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attributes. The WCTs can therefore provide a novel 
tool for monitoring and change detection of wetland 
cover types. We have automated the proposed WCT 
algorithm using the Google Earth Engine (GEE) 
environment and by developing ArcGIS tools. The 
method can be implemented on any wetland and 
using any multispectral imagery dataset with visible  
and NIR bands. The proposed methodology is simple  
yet robust and easy to implement and, therefore, holds  
significant importance in wetland monitoring and 
management.

Keywords  Wetland dynamics · Wetland hydrology · 
Wetland management · Wetland monitoring · Wetland 
remote sensing

Introduction

Earth’s surface is a mosaic of various land cover 
types including numerous terrestrial and aquatic eco-
systems. Driven by phenology and various biotic-
abiotic processes, interactions, and disturbances, such 
ecosystems keep changing and are never a truly static 
system (Dronova et al., 2015; Oestreich et al., 2020). 
Land use/land cover (LULC) mapping and change 
detection amongst LULC classes is a way to under-
stand the dynamic nature of such ecosystems. Gener-
ally, most LULC datasets focus on terrestrial systems 
and classify aquatic systems into broader categories 
such as waterbody, lakes, and wetlands (Dronova 
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et al., 2011, 2015; Singh & Sinha, 2021a). However, 
aquatic ecosystems such as wetlands undergo signifi-
cant and frequent surface dynamics and are a mosaic 
of various cover types (Dronova et  al., 2011, 2015; 
Singh & Sinha, 2021a). They are being subjected to 
long- and medium-term changes induced by climate 
change and land use (Taddeo & Dronova, 2018) as 
well as inter-seasonal changes in their vegetation 
and water spread areas induced by modifications in 
the hydrological cycle (Dronova et  al., 2015; Hess 
et al., 2003; Singh & Sinha, 2021a, 2022; Singh et al., 
2022). Therefore, such aquatic ecosystems require 
different approaches than generalised LULC classifi-
cation schemes to understand their long-term behav-
iour and characteristic regimes (Dronova et al., 2015; 
Hess et al., 2003; Singh & Sinha, 2021a, b).

For aquatic ecosystems such as inland lakes and 
coastal waters, which may contain open water areas 
as the dominant cover type, the concept of optical 
water type (OWT) has been used by previous work-
ers. The OWTs are based on various bio-optical 
models and classify the water based on the optical 
properties of water constituents such as chlorophyll, 
dissolved organic matter, and suspended matter 
(Moore et al., 2014). Another scheme, the Forel-Ule 
(FU) colour index, which is a visual colour compari-
son scale of water bodies ranging from blue to cola 
brown (type 1 to type 21) (Forel, 1890; Ule, 1892; Ye 
& Sun, 2022), has also been utilised to classify the 
water types. However, wetlands are a complex and 
heterogeneous mixture of various cover types rang-
ing from vegetation (submerged, emerged, floaters), 
saturated soil, vegetated soil, varying water depths, 
and various water constituents. Therefore, the OWT 
and FU colour scale methods are not appropriate for 
characterising the wetland surface dynamics.

The concept of wetland cover types (WCT) was 
introduced in the early 1980s to understand the wet-
land dynamics and to identify the spectral character-
istics of wetland habitat (Ernst-Dottavio et al., 1981).  
Most commonly, Landsat MSS and TM sensors have 
been used for wetland cover mapping in different parts 
of the world (Dottavio & Dottavio, 1984). For exam-
ple, the Palo Verde National Park wetlands, Costa 
Rica have been studied to understand the impact of 
cattail (a wetland emergent vegetation) management 
activities (Trama et al., 2009) and evaporation rates of 
different cover types (Jiménez-Rodríguez et al., 2019). 
Mozumder et al. (2014) worked on the Deepor Beel  

in India, a Ramsar site, to understand wetland dynam-
ics. Dronova et  al. (2015) mapped annual change 
cycles in the Poyang lake-wetland complex of China, 
and Fang et  al. (2016) provided an assessment of 
the temporal dynamics of the Nanjishan wetland of 
China.

Both human activities and the natural environment 
control the changes in wetland cover types (Zhang 
et  al., 2021). It is also well-established that the vari-
ability of aquatic diversity is a function of seasonally 
controlled water availability (Davidson et  al., 2012). 
Therefore, water availability is the prime variable dic-
tating a wetland’s biotic and abiotic conditions and 
ecological services (Steinbach et  al., 2021), rightly 
necessitating the inclusion of water variability in any 
wetland dynamics study. However, wetlands consist 
of various non-water cover types as well, which also 
control wetland hydrology by influencing the evapora-
tion (Gehrels & Mulamoottil, 1990; Todd et al., 2006), 
especially in non-wet seasons (Jiménez-Rodríguez 
et al., 2019). Other variables, such as water tempera-
ture, are also affected by vegetation cover (Jiménez-
Rodríguez et al., 2019). Further, soil, vegetation, and 
hydrology characterise the wetland’s structure (Zhang 
et al., 2021).

A review of the current approaches of mapping 
WCT suggests that most of these are based on field 
identification of major cover patches in a wetland 
(Jiménez-Rodríguez et al., 2019) or satellite-imagery-
based mapping using on-screen digitisation (Trama 
et  al., 2009), object-oriented classification (e.g., 
Dronova et al., 2015; Zhang et al., 2021), or rule-based 
thresholding of multispectral indices (e.g., Mozumder 
et  al., 2014). Also, these approaches are mostly tai-
lored for specific wetlands and need customisation and 
readjustment to apply them to other wetlands. Further, 
these methods define cover types as ‘static’ units in 
terms of broad categories of cover patches and do not 
account for transitional or new cover types. Further, 
given the dynamic nature of wetlands and the need 
for long-term assessment, multi-temporal mapping is 
necessary. This necessitates a method wherein cover 
types (a) can attain dynamic values whenever needed, 
(b) should be invariant to spatio-temporal changes, 
and (c) can be automated with minimal human inputs.

The availability of medium spatial resolution satel-
lite datasets such as Landsat series (30 m spatial reso-
lution, 16  days repeatability) and Sentinel-2 series 
(10 m, 20 m, and 60 m spatial resolutions, 5–10 days 
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repeatability), augmented by cloud-computing facili-
ties such as Google Earth Engine (GEE), long-term 
assessment and WCT generation for management and 
monitoring of wetlands is easier than ever. Here, we 
have developed a protocol to classify the dynamic 
WCTs based on the thresholding of multispectral 
indices. Our approach is novel in the sense that the 
derived WCTs are stable in space and time, and there-
fore, a given WCT across different wetlands or within 
different zones of a large wetland will imply similar 
underlying biophysical attributes. We have imple-
mented the protocol in GEE scripts and have also 
designed a tool in ArcGIS to classify the WCTs for 
a given wetland automatically. We have applied this 
protocol to three different wetlands of India situated 
in different climatic and geographic locations and 
have discussed its utility for the management and 
monitoring wetlands. The WCTs have therefore the 
potential to become a novel tool for monitoring and 
change detection of wetland cover types.

Study areas

Kaabar Tal—a floodplain wetland

The Kaabar Tal (86°05′E—86°09′E and 25°30′N— 
25°32′N) is one of the largest freshwater wetlands 
in the Kosi-Ganga River interfluve in the North 
Bihar, eastern India (Singh & Sinha, 2020) (Fig.  1). 
The Kaabar Tal is primarily fed by the precipita-
tion induced overland flow with a catchment area of 
approximately 195.6 km2. The wetland experiences 
the monsoon season from July to September, with an  
average annual precipitation of 1200 mm. The maxi-
mum and minimum temperature of the wetland region  
varies from 25 to 38  °C in summer and 8 to 25  °C 
in winter, respectively. The Kaabar Tal was declared 
a protected area and a bird sanctuary in 1989, recog-
nised later as a wetland of national importance by the 
Government of India, and was finally included in the 
list of Ramsar sites in 2021. This wetland is an impor-
tant habitat for migratory and residential waterfowls 
belonging to 186 species and 41 families, including 
some threatened species such as the Sarus crane (Grus 
antigone), the white-rumped vulture (Gyps bengalen-
sis), the greater spotted eagle (Aquila clanga), and the 
Indian vulture (Gyps indicus) (Ambastha et al., 2007). 

Located in a tropical region, the Kaabar Tal is an excel-
lent source for fishing, fodder, and agriculture, and has 
been overexploited in the recent years leading to its 
degradation. The Kaabar Tal wet area has been shrink-
ing for the past 2 decades (1984–2020) (Singh & Sinha, 
2021a, b), and the groundwater level is depleted drasti-
cally in the surrounding region (Sinha et al., 2018).

Chilika—a coastal lagoon

The Chilika (19°28′N—19°54′N and 85°05′E—85°38′E)  
is one of the largest brackish water lagoons in India 
with a catchment area of 3560 km2 located in a tropi-
cal climate region on the eastern coast (Fig.  1). The 
Chilika was recognised as a wetland of international 
importance under the Ramsar Convention in 1981 
and was designated a UNESCO world heritage site in 
2019. The Chilika is one of the important biodiver-
sity hotspots globally and attracts millions of migra-
tory birds every year. More than 0.2 million people 
are completely dependent on the fish resources of the  
Chilika wetland.

The lagoon is fed by 52 rivers and rivulets that act 
as the source of the freshwater inflow from the north. 
The lagoon is connected to the seashore to the east 
by a 32 km long inlet channel that feeds saline water. 
With an average annual precipitation of 1238.8 mm, 
the wetland experiences NE and SW monsoons in 
June–September and November–December, respec-
tively. Three other seasons in this region are winter 
from December to February, followed by summer 
from March to May and pre-monsoon from October 
to November. The maximum and minimum tempera-
ture in this region is 39.9 °C and 14.0 °C in summer 
and winter, respectively. The water spread area of 
Chilika varies from 900 to 1165 km2 during the sum-
mer and monsoon seasons, respectively.

The Chilika is an estuary system in which sedi-
mentation and salinity play dominant roles to 
determine the ecosystem of the wetland. During the 
summer season, the water level is lowest and this 
increases the salinity in the wetland. During the 
monsoon season, freshwater from the northern and 
eastern catchments carries sediments and nutrients 
into the wetland. During 1981–1993, the Chilika 
suffered a significant loss of biodiversity due to 
excessive siltation, a decrease in freshwater inflow, 
and shrinkage in the wetland area. Consequently, it 
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was added to the Montreux record of endangered 
wetlands in 1993 (Finlayson et al., 2020). However, 
it was removed from the Montreux record list in 

2002 because of the exemplary remedial measures 
taken up by the Chilika Development Authority 
(CDA).

Fig. 1   Study areas a Kaabar Tal in Ganga Plains, b Chilika Lake—a coastal lagoon, and c Nal Sarovar, a semi-arid region lake
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Nal Sarovar—a semi‑arid region wetland

The Nal Sarovar (22°78′N—22°96′N and 71°78′E 
—72°64′E) is a bird sanctuary and a Ramsar wetland 
spread over 120 km2 in semi-arid parts of Gujarat, 
western India (Fig.  1). The average monthly tem-
perature ranges between 7 and 45 °C, and this region 
receives 700 mm of mean annual rainfall. The water 
spread area of this wetland is strongly a function of 
precipitation and can reach as high as 300 km2 in an 
above-average monsoon year, 60 km2 in an average 
rainfall year, 30 km2 in a below-average rainfall year, 
to as low as 15 km2 in a rainfall-scarce year (RIS, 
2012). The Nal Sarovar is rich in aquatic avifauna—
eighty-five bird species of 18 different families were 
recorded in this wetland in a multi-seasonal study 
between 2016 and 2018 by Joshi et al. (2020). Most 
of the bird species were recorded in the winter sea-
son (84 species) and the least in the summer season 
(50 species). The fluctuations in the water level of the 
wetland result in a highly dynamic avifauna habitat 
(Murthy & Panigrahy, 2011).

From the west, the Nal Sarovar is fed by two sea-
sonal rivers—the Brahmini and Bhogavo and their 
tributaries. The flows from the surrounding areas also 
drain into the wetland during monsoons. Therefore, 
the hydrology of this wetland entirely depends on 
the monsoon rainfall, making the water spread area 
highly seasonal. The Nal Sarovar and its surrounding 
regions are rich in saline/alkaline salts, mostly con-
centrated in the upper layers of the soils (Tatu et al., 
1999). This makes the water of this wetland brackish 
in post-monsoon and saline in springs and afterwards 
(Tatu et  al., 1999). In most years, the wetland dries 
out by early summer (Chauhan, 2003).

Datasets and method

Wetlands are a mosaic of various cover types with 
unique biophysical properties such as open water, tur-
bid water, several aquatic vegetations, and saturated 
soil. In dry seasons, wetlands also contain dry soil 
surfaces and terrestrial vegetation. All these cover 
types are optically sensitive in different regions of 
the electromagnetic spectrum and can be identified 
from satellite imageries using suitable indices. In this 
work, we first explored the specific indices which can 
distinguish wetland cover types. We initially selected 

23 such indices (see Supplementary Information and 
Table S1), corresponding to different optically sensi-
tive water constituents. We calculated these 23 indi-
ces for Chilika Lagoon using the Sentinel-2 dataset. 
Out of these 23 indices, we finally selected the three 
best suitable indices based on multivariate analysis 
such as principal component analysis (PCA), and 
detrended correspondence analysis (DCA), and visual 
analysis using ISO-clustering (see Supplementary 
Information and “Datasets and Method” section). 
Three selected indices (hereafter called WCT indi-
ces) are normalized difference water index (NDWI), 
normalized difference vegetation index (NDVI), and 
normalized difference turbidity index (NDTI), which 
correspond to water/wetness, vegetation, and turbid-
ity/soil cover types of a wetland respectively. We 
selected NDWI instead of the more robust modified 
normalized difference water index (MNDWI) so that 
we could use 10  m spatial resolution bands (green 
and NIR) of Sentinel-2 instead of the SWIR bands 
with a coarse (20 m) spatial resolution. We intend to 
develop a wetland monitoring algorithm with widely 
available VNIR (visible and near-infrared) bands. The 
major steps of our algorithm are shown in Fig. 2.

In any pixel of satellite imagery of a wetland, all three 
constituents- water, vegetation, and turbidity, might be 
present. Such pixels are known as mixed pixels. The 

Fig. 2   Methodology for WCT demarcation. See Table S1 for 
indices list. NDWI, NDVI, NDTI are the WCT indices. See 
Table 1 for classes and codes of WCT indices
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WCT indices account for the presence and relative pro-
portion of such constituents in mixed pixels, and it is 
possible to assign a unique WCT class for each pixel. 
To preserve the information about the relative propor-
tion of each constituent in the indices, we classified the 
positive values of the indices into four classes with equal 
intervals of 0.25 and assigned a unique key to each class 
(Table 1). Accordingly, if there is a pixel with low wet-
ness (W1) and medium turbidity (T2), the WCT class 
for that pixel would be W1T2. If low vegetation cover 
is also present in the same pixel, the pixel would be clas-
sified as W1V1T2. Further, since all three indices range 
between (−) 1 and (+) 1; the positive values represent 
the presence of the constituent and a higher density of 
the constituent results into higher index values. For 
example, a pixel with an NDVI value of 0.8 (i.e., V4 
class) will have a denser vegetation cover than a pixel 
with a value of 0.2 (i.e., V1 class).

Using four classes of indices instead of single 
threshold value to identify the cover types, we have 
provided an algorithm with the flexibility to produce 
dynamic WCTs. For example, if the vegetation cover 
in a pixel with medium wetness (W2) and low veg-
etation (V1), i.e., cover type W2V1, increases to V3 
class, a new cover type W2V3 will result, reflecting 
the dynamic behaviour of that pixel. Furthermore, 
since the WCTs result from the underlying biophysi-
cal properties of wetlands and are estimated using 
indices, a given WCT class at some other time or 
some other place will represent similar underlying 
conditions. Therefore, the WCTs are invariant to spa-
tiotemporal changes.

To understand the applicability of the WCT algo-
rithm for the assessment of temporal dynamics of the 
wetlands, we chose three seasons—post-monsoon 
(October–November), spring (February), and pre-
monsoon (May) and calculated the WCTs for 3 years 
namely, 2018–2019, 2019–2020, and 2020–2021. 
Further, we used Landsat-8 and Sentinel-2 surface 

reflectance datasets available in the GEE data reposi-
tory and took median values of all available cloud-
free datasets for  each season. For wetland boundary 
delineation, we have used SRTM DEM (30  m) and 
Landsat series datasets and applied the DEM-based 
topographic index method (Sinha et  al., 2017) and 
multispectral data-based time-series wetness-index 
method (Singh & Sinha, 2022) to extract the wetland 
boundaries in a GIS environment automatically. For 
Nal Sarovar and Chilika Lagoon, the boundaries were 
further cleaned using on-screen digitisation.

To evaluate the inter-sensor applicability of the WCT 
algorithm, we calculated the WCTs using Landsat-8 and 
Sentinel-2 datasets for all three wetlands. For Chilika 
and Nal Sarovar, we used Sentinel-2 imageries acquired 
on 1 Feb. 2021 and Landsat-8 imageries acquired on  
2 Feb. 2021 and 1 Feb. 2021, respectively. For Kaabar 
Tal, we used Sentinel-2 imagery of 16 Feb. 2021 and 
Landsat-8 imagery of 18 Feb. 2021.

For validation of WCT classes, field data were col-
lected on 3 and 4 Mar. 2020 from Kaabar Tal and on 7 
and 8 Mar. 2020 from Chilika. The dates for field vis-
its were selected to account for the Sentinel-2 acquisi-
tion date of 3 Mar. 2020 for both wetlands. The WCT 
classes were created for both wetlands using the Sen-
tinel-2 imagery and then used for field validation. We 
also used the Parrot SEQUOIA multispectral camera 
to acquire in-situ data in VNIR bands red, green, near 
infrared and red edge at 1.2 MP and RGB image at 16 
MP. The camera has an automatic radiometric cali-
bration which provides the absolute reflectance meas-
urements of the earth’s surface features. The WCTs 
were also created from the imageries acquired from 
the multispectral camera and compared with the sat-
ellite-derived WCTs. Field locations were limited to 
major clusters due to logistic constraints and naviga-
tional issues across the wetlands.

We have implemented the WCT algorithm in 
Google Earth Engine (GEE) and have also developed 
ArcGIS tools to calculate the WCTs of any given 
wetland automatically. The GEE tool only requires 
the wetland polygon and desired time period as user 
inputs. The ArcGIS tool requires wetland polygon as 
shapefile and three multispectral bands green, red, 
and NIR in raster format. The GEE script and the 
ArcGIS tools are available on GitHub (https://​github.​
com/​manud​eo/​Wetla​nd-​Cover-​Types) for public use. 
Since the scripts and tools are editable, the users can 
change the WCT indices as per the assessment goals. 

Table 1   Defining unique keys for WCTs

Thresholds Unique keys

Range Class NDWI NDVI NDTI

0.0–0.25 Low W1 V1 T1
0.25–0.50 Medium W2 V2 T2
0.50–0.75 High W3 V3 T3
0.75–1.0 Very high W4 V4 T4
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Further details about scripts and tools are provided in 
the Supplementary Information.

Results

Kaabar Tal

The WCTs of the Kaabar Tal for three seasons, 
namely, post-monsoon, spring, and pre-monsoon for 
3 years, 2018–2019, 2019–2020, and 2020–2021 are 

shown in Fig.  3. Vegetation is the most dominant 
cover type in all seasons and for all years (WCT—
V’s), except for the pre-monsoon of 2019, when VT 
types are prevalent. Open-water types (W’s) are gen-
erally negligible except for some patches in the post-
monsoon period of 2019 and 2020 and the spring of 
2020 and 2021. Field visits suggest that the central 
part of the wetland has water depths ranging from 
a few centimetres to 2  m. However, most of these 
regions are covered with dense aquatic vegetation, 
which is evident in WCTs. The VT types correspond 

Fig. 3   Seasonal WCTs of Kaabar Tal for period 2018–2021. PoM: post-monsoon; Sp: spring; PrM: pre-monsoon
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to vegetation with bare soil in dry areas and with tur-
bid water in wet regions of the wetland. Along the 
margins of the wetland, the VT WCTs correspond 
to the regions which are now being used for agricul-
tural purposes (e.g., pre-monsoon WCTs). The water 
spread area of this wetland is highly dynamic, and it  
is very common to find aquatic vegetation such as 
lotus in seemingly dry regions. Therefore, it is chal-
lenging to classify vegetation cover between aquatic 
and terrestrial based on WCTs only.

Apart from the water spread area dynamics, all 
WCTs also exhibit transformation from one type to 
another at a seasonal scale (Fig. 4). In Kaabar Tal, 
all seasons are dominated by vegetation-related 
WCTs. Between post-monsoon and spring, most of 
the V1 type (low vegetation) gets transformed into 
medium (V2/V2T1) or high (V3) vegetation cover 
types. Medium vegetation type (V2) occupies the 
largest area in all three seasons. Figure  4 provides 
a critical observation that even though the area of a 

given cover type seems non-variant across seasons 
(e.g., V3 in post-monsoon and spring), the cover 
types are not fixed in space, and their location var-
ies significantly across the wetland. For example,  
the total area covered by V3 in both post-monsoon 
and spring seasons is similar (~13 km2), but only a 
fraction of V3 covered region of post-monsoon is 
stable in spring; the rest is attributed to the trans-
formation from other WCTs such as V1, V2, V1T1,  
and V2T1. Therefore, it is critical to map these  
transformations rather than focusing on the change in 
the net area of a cover type for developing manage-
ment strategies for such highly dynamic wetlands.

When the wetland system moves from a wet (post-
monsoon) to a dry (pre-monsoon) regime, a reduction 
in vegetation cover is expected and can be observed 
by tracking dry region WCTs such as V1T1 and 
V2T1. The fully vegetated regions in post-monsoon 
(Vs) would normally transform into VT in spring and 
pre-monsoon. Contrary to this normal behaviour, the 

Fig. 4   Seasonal transformation of WCTs in Kaabar Tal in year 2020–2021. Numbers are representing areas of corresponding WCT 
in km2
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Kaabar shows a conversion of V1T1 of post-monsoon 
to V3 of spring, which is attributed to agricultural 
practices in the wetland area (see margins in post-
monsoon 2020 and spring 2021 in Fig. 3).

Although the WCTs from the handheld camera 
(Parrot SEQUOIA) are of much higher resolution 
(10−3 m versus 101 m), in general, they are in agree-
ment with the satellite-derived WCTs (Fig. 5). Open 
water is correctly characterised as W classes of WCTs 
in both imageries. However, in some areas, aquatic 
vegetation is classified as Vs in satellite imagery 
and not as WVs (Fig. 5(d)) and this reflects the sen-
sors’ limitation to capture water depth variations. 
Problems with high-resolution multispectral image-
ries from SEQUOIA are also evident where noise 
(e.g., shadows) is also classified as WCTs (as turbid 
WCT and WTs). However, a high-resolution sensor 
is also able to capture the variability of the wetland 
cover in greater detail, as evident by diverse WCTs 
classes in multispectral data from the handheld cam-
era (Fig. 5(b2) and (c2)).

Chilika

The Chilika receives a continuous inflow of fresh water  
from its northern catchment and saline water through 
its mouth into the Bay of Bengal to the east. There-
fore, this wetland has no issues with water availabil-
ity, which is evident from the water-dominated WCTs 
in all seasons and for all years (Fig. 6). However, the 
freshwater inflow in the northern region also brings 
sediments with them, resulting in plumes of turbid 
water (WT types), mostly in the northern region. The 
same northern part also consists of highly dense emer-
gent vegetation (reeds), captured here as V-type wet-
land covers. The central and north-western regions are 
also rich in submergent vegetation, but Sentinel-2 sen-
sors could not map this. The northern region (inlets of 
fresh water) and the eastern linear region towards the 
sea display the most dynamic WCTs. In the northern 
part, the extent and intensity of vegetation (V types) 
in the post-monsoon season are increasing with time. 
Turbid water cover (W1T1) is also growing with 
time for the same season. Turbid WCTs are primar-
ily absent in spring but reappear in pre-monsoon, with 
pre-monsoon of 2019 showing an extensive coverage 
of turbid WCT (Fig.  6). Barring the northern, east-
ern, and near-shore regions, other regions are not so 
dynamic in terms of WCTs except for W types. The 

WCTs corresponding to dry regions covered with veg-
etation (VT) are mostly present in small islands and 
close to the shore of the wetland. Aquatic vegetation-
related WCTs (WV) are spread in different regions in 
different seasons and do not exhibit a stable pattern, 
in contrast to the V types in the north region. This is 
because the V types are emergent vegetation, and WV 
types are floating vegetation covers.

Although open water is the primary cover type of 
this wetland, its depth varies at a seasonal scale, and 
so do the W cover types (Fig. 7). In the post-monsoon 
season of 2020, the high-water cover type (W3) is 
the most dominant WCT, and 15 km2 of very high-
water cover type (W4) is also present in this season. 
However, W4 is absent in the other two seasons. Fur-
ther, W3 is significantly reduced in spring and disap-
pears in pre-monsoon. Therefore, the monsoon is also 
controlling this wetland significantly, even though 
it has perennial water sources. The WV cover type 
occupies ~ 19 km2 of the area in post-monsoon 2020, 
increasing to ~33 km2 in spring 2021 and ~32 km2 in 
pre-monsoon 2021. However, it should be noted that 
only a small fraction of the WV type of post-mon-
soon is retained in spring, and most of the WV type 
of spring is transformed from the W types of post-
monsoon. A similar relationship is observed for WV 
type between spring and pre-monsoon. However, in 
the case of V2 and V3, most regions do not change 
with the season. The turbid cover type occupied a 
very high area of ~ 64 km2 during the post-monsoon 
period of 2020, which was reduced to only 1 km2 in 
spring 2021 but increased again to ~ 17 km2 in pre-
monsoon 2021.

The WCTs derived for the Chilika wetland were 
validated by field visits (Fig. 8). Like Kaabar Tal, the 
overall WCT pattern in this wetland generated from 
the imageries captured from a high-resolution hand-
held camera matches with the moderate resolution 
WCTs of Sentinel-2. For example, a large patch of sub-
merged vegetation in very shallow water and floating 
algal growth were observed in the wetland (Fig. 8(b1)), 
which was classified as WCT of Vs and WVs in the 
satellite imagery (Fig. 8(a1)) as well as in the handheld 
multispectral imagery (Fig. 8(b2)). Open water-related 
WCTs dominate this wetland (Fig.  8(a)), which is 
also validated from field observations (e.g., Fig. 8(b)). 
In the northern region, a large patch of V-type WCTs 
was mapped in all years (Fig. 6) represented by emer-
gent vegetation (Fig. 8(d1)). Also, these regions receive 
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freshwater inputs from terrestrial systems, making the 
water highly turbid and visible in open water regions 
(Fig.  8(d1)). However, while the high-resolution 

handheld camera captured this turbid WCT (Fig. 8(d2)), 
Sentinel-2, due to moderate spatial resolution, could not 
sense it and classified these regions as WV type.

Fig. 5   Field validation—WCT classes of Kaabar Tal on 3 
Mar. 2020 based on Sentinel-2 (a), true colour composites (b1 
and c1) and corresponding WCTs (b2 and c2) using a handheld 

VNIR camera. The wetland is rich in submergent and emer-
gent aquatic vegetations (d) which got classified as V and WV 
WCTs in both satellite as well as in-situ imageries (a2 and c2)
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Nal Sarovar

Located in a semi-arid region, the Nal Sarovar displays 
rapid seasonal changes in wetland cover types (Fig. 9). 
A rainfall deficit year 2018 (India-WRIS, 2022) resulted 
in very drastic change in WCTs for this wetland when 
it remained completely dry in all three seasons except 
for a very small open water patch (1.9 km2) in the post-
monsoon. For the other 2  years, i.e., 2019–2020 and 
2020–2021, the rainfall was surplus, resulting in large 

open water areas in the wetland in post-monsoon and 
spring seasons and a relatively wetter condition in pre-
monsoon. In the post-monsoon, open water WCTs can 
be observed in the northern and southern parts of the 
wetland. However, such WCTs are limited to the north-
ern parts only in the spring. In pre-monsoon, most parts 
of the wetland remain dry and transform into VT type, 
with some W and V types in the north-central regions.

The seasonal transformation of WCTs for a recent 
period (2020–2021) is illustrated in Fig.  10. In the 

Fig. 6   Seasonal WCTs of Chilika Lake for period 2018–2021. PoM: post-monsoon; Sp: spring; PrM: pre-monsoon
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post-monsoon period of 2020, about two-thirds of 
the wetland was covered by V-type WCT, and only 
about 5.5% of wetland had open water. In the spring 
of 2021, most of the V types were transformed into 
VT, and this WCT covered 55% of the wetland area. 
Most parts of the wetland with low water cover 
(W1) in the post-monsoon period are transformed 
into other WCTs in spring; however, medium water 
cover (W2) remained unchanged between these two 
seasons. Further, about 81% of the wetland is cov-
ered by VT type in pre-monsoon season, and the 
open water (W) class covers only 1 km2 of the wet-
land area in sharp contrast to ~ 14 km2 in spring. 
Some parts of the wetland with V1 type show an 
interesting transformation between wetter and drier 
seasons—they are getting converted into higher veg-
etation classes V2 and V3. This implies that with 
increasing drying, the vegetation cover of these parts 
is getting denser. Water cover with turbidity (WT) 

is negligible in all three seasons. Aquatic vegetation 
(WV) cover reduces to half in spring with respect 
to post-monsoon and then to less than one-third of 
spring in pre-monsoon. Most parts covered with 
W1V1 class during post-monsoon are converted to 
V1 in spring, and then to V2 in pre-monsoon.

Discussion

Applicability of WCTs to understand wetland 
complexities

Wetlands are heterogeneous landscapes with vari-
ous biotic and abiotic components in the water body 
and on the water surface, making mapping WCTs a 
complicated task (Dronova et al., 2011; Mozumder 
et  al., 2014; Wright & Gallant, 2007). The surface 
covers can be composed of a mixture of classes in 

Fig. 7   Seasonal transformation of WCTs in Chilika Lake in year 2020–2021. Numbers are representing areas of corresponding 
WCT in km2
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space and may have various transitional states in 
time (Dronova et al., 2015). Therefore, the dynamic 
nature of wetlands warrants evaluation techniques 
that can account for rapidly transforming landscapes 
within a wetland. Methods such as ISO-clustering 
using multispectral indices and Forel-Ule colour 
scale can generate distinct patches of wetland cov-
ers as illustrated for Chilika (Fig.  11). However, 
the unsupervised classification techniques such as 
ISO-clustering result in random classes (Fig. 11b), 
and the underlying biophysical processes responsi-
ble for such classes cannot be ascertained without 
extensive in-situ measurements. The Forel-Ule col-
our scale method works only with open water sys-
tems and fails with other cover types. For example, 
the northern parts of the Chilika, otherwise cov-
ered with vegetation, are classified as open water 
on the Forel-Ule scale (Fig.  11c). The proposed 
WCT scheme can not only identify distinct classes 

as in  ISO-clustering and Forel-Ule colour scheme, 
including the non-water cover types, but it also pro-
vides crucial information about the underlying bio-
physical processes (Fig. 11d).

Several workers have used the WCT approach 
before for wetland monitoring and management but in 
a rather limited context. For example, Hu et al. (2021) 
and Zhang et al. (2021) have recently used the WCT 
approach to evaluate wetland dynamics. However, the 
WCTs defined by Hu et  al. (2021) mainly represent 
the geomorphic characterisation of wetlands and not 
the wetland cover types. Similarly, the classes defined 
by Zhang et al. (2021) are a combination of wetland 
cover and geomorphic settings. Further, a common 
limitation of most of the previous studies on WCT 
(e.g., Dronova et  al., 2011, 2015; Fang et  al., 2016; 
Mozumder et al., 2014; Trama et al., 2009) is that the 
WCT classes are static, and there is no mechanism to 
include the transitional classes. Although Mozumder 

Fig. 8   Field validation—WCT classes of Chilika Lagoon (3 Mar. 2020) based on Sentinel-2 (a), true colour composites (b1, c1, and 
d1) and corresponding WCTs (b2, c2, and d2) using a handheld VNIR camera. See text for explanation of images in inset
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et  al. (2014) had a transitional class, it included a 
mixture of different classes, and therefore, did not 
provide any information about the biophysical pro-
cesses responsible for specific transitions. The WCT 
approach of Dronova et al. (2015) deals with dynamic 
transition of classes by defining different transition 
pathways over a time period. However, this approach 
also does not account for new transitional classes, and 
since the classes are defined over a period, it is chal-
lenging to evaluate seasonal dynamics.

Further, most of these schemes are designed for a 
single wetland and therefore they are site-specific. For 
example, Fang et al. (2016) and Mozumder et al. (2014) 
used decision tree classification with site-specific thresh-
olds to define WCT classes. Therefore, it is difficult to 
apply these approaches to a regional/basin scale encom-
passing numerous wetlands. In the proposed approach in 
this paper, transitional classes are accounted for by keep-
ing the WCT classes dynamic. For example, if the veg-
etation cover over a wetland increases from low to very 

Fig. 9   Seasonal WCTs of Nal Sarovar for period 2018–2021. PoM: post-monsoon; Sp: spring; PrM: pre-monsoon
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high, a new class V4 will automatically replace V1 with-
out changing the algorithm. Further, since the classes are 
defined using equal intervals of WCT indices without 
calibrating them to a particular wetland, the algorithm 
can be applied to any wetland. A wide applicability of 
the proposed algorithm has been demonstrated in this 
paper for three very different wetland systems of India. 
If needed, this algorithm can be calibrated to a given wet-
land by changing suitable thresholds to the WCT indi-
ces. Therefore, the proposed algorithm can be used as 
a generalised approach for mapping WCT for a specific 
wetland, and therefore, it will serve as a powerful tool for 
monitoring wetland health.

Inter‑sensor comparison of WCTs

The proposed WCT classification is designed to be 
independent of the imaging sensor, i.e., the method can 
be applied with any sensor providing images in VNIR 

bands—green, red, and NIR. However, wetlands pos-
sess a steep environmental gradient, resulting in short 
ecotones (Zomer et  al., 2009). This implies that eco-
logical and hydrological characters might change rap-
idly within a few metres, rendering the WCT classifi-
cation method dependent on the spatial resolution of 
the imaging sensor (e.g., field validation Figs.  5 and 
8). Therefore, to understand the effect of spatial resolu-
tion of the sensors, we have applied the method on two 
widely used and freely available multispectral satel-
lite datasets—Landsat-8 (30 m spatial resolution) and 
Sentinel-2 (10  m spatial resolution for VNIR bands). 
We observed that for large WCT patches, results from 
both the sensors are similar (Fig. 12). However, in the 
regions of high variability, Sentinel-2 identifies a larger  
number of WCTs compared to those from Landsat-8. 
Similar results were reported by Sánchez-Espinosa and 
Schröder (2019) when they compared the suitability 
of Landsat-8 and Sentinel-2 for LULC classification 

Fig. 10   Seasonal transformation of WCTs in Nal Sarovar in year 2020–2021. Numbers are representing areas of corresponding 
WCT in km2
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in a wetland environment. Their study showed that 
Sentinel-2 performed better than Landsat-8 in com-
plex areas. However, both sensors performed similarly 
for areas with large patches of similar LULC type. 
This was attributed to the fact that a single pixel in a 
medium-resolution Landsat image (30 m) might con-
sist of a mixture of various wetland covers, but only 
the dominant type gets captured by the sensor. We 
observed a similar behaviour when we compared the 
WCTs obtained by a handheld multispectral camera 
in the field with those based on Sentinel-2 imagery 
(Figs.  5 and 8). When there are large WCT patches, 

pixels are pure and not mixed, and there is no serious 
impact of spatial resolution, as seen in Fig. 12. Mixed 
pixels occur because of the low resolution of the imag-
ing sensor where multiple ground objects are combined 
in a single pixel or when the ground object is a homog-
enous mixture of various materials (Keshava, 2003; 
Shimabukuro & Smith, 1991). Therefore, the spectra 
of a single pixel contain a record of various materi-
als (Quintano et al., 2012). Furthermore, although the 
radiometric characteristics of Sentinal-2 and Landsat-8 
are similar, they are not identical (Mandanici & Bitelli, 
2016). Also, they have different heights and azimuth. 

Fig. 11   Comparison of various methods for waterbody sur-
face dynamics assessment. a A standard FCC of Chilika Lake. 
b ISO-clustering of three WCT indices—NDWI, NDVI, and 

NDTI. c Forel-Ule colour scales. d WCTs. All are based on 
same Sentinel-2 data dated 1 Feb. 2021
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Fig. 12   Inter-sensor (S2: Sentinel-2, L8: Landsat-8) comparison for all three wetlands KT (Kaabar Tal), CL (Chilika Lake), and NS 
(Nal Sarovar)
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Therefore, identical results from Sentinel-2 and Land-
sat-8 should not be expected, and in any time series 
WCT study, only one sensor should be used.

Utility of WCT for wetland management and 
long‑term monitoring

Wetlands are complex and dynamic ecosystems 
and possess various abiotic and biotic connectivity 
with other landscape elements (Cohen et  al., 2016; 
Thorslund et al., 2017). They are well known for their 
species richness, and their anthropogenic degradation 
makes them a conservation priority in most landscapes 
(Catallo, 1993). Usually, wetland restoration efforts 
aim to improve the quality of habitats, support spe-
cies’ resilience to climate and land cover changes, and 
restore ecological and hydrological services (Taddeo 
& Dronova, 2018). Identification of a suitable spatio-
temporal scale for wetland monitoring is necessary 
for planning and executing the management strategies 
(Steinbach et al., 2021). This can be achieved by cre-
ating long-term datasets. The multi-decadal Landsat 
series satellite imageries can be used to generate such 
long-term datasets. Long-term and continuous moni-
toring can help wetland managers to plan the restora-
tion efforts and evaluate their impact. In this context, 
it is essential to (a) track the usual WCTs of a wetland 
and their spatio-temporal trend, and (b) look for new 
WCTs as and when they develop to understand their 
significance in terms of wetland health. The proposed 
WCT approach can be used to realise such wetland 
monitoring goals for a comprehensive wetland man-
agement and restoration.

For example, in the case of the Chilika, all possible 
WCTs are shown in Fig.  13 encompassing 3  years, 
namely, 2018–2019, 2019–2020, and 2020–2021. We 
noted some specific trends associated with different 
WCTs. There are WCTs such as V1T1 and W1 that 
follow the same trend in all years. The WCTs V3 and 
V2T1 have changed their patterns in recent years, 
and T1 and W4 are only present in a few seasons and 
years. Therefore, with an extended assessment period, 

the characteristic WCTs of a given wetland can be 
identified and used as benchmarks for the health of 
that wetland. The sudden appearance of new WCTs 
and abrupt changes in the trends of characteristic 
WCTs can prove to be useful indicators of wetland 
health and can also guide the restoration approach.

In case of Kaabar Tal, it was observed that the 
water-related cover types of the wetland, i.e., Ws are 
mostly negligible in all three seasons (Figs. 3 and 4). 
Whenever present, they are readily transformed into 
another WCT in the next season. It implies that this 
wetland is hydrologically highly distressed—a crucial 
conclusion from the time-series WCT assessment. 
A previous study on Kaabar noted a statistically sig-
nificant decreasing trend of wetness and a statistically 
significant increasing trend of vegetation cover in this 
wetland, and this was attributed to intensified agri-
cultural activities (Singh & Sinha, 2021a). To assess 
the tipping point when such wetlands are transformed 
from wetness dominated system to vegetation domi-
nated system, the time-series WCT assessment using 
archival Landsat satellite series can be extremely use-
ful. Such analysis could have a significant impact on 
designing management and restoration strategies of 
this highly water-stressed wetland which has been 
recently designated as a Ramsar site.

Further, the WCT assessment of Nal Sarovar 
shows high vegetation growth in its central region 
after the monsoon season (September–October), 
which could be an algal bloom. During the same sea-
son, the extent of the open water area is the highest 
in the whole year. Therefore, the monsoon-controlled 
runoff into the wetland is responsible for the spatial 
distribution of WCTs. The increment in vegetation 
area and vegetation-related WCT implies that the 
runoff reaching the wetland after monsoon rainfall 
is nutrient-loaded which encourages the growth of 
biomass. This might increase the wetland’s BOD 
(biological oxygen demand), and therefore, stress-
ing its ecosystem. Further, it is a turbidity-dominated 
wetland, possibly because of the small aquaculture in 
its vicinity. Turbidity-related WCTs are observed for 
an extended period from January to June. Therefore, 
similar to the other two wetlands, the monthly WCTs 
can help in understanding the wetland’s seasonal 
biotic and abiotic dynamics, and to design relevant 
season-specific management practices.

Fig. 13   A WCT-wise trend assessment for Chilika Lake. Sea-
sonal cyclicities are evident in most of the WCTs. A deviation 
from a predicted behaviour can be an indicator of a change in 
underlying biophysical properties of a wetland

◂
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Conclusions

We have developed a multispectral imagery-based mon-
itoring and change detection method for mapping and 
monitoring wetland covers. The algorithm to map the 
WCT classes is implemented in the GEE environment 
and can be applied to any wetland. We have also devel-
oped GIS tools to automatically calculate WCTs for any 
sensor-producing imagery in VNIR bands. The specific 
conclusions drawn from this work are as follows:

1.	 Unlike the popular methods such as ISO-clustering 
and Forel-Ule Colour schemes which either gener-
ate random classes or work for open water systems 
only, our approach can be applied to a wide vari-
ety of settings and can provide crucial information 
about the underlying biophysical processes.

2.	 The developed algorithm generates the WCT 
classes that are stable in time and space. This 
means that the same WCT class represents the 
similar underlying biophysical property of the 
wetland across space and time, making it appro-
priate for wetland monitoring and change detec-
tion. Nevertheless, the number of the WCT 
classes is dynamic and can account for any new 
cover type emerging in a wetland by automati-
cally adding a new WCT class.

3.	 Our results clearly demonstrate the control of local  
hydrogeomorphic conditions on the spatial and 
temporal distribution of WCTs, and therefore, high-
lights the complexities of wetland environments. 
For example, the lack of water-related WCTs at 
Kaabar is indicative of its hydrologically stressed 
condition whereas the frequent inter-transformation 
of water and vegetation-related WCTS at Chilika 
indicates a very dynamic system. The Nal Saro-
var displays a significant increment in vegetation- 
related WCT in different seasons suggesting  
the influx of nutrient-loaded runoff.

4.	 An important finding is that whilst our proposed 
WCTs are independent of the imaging sensor as 
long as they provide data in VNIR bands. How-
ever, the spatial resolution of different sensors 
can create some differences primarily because of 
mixed pixels. It is therefore recommended to use 
data from one sensor only for time series analysis 
for reliable results.

It is important to note that the proposed algorithm 
uses three commonly used multispectral indices (NDVI, 
NDWI, NDTI), and therefore, all limitations associ-
ated with these indices are also associated with the 
generated WCTs, such as misidentification of dry 
soils as turbid class and ambiguity between aquatic 
vegetation and terrestrial vegetation. However, such 
issues can be rectified by using supporting informa-
tion from field validation and the SAR datasets as 
and when required. For example, SAR datasets such 
as the proposed NISAR (NASA-ISRO SAR) mission 
(dual-frequency S and L bands) can be used to pre-
classify wet and dry regions since its L-band can pen-
etrate vegetation cover.

In its current form, the algorithm is best suited for 
the rapid assessment and monitoring of a large num-
ber of wetlands, including several Ramsar sites, for 
country-scale wetland health assessment projects. It is 
hoped that several case studies on wetlands from differ-
ent hydrogeomorphic settings across the globe would 
benefit from this approach. Further refinement of this 
approach should be possible using high-resolution 
hyperspectral data from airborne missions that could 
provide specific information about water quality param-
eters which could be integrated with wetland cover 
types.
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