (G) can be estimated by utilizing the coarse 
residual (Rl

V (X)).

Study site and datasets

The study area of the proposed fusion study is done at 
Anaimalai-Pollachi from Tamilnadu, which lies between 
10.662°N and 77.00650°E, located 40 km to the south 
of Coimbatore district of Tamilnadu, India, has an agri-
cultural land of 20,536 Hectares and been supported 
by Paramikulam Aliyar Project (PAP). Landsat 8 OLI 
scene carrying object identifier number LC08_L1T
P_144053_20210318_20210328_02_T1 that covers 
the Anaimalai block was obtained from U.S. Geologi-
cal Survey (https:// doi. org/ 10. 5066/ P975C C9B) which 
possess 11 bands and the acquisition date is 18 March 
2021with UTM/WGS Projection and Path/Row of the 
scene is 144/33. Sentinel 2 scene carrying the object 
identifier number S2A_MSIL2A_20210212T050931_
N0214_R019_T43 covering the same region of interest 
was obtained from European Space Agency (https:// sci-
hub. coper nicus. eu/ dhus/#/ home) having 12 bands and 
the scene has been captured on 12 February 2021. Both 
the datasets are having the same projection system and 
found similarity in the wavelength represented in Fig. 1. 
The band wavelength of Landsat 8 OLI and Sentinel 2 
MSI data is given in Table 1. In this study, band 5 of 
Landsat 8 OLI and bands 8 and 8a of Sentinel 2 MSI 
have been considered for the soil assessment since the 
characteristics of soil predominately inferred in NIR 
and SWIR regions. Band 5 of Landsat 8 OLI having the 
spatial resolution of 30 m possesses the multiple reflec-
tance of 0.00002 and additive reflectance of − 0.1. The 

(6)�1vV(G) = �1vv(G) ∗ M1
V(G)

(7)�1VV(G) = �1vv(G) ∗ M1
V(G) ∗ M1

V(−G)

wavelength of band 5 ranges from 845 to 885 nm that 
falls in NIR region. Band 8 of Sentinel 2 MSI having 
10-m spatial resolution ranges from 785 to 899 nm in 
wavelength where Band 8A possesses 20-m spatial reso-
lution and wavelength ranges from 855 to 875 nm (NIR 
Narrow). These two bands were used for fusion study 
for assessing the soil macronutrients.

Image preprocessing

Two major corrections needed to be rectified for sat-
ellite products are atmospheric and radiometric cor-
rections (Moravec et al., 2021). Atmospheric correc-
tions remove the absorption effects and the scattering 
effects from the surface properties whereas the DN 
(Digital Number) inaccuracy in the satellite data 
was rectified by radiometric corrections (Kaman & 
Makandar, 2021). This may occur due to azimuth 
and elevation of sun or air conditions. Thus, rectify-
ing the radiometric errors give rise to ground truth 
irradiance or reflectance (Taddia et al., 2020). In this 
study, Band 5 of Landsat 8 OLI undergone atmos-
pheric and radiometric corrections in ENVI software 
utilizing FLASH algorithm. Band 8 and Band 8A of 
Sentinel 2 were preprocessed using Sen2Cor algo-
rithm in SNAP software to remove the atmospheric 
and radiometric errors (Shrestha et  al., 2021). The 
datasets are subjected to conversion of DN to reflec-
tance values in ArcGIS software using the coefficient 
of radiometric rescaling and sun angle provided in 
the metafile of satellite data product. DN to reflec-
tance values for the study area was obtained as rep-
resented in Fig. 2 from the following Eq. (8) (Zheng 
et al., 2020).

where,
Lλ = TOA (Top of Atmosphere) spectral radiance 

(watts/  (m2* srad* μm)).
ML = Band-specific multiplicative rescaling factor 

from the metadata (RADIANCE_MULT_BAND_X, 
where X is the band number, in our study our band num-
bers are 5 and 8 for Landsat and Sentinel respectively)

AL = Band-specific additive rescaling factor from 
the metadata (RADIANCE_ADD_BAND_X)

Qcal = Quantized and calibrated standard product 
pixel values (DN)

(8)L� = MLQcal + AL
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Fig. 1  Sentinel 2 MSI and Landsat 8 OLI of Anaimalai block
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ATPRK in Landsat 8 OLI and Sentinel 2 MSI

Theoretical concept of ATPRK is implemented for 
fusion of Landsat 8 OLI and Sentinel 2 MSI data-
set. In this study, based on ATPRK approach, 20-m 
Band 8a of Sentinel 2 is downscaled to 10 m by using 
10-m Sentinel 2 band 8 as covariates  (Ak

V (X)) and 
the resultant product is termed as ATPRK 1 (Fig. 3a). 
The 30  m Landsat 8 band 5 is downscaled to 10  m 

by using 10-m Sentinel 2 band 8 as covariates and 
the resultant product is coined as ATPRK 2 (Fig. 3b). 
This has been done to match the spatial resolution of 
both the satellite products. This approach meets the 
requirement of defined criteria such as wavelength, 
geometry, and the resolution. Here, the 10 m of Band 
8 Sentinel 2 MSI data is layer stacked (Fig. 3c) with 
downscaled Band 8A to make convenient for image 
fusion. Now the layer-stacked 10-m band 8 of Sentinel 

Table 1  Band wavelength of Sentinel 2 MSI and Landsat 8 OLI

B band, NIR near infrared region, SWIR short-wave infrared region, TIRS thermal infrared region

Sentinel 2A MSI Landsat 8 OLI

Band Spectral region Wavelength range 
(nm)

Resolution 
(m)

Band Spectral region Wavelength range (nm) Resolution (m)

B1 Coastal aerosol 433–453 60 B1 Coastal aerosol 433–453 30
B2 Blue 458–523 10 B2 Blue 450–515 30
B3 Green Peak 543–578 10 B3 Green 525–600 30
B4 Red 650–680 10 B4 Red 630–680 30
B5 Red Edge 1 698–713 20 B5 NIR 845–885 30
B6 Red Edge 2 733–748 20 B6 SWIR 1 1560–1660 30
B7 Red Edge 3 773–793 20 B7 SWIR 2 2100–2300 30
B8 NIR 785–900 10 B8 Panchromatic 500–680 15
B8A NIR Narrow 855–875 20 B9 Cirrus 1360–1390 30
B9 Water Vapor 935–955 60 B10 TIRS 1 10,600–11,190 100– (30)
B10 SWIR/Cirrus 1360–1390 60 B11 TIRS 2 11,500–12,510 100–(30)
B11 SWIR 1 1565–1655 20
B12 SWIR 2 2100–2280 20

Fig. 2  DN to reflectance of a Sentinel 2 MSI (Band 8), b Landsat 8 OLI (Band 5)
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2A renders numerous spectral information at NIR 
regions, while the information in Landsat 8 OLI can 
be retrieved by fusion technique. The spectral missing 
data in the pixels of Sentinel 2 dataset can be adjusted 
with the spectral information provided in Landsat 8 
OLI data (Chaves et al., 2020). Now the layer-stacked 
Sentinel 2 10-m data (Band 8A and Band 8) is fused 
with downscaled 10-m Landsat 8 OLI Band 5 prod-
uct to produce new data product (Fig. 4) consisting of 
strong spectral information.

Sampling points and reflectance extraction

Considering the soil characteristics and agricultural 
practices, about 106 soil samples were collected 
as represented in Fig.  5 and corresponding GCP 
(Ground Control Points) of the location is noted with 
the help of Differential Global Positioning System 
(DGPS) along with a sub meter (Trimble Navigation 
Ltd., Sunnyvale, California, USA). The total land 
parcels were divided into divergent analogous units 
based on the grids mapped on the region of study. At 
the depth of 15  cm, the auger were pierced and the 
soil samples were drawn (Fig. 6a). A total of 15 sam-
ples were collected at each nodal point location and 
mixed as single sample for each location. In the pro-
cess of mixing the samples the foreign objects were 
sieved by using 2  mm sieve. Total soil sample col-
lected at per location is reduced by compartmentali-
zation method (Gujre et al., 2021). The soil samples 

were air dried to remove the moisture content and 
packed with labeling (Fig.  6b). Soil samples were 
subjected to laboratory physio chemical analysis and 
in situ spectral collection. The basic physical param-
eters that includes soil pH and electrical conductiv-
ity (EC) were computed by a pH meter (Elico LI 617) 
(Jagadala & Sahoo, 2020) and conductivity meter 
(Elico CM 183) (Leno et al., 2021) respectively. Soil 
available nitrogen was analyzed by Kjeldahl method 
(Dar et  al., 2021). Bray-1 method was used to ana-
lyze the total phosphorus in the acidic soil whereas 
Olsen method is used for alkaline soil for estimating 
soil phosphorus level (Elbasiouny et  al., 2020). A 
flame photometer (Jenway PFP7) (Wiyantoko et  al., 
2021) was utilized for the fine estimation of available 
potassium in the soil. Soil health analysis reveals the 
nitrogen level floats between 44 and 295 kg/Hectare, 
where the phosphorus ranges from 4.0 to 37.0  kg/
Hectare and the potassium ranges from 32 to 455 kg/
Hectare. Parallel to soil analysis, in situ soil spectral 
observation was carried out by using ASD Field-
Spec® HandHeld™ 2 spectroradiometer capable 
of sensing the soil characteristics at the range from 
325 to 1075 nm (Jewan et al., 2021). The soil spec-
tra were extracted in the closed laboratory to avoid 
signal-to-noise errors. The instrument is mounted 
on the tripod stand and artificial light source is made 
with the help of tungsten quartz halogen lamp. The 
soil sample placed at the distance of 30 cm from the 
instrument. After initial calibration and optimization 

Fig. 3  a ATPRK 1 10-m downscaled Sentinel 2 data (Band 8A), b ATPRK 2 10-m downscaled Landsat 8 OLI data (Band 5), c 
layer-stacked 10-m downscaled Band 8A and Band 8 of Sentinel 2
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white spectra were taken followed by the soil spec-
tra for the samples were extracted (Fig. 6c). For the 
further analysis of extracted soil spectra, the data 
files are imported from spectroradiometer instru-
ments to computer. In ViewSpec Pro software, the 
spectra were processed to convert the radiance files 
to desired reflectance files. The soil spectra is viewed 

in the ENVI 4.7 software and the plot parameters is 
fixed from 400 to 1075 nm since the pre wavelength 
spectra were subjected to noise errors. The spectra are 
saved as ASCII files and the same has been opened 
in OrginPro 8.5 for further analysis of the soil spec-
tra. From the datasets, only the reflectance values 
ranged from 700 to 900  nm (NIR Region) that can 

Fig. 4  ATPRK result 
produced by fusing the 
10-m downscaled Land-
sat 8 OLI data (Band 5) 
with 10-m Sentinel 2 data 
(layer-stacked Band 8 and 
downscaled Band 8A)

Fig. 5  Sample locations 
and site description
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match with the satellite dataset reflectance value were 
clipped. By importing the GCP points of 106 sam-
ple locations in the satellite data products (Landsat 
8 OLI (Band 5), Sentinel 2 MSI (Band 8) and fused 
data product), the reflectance values were extracted in 
ArcGIS software. Now the reflectance values for 106 
sample points in Landsat 8 OLI (Band 5), Sentinel 2 
MSI (Band 8), and fused data product were compared 
with the in situ soil reflectance values.

Results and discussion

Regression analysis onin situ and Landsat 8 OLI

Fine values of reflectance extracted from Landsat 8 
OLI (Band 5), Sentinel 2 MSI (Band 8), and fused 
data product were subjected to simple linear regres-
sion in OriginPro software. Linear regression-1 (LR-
1) modeling was initiated for the reflectance values 
of Landsat 8 OLI (Band 5) that ranges from 845- 
to 885-nm wavelength and the reflectance values 
of soil in  situ spectra. LR-1 reveals the correlation 
among both the reflectance values and possesses the 
R2 value of 0.8209 and has the intercept of 0.1959 
(Fig.  7a). Linear regression-2 (LR-2) modeling 
were initiated for the reflectance values of Senti-
nel 2 MSI (Band 8) that ranges from 785- to 900-
nm wavelength and the reflectance values of soil 
in  situ spectra. LR-2 reveals the association among 
the reflectance where the R2 is founds to be 0.843 
and the intercept value of 0.154 (Fig.  7b). Linear 

regression-3 (LR-3) modeling was initiated for the 
reflectance values of ATPRK-fused data product and 
the reflectance values of soil in  situ spectra. LR-3 
outcomes read the fine correlation among the reflec-
tance with the R2 value of 0.8763 and the intercept 
value of 0.154 (Fig.  7c). From the R2 value, it is 
determined that the fused satellite product by using 
ATPRK technique finds the fine correlation than 
individual dataset.

Soil macronutrients assessment

The outcome of the regression analysis revealed the 
uniqueness of ATPRK approach fusion of Land-
sat 8 OLI and Sentinel 2 MSI through the predomi-
nant R2 value comparable to a single-band soil char-
acterization (Table  2). From the LR-3 model, it is 
inferred that reflectance of fused product finds close 
association with the soil properties. Although the 
soil reflectance consists of numerous properties and 
other phenomenon, the soil macronutrient status can 
be accessed through assigning the 106 sample NPK 
level to the corresponding soil reflectance values. Soil 
reflectance changes with change in the soil-measured 
nutrient values. Linear model was developed between 
the soil NPK measured value and fused reflectance 
value (Fig.  8) in order to delineate the equation for 
nitrogen, phosphorus, and potassium (Table  3). The 
linear regression equation follows the general equa-
tion theory as follows:

(9)y = mx + c

Fig. 6  a Soil sampling by using auger, b soil sample labeling, c in situ soil spectral extraction
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where y = reflectance values corresponding to the 
nutrient value.

m = slope; c = intercept; x = dependent variable (in 
this study, x represents the soil nutrients).

Derived regression equation rendered as input to 
the fused data product and based on the reflectance 
value the corresponding NPK values are interpolated 
for each and every pixel this is based on the assigned 
NPK values to the reflectance. The assigned val-
ues for 106 sample location pixel will be the train-
ing dataset and based on the train sets the remain-
ing pixels were interpolated with its corresponding 
equation. The corresponding equation x value will 
be unknown and the y value will be the reflectance 

of the pixel.If the value of y is the reflectance of the 
pixel then the x value (nitrogen) can be calculated 
by x = y – (0.25006 ± 0.00754)/0.0000313. Based on 

Fig. 7  Linear regression analysis (a), Landsat and in situ soil spectra (b), Sentinel 2 and in situ soil spectra (c), ATPRK‑fused prod-
uct and in situ soil spectra

Table 2  Regression model comparison

LR linear regression

Regression 
model

Parameters R2 Value

LR-1 Landsat and in situ soil spectra 0.8209
LR-2 Sentinel 2 and in situ soil spectra 0.8436
LR-3 ATPRK fused product and in situ soil 

spectra
0.8763
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the corresponding equation for nitrogen, phospho-
rus, and potassium, the pixel-based values can be 
estimated. This has been estimated in ArcGIS soft-
ware since GIS-based interpolation models support 
the decision analysis for agricultural productivity 
(Ozsahin & Ozdes, 2022). The estimated soil NPK 
level is mapped and reclassified according to the soil 
standards (Fig. 9).

Discussion

Remote sensing data products find numerous applica-
tions in the field of agriculture. Many data products 
have been utilized for close monitoring of day to day 
agricultural practices. In spite of all beneficial applica-
tions offered by satellite data product, there is an undis-
covered ideology in the theme of periodical- and large-
scale soil nutrient status. Precise soil nutrient database 
plays a vital role to attain the sustainable agriculture 
through suitable crop rotation at appropriate time with 
respect to soil nutrient and ecosystem. This paper con-
tributes the ATPRK approaches in assessment of soil 
macronutrients in continuous monitoring. Numer-
ous studies based on soil characteristics and nutrients 

Fig. 8  Linear Regression model for a nitrogen, b phosphorus, c potassium

Table 3  Linear regression model equation for soil NPK

Soil macronutrients Regression model equation

Nitrogen (N) y = (0.25006 ± 0.00754) + (0.0000313)x
Phosphorus (P) y = (0.25252 ± 0.0062) + (0.0000810)x
Potassium (K) y = (0.23715 ± 0.0062) + (0.0001210)x
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have been made. ATPRK fusion techniques were usu-
ally derived to categorize the land use and land cover 
changes (Chen et  al., 2021). This study reveals the 
fact that the ATPRK fusion technique also preserves 

the spectral information and moreover strengthens the 
spectral information. Downscaling of Landsat 8 OLI 
data product to match the spatial resolution of Sentinel 
2 MSI data product preserves the spectral information 

 (b)                            426

(a) 

(c) 451
0 84

Kilometers

Legend
Nitrogen
(Kg/Hectare)
Value

216 - 295 (High)
180 - 212 (Medium)
48 - 84 (Low)

Legend
Phosphorus
(Kg/Hectare)
Value

35 - 37 (High)
15.0 - 22 (Medium)
5.0 - 6.0 (Low)

Legend
Potassium
(Kg/Hectare)
Value

340 - 455 (High)
100 - 115 (Medium)
32 - 55 (Low)

Anaimalai Block - Soil Macronutrient Assessment

Fig. 9  Soil Assessment for Anaimalai block: a nitrogen, b phosphorus, c potassium
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which was revealed from the R2 value. Although the 
Sentinel data product has fine spectral information 
than the Landsat data product, some spectral informa-
tion may be distorted due to various environmental 
factors such as cloud cover, missing spectral informa-
tion, wrong reflectance value, and distorted pixels in 
Sentinel 2 data product (Demelash Beyene, 2021). 
In that occasion, the soil information on the distorted 
region of study may not be able to reveal or may give 
wrong direction of study (Stokes, 1996). Hence, it is 
recommended to utilize the fused satellite data prod-
uct to obtain maximum information for precise deci-
sion making. The fusion technique by ATPRK finds  
solution to the aforementioned phenomenon. Shao 
et al. (2019) revealed that fusion of Landsat and Sen-
tinel by ATPRK technique to study changes (LULC) 
and has achieved least RMSE value of 0.0178. The 
spatial information is concerned in LULC studies; 
whereas in soil health study, spectral information is 
much needed which is revealed in this study. Lin et al. 
(2020) represented soil organic matter based on Senti-
nel 2 and Sentinel 3 fusions by Gram-Schmidt method 
and obtained R2 value of 0.6295 which is relatively 
lower than the ATPRK approach employed in this 
study (R2 = 0.8763). Rajah et al. (2018) fused Landsat 
8 and Sentinel 2 dataset by simple composite tools and 
derived multi seasonal distribution of plant species by 
correlating with ground truth variables. Techniques 
adopted are support vector algorithm to delineate the 
spectra resulted in 72–76% of accuracy which was 
comparatively lesser than the ATPRK approach which 
is carried out in this study (87% of accuracy). Close 
correlation with ATRPK result was observed with the 
study carried out by Li et al. in (2021), where MODIS 
and Landsat dataset were fused to interpolate crop 
species distribution by spatial and temporal adaptive 
reflectance fusion model. The derived R2 value in that 
study found to be 0.70 fewer than this study. Moreover, 
MODIS dataset produce 92% of accuracy when com-
pared to Sentinel 2 which can retrieve 94.8–96.8% of 
accuracy (Song et  al., 2021). Thus, fusion of Landsat 
and Sentinel data product by ATPRK approaches give 
rise to soil nutrient interpolation than individual satel-
lite product utility. As discussed in the review study, 
Odebiri et al. (2021) found that mapping soil nutrients 
information by utilizing multispectral datasets presents 
the soil properties at larger spatial extent. Incorporat-
ing this ideology in this study, the fused multispectral 
datasets were subjected to mapping based on the linear  

regression model rendered by GIS tool. Komolafe et al. 
(2021) mapped soil nitrogen, phosphorus, and potas-
sium by multiple linear regression models with the top-
ographic features instead of fused spectral inputs which 
were incorporated in this study. Miran et  al. (2021)  
found that linear regression model derived from Land-
sat OLI imagery could interpolate soil nitrogen better  
than phosphorus and potassium. The model derived for  
nitrogen, phosphorus, and potassium (TN = 0.9132 ×  
ZPC1 + 7.08R2, P =  − 0.0144 × ZPC1 + 0.13R2, and K =   
− 67.67 × ZPC1 + 439.5R2 respectively) purely depends 
upon the principal component analysis of respective 
soil macronutrients; whereas in this study, the linear 
regression model for soil nitrogen, phosphorus, and 
potassium (y = (0.25006 ± 0.00754) +    (0.0000313)x, y = 
(0.25252 ± 0.0062) + (0.0000810)x and y = (0.23715 ± 0
.0062) + (0.0001210)x respectively) depends upon soil-
fused spectral reflectance value and laboratory-derived 
soil nutrients value. Comparatively, this study enhances 
the interpolation since two parameters were incorpo-
rated for rendering the model. In order to achieve the 
twenty-first century challenges such as managing and 
conserving soil resource without any deterioration for 
future generations, there is a great need for measuring 
the nutrient status inch by inch of the farm lands so 
as to follow multiple cropping protocols (Shrivastava 
et al., 2021). Multiple cropping is the only solution to 
resolve the food security problems, which is a major 
challenge in future as forecasted by the experts. Periodi-
cal inch by inch farm nutrient status for a large scale is 
feasible only through fusion of satellite data products. 
Time-series information about the soil health cannot 
be obtained by single satellite data product because of 
its slighter revisit time. Moreover, the single satellite 
product utilization at particular region of study is not 
possible at all the time although the revisit period of 
single satellite product is a regular one. Especially soil, 
sensitive parameters need more precise information to 
deicide. The fertilization recommendation, crop cultiva-
tion, irrigation system, and other policy making in cor-
respondence to soil health information can be decided 
through fused satellite data products information.

Conclusion

The obtained model equation can be given as input 
for every scenes of fused satellite product and con-
sistent soil health can be monitored. From the results, 
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it is observed that the fusion technique enhances the 
soil health information and gives precise data rather 
than using individual satellite data products. Moreo-
ver, the current soil health status reveals that the land 
can be utilized for multicropping due to the availabil-
ity of huge NPK level. Extensive literature reveals the 
particular utilization of band on a single-satellite data 
products. Fusing two or more data products enhance 
the information. Specifically, this study discusses the 
unique feature of ATPRK fusion of Landsat 8 OLI 
and Sentinel 2 MSI dataset that enhances the precise 
interpolation of soil macronutrients at the maximum 
extent. The assessed soil nutrient status reveals that 
the nitrogen, phosphorus, and potassium found high 
at the range of 216–295  kg/Hectare, 35–37  kg/Hec-
tare, and 340–455  kg/Hectare respectively. Where 
only few regions suffer from low nutrient status more 
specifically, there is potassium deficiency in many of 
the agriculture fields that ranges from 32 to 55  kg/
Hectare. Thus, this study fulfills the void research 
gaps in respect to time-series nutrient measurements 
and large scale compilation of soil nutrient status 
through area-to-point regression Kriging approach 
fusion of Landsat 8 OLI and Sentinel 2 data.
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