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ratio and band mixture to locate iron-bearing soils. 
We used blending of bands 5/3 + 1/2 to delineate fer-
rous iron oxide, band combination of 2/1 to delineate 
ferric iron oxide, and band ratio of 5/4 to delineate 
the lateritic soil. Further, the linear spectral unmix-
ing outcome of ASRER data was evaluated concern-
ing the ground truth of geochemical compositions 
of samples from the study area. Our results showed 
that image processing of the ASTER satellite data has 
the potential to delineate ferric, ferrous, and lateritic 
mineral assemblages in the iron-bearing soils with 
minimal requirement of ground truth verification. 
This research work aided in increasing trust in the use 
of space-based data for mineral prospecting. Image  
processing has demonstrated that ASTER data can be 
used to enhance iron ore exploration and the discov-
ery of new mineralized areas.

Keywords Iron ore geochemistry · Digital image 
processing · ASTER data · Geochemical anomaly · 
South India

Introduction

Satellite remote sensing techniques have played a  
predominant role in the geological prospecting of  
mineral deposits all over the globe (Divya et al., 2021;  
Gopinathan et al., 2020a, b; Kruse, 1995; Sabins, 1999;  
Yamaguchi et  al., 2001). They can provide useful  
information about mineral exploration in short time as 
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nent involved pre-processing atmospheric correction 
and processing of the image data reminiscent of band 

G. P (*) 
CSIR-Central Institute of Mining and Fuel Research, 
(Ministry of Science & Technology, Govt. of India), 
Dhanbad, Jharkhand 826015, India
e-mail: srigopi555@gmail.com

P. Roy 
Instituto de Geología, Universidad Nacional Autónoma de 
México, Ciudad Universitaria, 04510 Ciudad de Mexico, 
CP, Mexico

S. T 
Department of Geology, College of Engineering, Anna 
University, Chennai 600025, India

K. D 
Department of Civil Engineering, Sri Shakthi Institute 
of Engineering and Technology (Autonomous), 
Coimbatore 641062, India

/ Published online: 12 October 2022

Environ Monit Assess (2022) 194:866

http://orcid.org/0000-0002-6686-1028
http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-022-10570-2&domain=pdf


 

1 3
Vol:. (1234567890)

well as in low price, and they are viable in regions with 
difficult accessibility to conduct field work (Yang et al., 
2005; Sabins, 1999; Kruse & Prerry, 2006a; Gopinathan  
et  al., 2020a, b). Multispectral ranges are useful in  
mapping of iron-bearing minerals, hydroxyl mineral,  
sulfates, and carbonates (Kiran Raj et  al., 2015).  
Ramadan et  al. (2009) combined the remote sensing 
tools such as the band ratio with lithological details 
in the successful prospecting of ferruginated beds in 
Owein at, El Dakhla district, western desert, Egypt. 
Revealing of the sites of ferruginated beds in the study 
area facilitated the field work and created further scope 
in the exploration and characterization of ferruginous 
minerals (Al-Quraishi et  al., 2020). Magendran et  al. 
(2011) successfully attempted to map and characterize  
different grades of iron ores in Noamundi and Joda 
area, eastern India. In their study, the authors have 
utilized certain key spectral parameters which were 
derived from laboratory-based spectral curves to 
correlate with the actual geochemical composition  
of the iron ores (Lanfranchi et  al., 2020; Divya & 
Gopinathan, 2019; Divya et  al., 2014a, b). In another 
study, Magendran and Sanjeevi (2013) demonstrated 
the importance of hyperspectral signatures obtained 
from the satellite imageries to evaluate the ranks of 
Fe-ore formations of Singhbhum iron ore belt in parts 
of Orissa and Jharkhand, eastern India, where they 
used Hyperion image data to detect iron ore deposits 
and its spatial extent (Farifteh et  al.,  2013; Mohamed 
et al., 2021). The multispectral or hyperspectral sensors 
and the laboratory-based discrete iron ore samples are  
effective to assess and characterize the iron ore deposits  
in an open mine-face (Magendran & Sanjeevi, 2014).  
Identification and delineation of the spatial distribu-
tions of iron deposits are crucial within the mineral 
exploration (Feizi & Mansouri, 2013). The satel-
lite remote sensing product can support and help to  
do mapping of the mineral deposits in regional scale with 
adequate spatial and spectral elements (Oliver & vad der 
Wielen, 2005). The spectral signatures of multispec-
tral data and hyperspectral data in 0.4–2.5 µm (VNIR- 
SWIR) provide direct detection of mineral. Such data, 
viz., ASTER, provide synoptic spatial coverage that 
allow extending the mineral targeting to regional scale 
and they lead to better mineral targeting over wider 
regions (Crosta et  al., 2013; Kruse & Prerry, 2007b). 
Studies have also been conducted for mapping the lith-
ological changes and mineral assemblages using the 
ASTER imagery in the granitic and meta-sedimentary  

terrains as well as to measure the content of soil–water 
based on the hyperspectral remote sensing methods 
(Zhang et  al., 2007; Haselwimmer et  al., 2010; Salati 
et  al., 2011; Ciampalini et  al., 2012; Gad & Raef, 
2012; Khidir & Babikir, 2013; Mishra et  al., 2014; 
Dhivya & Gopinathan, 2019; Dhivya et  al.,  2021). 
This study aims to identify the iron-bearing mineral 
assemblages in soil and re-appraise the ferric, ferrous, 
and lateritic assemblages in iron-bearing soil of Nain-
armalai, in north-western part of Tamilnadu, using 
ASTER image and chemical results of field speci-
mens. This study uses state-of-the-art remote sensing 
strategies and different techniques such as band ratio, 
normalized difference vegetation index (ndvi), prin-
cipal component analysis (PCA), and linear spectral 
unmixing (LSU). These techniques of satellite image  
data processing used in the exploration and identifica-
tion of iron-bearing mineral assemblages in soil that 
conceal the iron reserve represented by the banded  
magnetite quartzites (Wan et al., 2021).

Geological system of study area

Nainarmalai is located at the northwest part of Tamil 
Nadu in southern India. This area is located at a dis-
tance of 11  km from Namakkal town and it forms 
part of the excessive grade granulite terrain (Fig. 1). 
It has structural hills consisting of linear ridges and 
few inselbergs. The linear ridges represent alterna-
tive bands of the banded magnetite quartzite (BMQ) 
(Gopinathan et al., 2015).

Nainarmalai is undoubtedly one of the low-grade 
iron ore formation in Tamil Nadu and. The BMQ 
occurs along with alternative bands of pyroxene 
granulite at northeast side of the “V”-shaped struc-
tural hill. The pyroxene granulite bands are associ-
ated with garnet-ferrous gneiss and quartzo-felspathic 
gneiss, pyroxenite, dolerite dyke, and pegmatite. 
The quartz veins occur as intrusive bodies. The area 
is structurally disturbed with repeated folding and 
NE-SW faulting and it is also subjected to granulite 
facies metamorphism as evidenced by the presence of 
amphibolite and pyroxene (Reddy et  al., 1982). The 
banded iron ore formation varies in thickness from 2 
to 20 mm. The total probable reserve of iron ore with 
35 to 37% iron content is estimated to be around to be  
8.2 million tons. It goes up to the depth of 30 m and 
contains two BMQ bands with strike length of 4.2 km 
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and average thickness of 25  m (GSI-2006). The top 
soils of iron-bearing mineral assemblages, however, 
conceal the entire study area. They vary over the 
space due to differential weathering process and we 
attempt to identification and delineation the iron-
bearing top soils in this study.

Material and methodology

Our research methodology involved two essential 
components. The first one is Advanced Spaceborne 
Thermal and Emission Reflectance Radiometer 
(ASTER) satellite image processing such as preproc-
essing, band selection, 2-D scatter plot, ratio tech-
niques, NDVI, and linear spectral unmixing tech-
niques and interpretation of the results. The second 
one is field sample analysis that includes sample 
collection, sample preparation, and geochemical 
analysis of samples to decipher major iron-bearing 
mineral assemblages. Results of the above two com-
ponents were compared and validated for mapping 
iron-bearing mineral assemblages in the top-soil. The 
overall methods used in this work are presented in 
Fig. 2.

In the digital processing techniques, we disposed 
or removed the errors pertaining to the data acqui-
sition such as the atmospheric effects, to be able to 
improve the accuracy of mapping. The data provider, 
LP DAAC, United States Geological Survey (USGS) 
accomplished atmospheric correction and the pro-
cessing strategies used in this research work.

Band selection and 2-D scatter plot

The space image plotted the data file value of one 
band against the values of another band (e.g., Kruse 
& Perry, 2006a). This 2D scatter plot displayed two 
bands of image pixel value in a Cartesian plot and 
illustrated the correlation between them. We selected 
ROI in the scatter plots and used them in other full 
band processing techniques. This study utilized the 
spectral property of iron oxide mineral in the scat-
ter plots. The pixels containing iron oxide showed 
relatively strong absorption in the VNIR region and 
relative reflectance in the red band (Townsend, 1987; 
Shaik et  al., 2021). The different bands of ASTER 
image were selected based on the scatted plots and 
the region representing iron oxide were identified. 
The newly created spectral subset consisted of the 
bands resembling iron oxide mineral assemblages and 

Fig. 1  Map showing the location of study area in southern India and different geological units
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the spectral plot illustrated images illustrated different 
amounts of relative absorption and reflectance. The 
appropriate ASTER bands in the ratio analysis iden-
tified the signatures of iron oxides, vegetation, and 
country rocks (Madani & Emam, 2011).

Ratio analysis

Band ratioing is one of the simplest and dominant 
methods in satellite image processing. It emphasizes 
or exaggerates the mineral assemblages exist in the 
targeted regions (Khalaj et  al., 2021). In this study, 
Fe-iron oxide minerals assemblages are the strategic 
target and we considered ratio images to improve spec-
tral illustrations among the bands in the rationing and 

mineral mapping (e.g., Elsayed & Albielyb, 2008). 
Every material has unique spectral characteristic (i.e., 
spectral reflectance) in different wavelength portions of 
electromagnetic spectral range. For example, the iron 
oxide shows absorption in 0.85-–0.90-μm region of the 
electromagnetic radiation. Different band combinations 
are used in this study to delineate iron-bearing mineral 
assemblages. They are used to improve the spectral fea-
ture of alteration zones depending on the absorption 
bands of altered minerals (Gupta, 2003). We identified 
the following band ratio combinations to identify the 
iron oxide in soil: (i) (band 5/band 3) + (band 1/band 2) 
blend to delineate ferrous iron oxide, (ii) (band 2/band 
1) combination to delineate ferric iron oxide, and (iii) 
(band 4/band 5) to delineate lateritic content.

Fig. 2  Methodology flow chart of study
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Ratio color composite

Three primary colors (blue, green, and red) are con-
sidered for displaying color composite image. The 
merging of each spectral band combinations to a sep-
arate primary color mediums resulted in a color com-
posite image to visualize iron-bearing mineral assem-
blages in a holistic view. Ratio process has made by 
dividing the brightness value of different bands and 
pixel by pixel. The primary concepts of ratios is to 
improve material contrast by dividing brightness 
values at peaks and troughs in a spectral reflectance 
curve. This has the effect of amplifying spectral dif-
ferences while suppressing illumination differences 
(Herrera, 2015).

Normalized difference vegetation index

The relatively coarse resolution (15 m) ASTER image 
included the vegetation in the 1–10 m iron ore bands 
(e.g., Dalbin, 2008). The normalized difference veg-
etation index (NDVI) values ranging from 50 to 255 
were categorized as dense vegetation in-and-around 
the study area. We grouped them in one class and cre-
ated a mask for this NDVI category. Similar regions 
were masked from the original subset of ASTER 
image by using the image masking technique.

Linear spectral unmixing for estimation of 
iron-bearing mineral assemblages

The linear spectral unmixing method was used in 
iron mineral abundance maps, which combined with 
image spectra, aided in determining the grades of iron 
ores minerals in the study area. This analysis indi-
cates the methodology’s potential applicability for 
iron mineral identification and classifying grades of 
iron ores minerals (Kayet et al., 2017). It determined 
the comparative abundances of resources with differ-
ent spectral characteristics in the multispectral/hyper-
spectral images. The reflectance at each pixel was 
considered as a linear permutation of reflectance of 
each substance end member, and it represented pure 
materials characteristics inside the pixel. There are, 
however, unique boundaries that follow for the lin-
ear spectral unmixing method. The amount of end 
members ought to be not up to the quantity of spec-
tral bands and all the end members within the satel-
lite imagery should be considered for the effective 

plotting outcome. The outcome is extremely depend-
ent on the contribution end members. Therefore, it is 
important to select end member spectra of pure mate-
rials such as iron-bearing mineral assemblages in soil 
and other country rock materials.

End-member selection by principal components 
analysis

Precise channels of multi-spectral images are incred-
ibly compared and as a consequence include equiva-
lent know-how. Image transformation procedures will 
also be utilized to lower this information dismissal 
and relationship between bands. (Geological Survey 
of Canada, 2004) has stated that principal compo-
nents analysis (PCA) is one of the important trans-
form methods. PCA, and different intricate trans-
forms, could be utilized as an improvement manner 
to reinforce manual analysis. Otherwise, it could be 
utilized to scale back the total number of channels 
for use as enter to expertise extraction. In the end 
member assortment procedure that numerous end 
members has been preferred to determine the sub-
categories of aim Fe-oxide minerals in soil and other 
formations each on the basis of exceptional combo of 
pixel parameters equivalent to size and density of the 
pixels and percent quilt, which lead to the variation of 
absorption and the value of reflectance in the spectra.

We validated and compared the abundances 
of iron-bearing mineral assemblages (i.e., high, 
medium and low levels) of the remotely sensed data 
(ASTER) with the actual geochemistry of field sam-
ples. Ground truth verification and sample collection 
formed important components of this research.

Result and discussion

The results obtained based on the above methodology 
including the satellite image processing techniques 
and geochemical analysis of the field samples are pre-
sented in this section and discussed successively.

Ferrous and ferric mineral assemblages

The bands 5/3 + band 1/2 ratio combination was 
computed to produce a map of ferrous mineral 
wealth (Fig.  3). Ratio images intended to demon-
strate the spectral disparity of precise absorption 
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features that identified ferrous iron oxides high-
lighted in yellow color in the image output.

Similarly, the ferric mineral abundance map was 
generated using the band ratio combination of band 
2/band 1. The resultant image exhibited variations 
in gray scales variations and high concentration of 
ferric iron contents in brighter pixels (red color in 
Fig. 4).

Lateritic mineral assemblages in soil

The lateritic contents possess both the aluminum 
oxide and iron oxide. The sensitive bands indicating 
the aluminum oxide and iron oxide were identified 
through the 2D scatter plot. We generated the lateritic 
mineral distribution map using the ASTER bands 
ratio of band 4/band 5. Figure  5 shows the lateritic 

Fig. 3  Image showing fer-
rous mineral abundance

Fig. 4  Image showing fer-
ric mineral abundance
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Fig. 5  Image showing lat-
eritic mineral abundance

Fig. 6  Image showing 
ratio color composite of 
Nainarmalai

Iron-bearing mineral deposits

Vegetation area

Barren land area

Fig. 7  Image showing 
NDVI of Nainarmalai
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Fig. 8  Image showing 
vegetation masked ASTER 
image of Nainarmalai

Fig. 9  End-member spectra 
of Nainarmalai

Fig. 10  a Iron oxide fraction image and b parent/country rock fraction image
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mineral abundance of the study area highlighted in 
claret color.

Further, the color composite images were pro-
duced for delineating ferric, ferrous, and lateritic 
contents using the band ratio output images, such 
as band 5/3 + band 1/2, band 2/band 1, and band 
4/band 5. The results were also verified with 
field check and chemical results of the specimens 
obtained in the field. The ratio color composite 
(RCC) maps presented better medium of visuali-
zation and interpretation to figure out the location 
and aerial extension of iron-bearing mineral assem-
blages, vegetation and barren land. The iron-bear-
ing mineral assemblages in ridges were depicted in 
the RCC image (Fig. 6).

In accordance, there was interference by vegeta-
tion during mapping the iron-bearing minerals. We 
generated NDVI images to overcome interference of 
vegetation in the mapping (Fig. 7).

Subsequently, the vegetation content was iden-
tified and it was masked from the original image 
that contains either the iron-bearing mineral assem-
blages or country rocks (Fig. 8).

Then the resulted sub-categories had been mixed 
to receive the absolute end-member spectra of pure 
Fe-oxide and parent strata (determine 9).The golf 
green spectra signify Fe-oxide and white spectra 
characterize parent formations in the field of inves-
tigation (Fig. 9).

Fig. 11  Image showing 
the categories of iron oxide 
content in soil of Nainar-
malai area

(g)

High

Medium

Low

Fig. 12  Field photograph showing iron mineral assemblage in 
top-soil at Nainarmalai in southern India
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Fraction images

Fraction images have been created utilizing 2 end-
member spectra, representing the iron oxides and 
other rocks. The pixel values indicated the richness of 
end member in the output fraction images. The pixel 
values varied from brighter to darker tones for the 
entire scene. These pixel fractions offered informa-
tion about the relative abundance of end-member in 
a pixel. We used 2 individual end-members to obtain 
details to describe the resultant image (Fig. 10).

The fraction images of study area depicted the iron-
bearing mineral assemblages and country rocks present 
in each pixel. Brighter pixels in the fraction images rep-
resented higher abundances. The peaks and ridges in the 
Fe-oxide fraction imageries showed most of the brighter 
areas and the hill slopes had the moderate abundance of 
iron oxide. The brighter areas in the other strata frac-
tion imageries indicated parent rocks corresponding to 
garnet-amphibole and feldspathic gneisses, pyroxene 
granulites, amphibolites, and quartzites, and so forth.

Categorization of iron oxide distribution

Density chopping is one of the widely followed satel-
lite image processing methods used to a single band 
monochrome image for highlighting the places having 
even tone. The grey-scale values (most commonly zero 
to 255 for 8-bit knowledge) are transformed to series 
distinctive slices and exceptional colors are allotted to 
every slice. To spotlight editions in the plant species, 

this technique is mostly applied. We used this tech-
nique to highlight iron oxide variations in soil. The cat-
egorization image was generated using the iron oxide 
fraction image that provided relative abundance of 
iron oxide in each pixel. This in-turn showed the vari-
ation of iron oxide abundance in soil and we used this 
approach to demarcate the categories of high, medium 
and low levels of iron oxide contents (Fig. 11).

Geological sample collection and geochemical 
analysis

Based on the results of ASTER image processing 
and analysis of the study site, we took an extensive 
field survey for ground truth verification at random 
locations of the study area. The field verification was 
once carried out arbitrarily, and exceptional sampling 
locations have been identified utilizing a handled 
global positioning system (GPS).We collected 13 
specimens from different places in the field of interest 
(Fig. 12) in order to come within the areas where the 
ASTER data processing and analysis identified the 
presence of iron oxide-bearing soil.

These samples were powered to 100-micron size 
for the geochemical analysis. All the powdered sam-
ples were analyzed with XRF to estimate the con-
centrations of the oxides of eleven different elements 
by following the standard procedures of (US EPA 
Method 6200, 2006; Kodom et al., 2012). Contents of 
 Fe3O4 varied between 18.54 and 54.07% and Table 1 
presents the concentrations of all the other oxides.

Table 1  Concentrations of different oxides including  Fe3O4 in different field samples collect from the top-soil at Nainarmalai in 
southern India

S. no. Sample ID Sample locations Concentration (%)

Latitude Longitude Al2O3 CaO Fe3O4 K2O MgO MnO Na2O P2O5 SiO2 SO3 TiO2

1 NS1 11° 19′ 02.7″N 78° 12′ 40.1″E 4.02 12 24.05 10.2 5.24 0.34 0.64 0.21 37.2 0.26 1.33
2 NS2 11° 18′ 46.6″N 78° 11′ 35.6″E 3.96 12.6 25.23 14.6 7.02 0.51 0.69 0.09 38.7 0.13 0.89
3 NS3 11° 18′ 53.4″N 78° 12′ 13.6″E 8.08 13.1 22.09 15.2 6.84 0.42 0.65 0.02 35.2 0.12 0.91
4 NS4 11° 18′ 45.0″N 78° 12′ 09.2″E 4.11 11 26.76 12.3 4.1 0.53 0.33 0.09 39 0.03 0.09
5 NS5 11° 18′ 54.8″N 78° 11′ 54.4″E 7.02 16.1 18.54 9.23 0.31 0.57 0.38 0.04 37.6 0.52 0.68
6 NS6 11° 18′ 54.1″N 78° 11′ 55.2″E 5.43 13.2 23.45 1.24 2.1 0.765 0.678 0.088 37.3 0.88 0.15
7 NS7 11° 19′ 39.8″N 78° 13′ 22.1″E 4.31 12.2 22.31 0.17 8.82 0.21 0.77 0.1 36.4 0.2 1.24
8 NS8 11° 19′ 01.6″N 78° 12′ 40.6″E 2.27 9.1 28.93 0.87 5.13 0.01 0.87 0.34 40.1 0.59 0.42
9 NS9 11° 19′ 26.1″N 78° 13′ 03.3″E 7.18 1.32 34.56 0.1 1.35 0.009 0.345 0.621 40 0.49 0.98
10 NS10 11° 19′ 26.5″N 78° 13′ 03.4″E 0.16 0.25 54.07 0 1.48 0.01 0 0.131 43.9 0 0
11 NS11 11° 19′ 53.2″N 78° 14′ 17.6″E 3.02 2.41 35.02 5.25 0.24 0.67 0.46 0.03 36.2 0.32 0.48
12 NS12 11° 19′ 14.7″N 78° 12′ 52.1″E 0.11 0.71 44.77 0.01 1.52 0.01 0.086 0.26 52.5 0 0
13 NS13 11° 18′ 52.5″N 78° 12′ 29.6″E 1.13 0.42 39.25 0.11 0.262 0.02 0.442 0.11 50.2 0.22 0.08
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Fig. 13  Correlation of 
ASTER derived iron oxide 
abundance and the results 
of Fe3O4 estimated by 
geochemical analysis of 
field samples: a band ratio 
for ferrous oxide (Fe2 +) 
vs Fe3O4 (%), b band ratio 
for ferric oxide (Fe3 +) vs 
Fe3O4 (%), and c linear 
spectral unmixing for iron 
oxide vs Fe3O4 (%)
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Correlation study

Band ratioing and linear spectral unmixing were 
used to categorize the iron oxide levels in soil sam-
ples (Fig. 13). The correlation of ASTER derived iron 
oxide abundance and actual  Fe3O4 contents in field 
samples shows that the spectral unmixing techniques 
are capable of estimating the iron oxide levels with 
good correlation with an upright accuracy (R2 = 0.6). 
The band ratio techniques have moderate positive and 
negative correlations with the iron oxide contents 
(R2 = 0.3 and − 0.4). Both the band ratio techniques 
were viable to identify and delineate ferrous, ferric 
and lateritic contents in the soil. The linear spectral 
unmixing techniques, however, were reliable in the 
context of mapping the distribution of iron-bearing 
mineral assemblages in soils of the study area.

Conclusions

The spectral analysis and software-based image inter-
pretation of ASTER data has given important evidence 
to estimate the abundance of Fe-bearing minerals in top 
soil of the granulite terrain at Nainnarmalai in southern 
India. This area has probable reserve of commercially 
exploitable iron ore in the forms of banded magnetite 
quartzites. Band rationing techniques with specific 
band combinations, such as band 2/band 1(for ferric), 
band 5/band 3 + band 1/band 2 (for ferrous), and band 
4/band 5(for laterite), estimated the abundances of iron 
oxide in the top-soil. The fraction images resulted from 
linear spectral unmixing delineated the Fe-oxide and 
parent rocks. Fe-oxide fraction image indicated higher 
abundance at ridges and moderate abundance at slopes. 
Likewise, the brighter pixels in parent strata fraction 
images characterized garnet-amphibole and felds-
pathic gneisses, pyroxene granulites, amphibolites, and 
quartzites. The comparison of the outcomes of chemi-
cal results of specimens randomly obtained in the 
field and the corresponding iron oxide wealth resulted 
from linear spectral unmixing inferred that the spectral 
unmixing techniques of the ASTER data are capable of 
estimating iron oxide levels in the soil with good cor-
relation (R2 = 0.6). Based on the results of this study, 
we concluded that it is possible to detect iron oxide 
content in the soil samples and assess the spatial dis-
tributions of ferrous, ferric, and lateritic areas from the 

ASTER image data. The linear spectral unmixing tools 
in satellite image processing were helpful to categorize 
the Fe-oxide abundances with reasonable accuracy and 
minimal requirement of ground truth.
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