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Abstract Tropospheric ozone (O;) is a long-range
transboundary secondary air pollutant, causing signif-
icant damage to agricultural crops worldwide. There
are substantial spatial variations in O; concentration
in different areas of India due to seasonal and geo-
graphical variations. The Indo-Gangetic Plain (IGP)
region is one of the most crop productive and air-
polluted regions in India. The concentration of tropo-
spheric O; over the IGP is increasing by 6-7.2% per
decade. The annual trend of increase is 0.4+0.25%
year™! over the Northeastern IGP. High O; concen-
trations were reported during the summer, while they
were at their minimum during the monsoon months.
To explore future potential impacts of O; on major
crop plants, the responses of different crops grown
under ambient and elevated O; concentrations were
compared. The studies clearly showed that O; is an
important stress factor, negatively affecting the yield
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of crops. In this review, we have discussed yield
losses in agricultural crops due to rising O5 pollu-
tion and variations in O; sensitivity among culti-
vars and species. The use of ethylene diurea (EDU)
as a research tool in assessing the losses in yield
under ambient and elevated O levels also discussed.
Besides, an overview of interactive effects of O; and
nitrogen on crop productivity has been included. Sev-
eral recommendations are made for future research
and policy development on rising concentration of O,
in India.

Keywords Tropospheric O; - Crop sensitivity -
Yield - Interactive effects - Antioxidants -
Photosynthates

Introduction

Ground-level ozone (O;) is a secondary, short-lived
air pollutant (Parrish et al., 2012; Proietti et al., 2021)
formed by the photochemical oxidation of NOx in the
presence of precursor gases such as carbon monoxide,
methane, and volatile organic compounds (Simpson
et al., 2015). Ozone is a strong oxidant molecule and
plays a crucial role in tropospheric chemistry by con-
trolling the oxidation processes (Kunchala et al., 2021).
The lifetime of tropospheric O; varies between~5 and
30 days, which depends on season and altitude, for
instance, the lifetime of Oj is longer in winter season
and upper troposphere and vice versa (Parrish et al.,
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2012). Similarly, concentrations of O5 are high in trop-
ical and subtropical regions as it is naturally appropri-
ate environment (low humidity, high temperature, and
high light intensity) for O; formation (Eghdami et al.,
2022; Ziemke et al., 2019).

Tropospheric O; is a third leading greenhouse gas
in terms of radiative forcing (Mickley et al., 2001),
which affects climate change (IPCC, 2013) and is con-
sidered the most harmful air pollutant for crops, veg-
etation (Mills et al., 2018b; Sharps et al., 2021; Yadav
et al., 2021a), biodiversity (Agathokleous et al., 2020)
and ecological systems (Liu et al., 2021). Despite the
implementation of air quality legislative standards to
control the precursor’s emissions worldwide (Sicard
et al., 2016; Simon et al., 2015), current O; concen-
trations are still high and can suppress agricultural/
horticultural productivity in many countries around
the world (Cailleret et al., 2018; Mills et al., 2018a;
Proietti et al., 2021). The O; pollution level has begun
to decline mostly in developed countries in North
America and Europe, but it continues to rise in rap-
idly developing countries like China, India, and Brazil
(Kunchala et al., 2021; Mills et al., 2018a; Turnock
et al., 2018). A report of China suggested a trend
of 0.4 ppb per year increase of O, over East Asia
(Chang et al., 2017). Similarly, a 30% O; increase was
observed from 2013 (47.5 ppb) to 2019 (61.8 ppb) at
243 Chinese monitoring sites (Lu et al., 2019; Yuan
et al., 2021).

In India, a study by Lal et al. (2012) assessed the
pattern of O; concentration changes over the north-
eastern Indo-Gangetic plains (IGP) region and
reported the largest escalation of 6-7.2% per decade
with 0.4+0.25% per year, which shows the severity
of O, risk over the IGP region compared to global O,
pollution rise. The spatiotemporal variabilities in O
concentration over different parts of India have been
investigated by many researchers and ascribed to sea-
sonal and geographical variations, which are further
correlated with meteorology (Girach et al., 2017;
Nair et al., 2018; Singh & Agrawal, 2017). The pat-
tern of O; concentration shows 40-60 ppb (higher)
range during the pre-monsoon/summer season and
15-20 ppb (lower) range during the monsoon months
over the northern, western, and peninsular regions of
India (Kunchala et al., 2021). The high O; concentra-
tion over the IGP region of India is now a major con-
cern as it is posing a threat to agricultural productiv-
ity (Mukherjee et al., 2020; Singh & Agrawal, 2017).
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The severity of O; impact on plants is attributed to
the amount of uptake and its reaction ability with cel-
lular components to generate reactive oxygen species
(ROS) (Sicard et al., 2020; Yadav et al., 2019). The
O; nearby the plant enters leaves through the stomata
during gaseous exchange, reaches apoplast quickly
and reacts to produce ROS such as superoxide, hydro-
gen peroxide, hydroxyl radical, and singlet oxygen
(Janku et al., 2019). The Os-induced ROS further
reacts with plant cell organelles and then initiate’s
damage at the molecular, biochemical, and physiolog-
ical levels and accelerates leaf senescence, resulting
in a reduction of crop yield. In defense response, O,
exposed plants start additional production of enzy-
matic and non-enzymatic antioxidants, which play a
decisive role in maintaining cellular redox balance
by detoxifying the extra ROS molecules (Severino
et al., 2007; Yadav et al., 2019). The typical effect
of O; on sensitive plants induced by long-term expo-
sure is early senescence of leaves as a consequence
of reduction in photosynthate accumulation in plants
and alteration in partitioning of photoassimilates
between defense and yield products (Emberson et al.,
2018; Yadav et al., 2020a, b). The sensitive plant
species show specific O5 injury symptoms, which
can be visualized in the form of chlorotic spotting
(stipples), mottling, bronzing (red to brown minute
spots) and eventually leading to foliar necrotic lesions
(interveinal stipple on the adaxial side) (Feng et al.,
2014; Hayes et al., 2007; Ladd et al., 2011; Sicard
et al., 2021). A typical pattern of O; injury symptoms
is mostly localized on the upper leaf surface (Nali
& Lorenzini, 2021). The O; injury symptoms under
ambient conditions are reported in North and South
America, Europe, Asia, Australia, and Africa, which
suggests that the current situation of O; concentra-
tion is above its phytotoxic threshold across the world
(Krupa et al., 2001; Marco et al., 2020).

The damaging effect of O; on plants has been
extensively studied using a series of indices, mainly
divided into O; exposure-based indices such as
AOT40 (accumulated ozone over a threshold value
of 40 ppb), M12 (12 h mean O; concentration), M7
(7 h mean O; concentration), and O; flux-based indi-
ces such as PODyIAM (phytotoxic ozone dose above
a threshold flux of Y nmol m~2 s~!, parameterized for
integrated assessment modelling), and POD,SPEC
(species-specific phytotoxic ozone dose above a
threshold flux of Y nmol m™2 s™') (CLRTAP, 2017;
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Mills et al., 2018a, b, c; Yadav et al., 2021a). The O,
flux-based indices are relatively complex to obtain,
as they consider parameters such as leaf area index,
stomatal conductance, weather condition, vapour
pressure deficit, soil moisture, phenology, and veg-
etation characteristics of a plant (Pleijel et al., 2021).
Whereas, O; exposure-based indices are quite
straightforward and require only data of O; measure-
ments nearby the plants (Yadav et al., 2021a). Stud-
ies conducted on the basis of flux-effect relationships
(POD vs yield) and exposure-yield relationships
(AOTH40 vs yield) suggested that the stomatal O; flux-
based indices provide a more accurate assessment of
O; risk compared to exposure-based indices (Anav
et al., 2016; Proietti et al., 2021). Usually, O; sensi-
tive plants exhibit high stomatal O; uptake in leaves,
which results in visible symptoms on leaves. The O,
symptoms are more severe in older leaves than the
younger ones due to the higher accumulation of sto-
matal O; flux into leaves, leading to premature leaf
abscission (Sharps et al., 2021). Visible foliar damage
to O; may have economic consequences for crop pro-
duction and quality (Zhao et al., 2011, 2018).

Keeping these facts in mind, the main focus of this
review is to provide complete information on crop’s
sensitivity to O at the most fertile and O polluted
IGP region of India based on recent observational
methods and studies. For securing the productivity
of crops in such a scenario, an interactive mechanism
of O; and nitrogen on plant performance and several
future prospects are also discussed.

Indices for evaluating sensitivity of crops to O;
Stomatal O uptake (phytotoxic O; dose: POD)

Recent researches on crop response function against
O; are shifting from exposure (based on O; concen-
tration: AOT40) to stomatal flux (based on phytotoxic
O; uptake) approach, since it provides physiologi-
cally more robust information of O; risk assessment
(Paoletti et al., 2019; Pleijel et al., 2021). At present,
phytotoxic ozone dose (POD) represents a strong
improvement over AOT40 index. The strength of
POD approach is highlighted in the development and
application of models used for O; risk assessment of
crops in different regions of the world (Feng et al.,
2018; Harmens et al., 2018; Wu et al., 2016; Yadav

et al., 2021a). The O, risk assessment and variability
in different crop’s sensitivity are well described in the
Convention on Long-Range Transboundary Air Pol-
lution (CLRTAP, 2017). Sensitivity to O5 varied with
crop species due to the differences in uptake poten-
tial of O5 (Sharps et al., 2021). In addition, stomatal
conductance of leaves is greatly influenced by envi-
ronmental variables such as photosynthetically active
radiation, temperature, and air humidity which create
dissimilarities in stomatal O; uptake among crops,
species, cultivars, and even plants of the same vari-
ety due to the variability in accumulation of POD
(Hayes et al., 2019a; Paoletti et al., 2019; Yadav
et al., 2021a). Pleijel et al. (2021) have observed
that the variations in O; sensitivity were slightly
larger in inter-cultivar than the intra-cultivar with the
same input data of PODy for European wheat. And
so also, some important genetic changes among the
crop cultivars associated with genotypic differences
are responsible for the variations in O sensitivity in
wheat (Feng et al., 2016) and rice (Ashrafuzzaman
etal., 2017; Frei et al., 2012).

Recently, Yadav et al. (2021a) have observed O;
flux-response based modeled approach to identify the
critical levels and species-specific O; sensitivity of
four wheat cultivars under Indian climatic conditions
using DO;SE model (Deposition of Ozone for Stoma-
tal Exchange: a stomatal flux based model used for
assessing O; risk in crops and tree species) (Table 1).
Their study documents that the critical point of accu-
mulation of PODg was 0.284 mmol O; m™ for early
sown cultivars and 0.393 mmol O; m~ for late sown
cultivars, which are responsible for 5% yield losses. This
suggests that early sown cultivars are more sensitive to
Oj; as the critical condition comes at lower accumula-
tion of PODg than late sown cultivars. Besides, a sig-
nificant negative linear flux-effect relationship is also
assisted in identifying the sensitivity level of wheat
cultivars in future Oj situations by the slope coeffi-
cient comparison and allows quantitative rating of the
sensitivity (Harmens et al., 2018; Pleijel et al., 2014;
Wau et al., 2016; Yadav et al., 2021a).

Visible foliar injury
The O;-injury assessment is an easy, convincing, and
reliable method to determine the sensitiveness of a

species because the severity of pollutants may dif-
fer with different (sensitive/resistant) genotypes (Nali

@ Springer
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& Lorenzini, 2021). It is also helpful to detect areas
of high potential risk (Feng et al., 2014; Sicard et al.,
2021). Visible symptoms of O; are very easy to under-
stand by representatives of the media, policymak-
ers, and non-scientists. After exposure to ambient air
containing phytotoxic Os, plants start to change their
metabolism, which eventually leads to the formation of
visible injury (Krupa et al., 2001). Booker et al. (2009)
reported that the visible foliar O; symptoms in a sen-
sitive (18%) grape variety were more than in a resist-
ant variety (6%) under ambient O condition. The vis-
ible injury appears after the O; uptake through stomata
reaches a threshold (CLRTAP, 2017). Fernandes and
Moura (2021) assessed visible O; injury development
related to PODy in Astronium graveolens Jacq. and
confirmed the symptoms by using structural mark-
ers attributed to oxidative burst and hypersensitive
responses. European programs such as EU/ECE Inter-
national Co-operative Program (ICP-Forests and ICP-
Vegetation) and North American programs such as For-
est Health Monitoring Program have incorporated the
visible injury assessment records of forest plants, crops,
and semi-natural vegetation across Europe and the USA
to easily identify the O; sensitive species in natural field
conditions (Feng et al., 2014; Hayes et al., 2007). Some
other past reviews have ranked plant species sensitivity
to O5 according to Os-induced visible injury (Gerosa
et al., 2003; Hoshika et al., 2018; Vanderheyden et al.,
2001).

Despite O; being an important air pollutant in
India, visible injury assessment is not attempted
throughout the country. Under the exposure of
ambient+30 ppb O;, Singh et al. (2018b) observed
interveinal chlorotic and necrotic foliar spots in tested
14 Indian wheat cultivars and categorized them into
sensitive, moderately sensitive, and tolerant cultivars
on the basis of severity of foliar injury. A study on
two mung bean (Vigna radiata L.) cultivars, HUM-2
and HUM-6, exposed to elevated O; also depicted
the foliar injury in the form of interveinal chloro-
sis on adaxial portion of leaves. High foliar injury
in HUM-2 as compared to HUM-6 was found to be
related with greater production of ROS and little
investment of antioxidant defense machinery (Mishra
& Agrawal, 2015). Further, the percentage of injury
symptoms on leaves was found to be matched with
the yield losses in different cultivars. Chaudhary and
Agrawal (2013) also observed foliar O; injury in 6

@ Springer

clover (Trifolium alexandrinum L.) cultivars under
elevated O conditions and found that the magnitude
of O; injury symptoms directly corresponded with
sensitivity of different cultivars. Wardan and Bundel
were found the most sensitive cultivars to O3, show-
ing severe visible O; injury symptoms. The JHB-146
cultivar was intermediately sensitive with moderate
injury symptoms, while Fahli, Saidi, and Mescavi
cultivars were ranked under slightly O; sensitive cat-
egory due to least injury symptoms.

Cumulative stress response index

Variations in O; sensitivity among the genotypes of
wheat depend on changes in antioxidant defense capac-
ity (Feng et al., 2016). Stress-response related param-
eters such as accessory pigments, ROS-scavenging
metabolites/enzymes production rate (antioxidant), pho-
tosynthetic rate, and photoassimilates were measured
individually and the percentage changes in each param-
eter were aggregated and the values were arranged in
an order for the ranking of cultivar’s sensitivity to O,
(Singh et al., 2018b). Cumulative stress response index
(CSRI) can be used as an important tool to assess the
sensitivity of O; based on antioxidant defense response
of plants (Fatima et al., 2019). Singh et al. (2018b) cal-
culated CSRI for 14 Indian wheat cultivars and catego-
rized them into sensitive, intermediately sensitive, and
tolerant cultivars (Table 1). Yadav et al. (2019) dem-
onstrated that the O; sensitivity of wheat cultivars was
also attributed to detoxification of Oj-induced ROS
levels by enzymatic and non-enzymatic antioxidants.
The possible energy allocation trade-off between anti-
oxidative defense and photosynthate’s accumulation
under elevated O; levels was cultivar-specific response
that influenced cultivar’s productivity (Table 1). Fatima
et al. (2018) also suggested that defense mechanism of
each wheat cultivar against O; was different and thus
the sensitivity varied. Their study observed that high
O;-induced oxidative stress up regulated the enzymatic
antioxidants and phenylpropanoid pathway in modern
wheat cultivar (HD2987: O; sensitive cultivar). How-
ever, in PBW502 (intermediately O; sensitive culti-
var), enzymatic and non-enzymatic antioxidants were
enhanced, while in old cultivar (Kharchiya65: O, toler-
ant cultivar), only induction of non-enzymatic antioxi-
dants occurred to combat Oj stress.
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Variations in crop species sensitivity to O;

According to the existing information on crop sen-
sitivity to O, differences in O sensitivity are con-
siderably larger for global data sets that reflect local
and regional variations in O sensitivity. In other
words, sensitivity to O; of same crop species may
change across different continents, including tropi-
cal, subtropical, and temperate crop-growing regions.
However, the sensitivity of crops to O; is not much
explored in every region of the world, only few coun-
tries are working such as Europe, China, the USA,
India, and Japan. Some recent reports (Hayes et al.,
2019b; Sharps et al., 2021) also provide information
on African tropical crop responses to O, particularly
wheat (Triticum aestivum L.), sorghum (Sorghum
bicolor L.), finger millet (Eleusine coracana L.),
pearl millet (Pennisetum glaucum L.), and common
bean (Phaseolus vulgaris L.). All these crops have
shown visible O; effect on leaves. The accelerated
leaf senescence in African wheat cultivars was a main
symptom of high O, exposure (Sharps et al., 2021).

Wheat cultivar’s sensitivity to O; has increased
progressively over time due to selective breeding
plans for enhancing stomatal conductance and yield
(Biswas et al., 2008; Pleijel et al., 2006; Yadav et al.,
2020a). Moreover, variations in O; sensitivity of
cultivars of a single species used in different conti-
nents might be due to the changed selection criteria
in different locations, possibly because of suitability
in a particular climate. Asian (India, China) wheat
and rice cultivars are more sensitive than cultivars
of the USA and Europe (Emberson et al., 2009).
However, almost nothing is known about the sensi-
tivity of staple African crops to O; (Harmens et al.,
2019). Thus, it is suggested that critical levels of O;
for tropical crops are needed using stomatal O; flux
to take environmental conditions into account to fully
quantify the risk to food production (Sharps et al.,
2021). Likewise, sensitivity to O; may differ among
distinct crop species. For instance, the average annual
global yield losses due to stomatal O; uptake during
20102012 were 4.4, 6.1 and 7.1% for rice, maize
and wheat, respectively (Mills et al., 2018c). In recent
decades, many studies on agricultural crops over the
IGP region have shown the differential sensitivity
among cultivars and species and also identified the
main causes of O3 sensitivity which are compiled in
Table 1.

Losses in productivity due to tropospheric O;

The prevalent occurrence of high O; concentration
is accelerating the loss of crop and vegetable pro-
ductivity in the predominating fertile agricultural
regions of India (Mukherjee et al., 2020; Oksanen
et al., 2013). Investigations of crop yield losses due
to prevailing high O; concentration in the IGP region
have been attempted by many researchers with dif-
ferent approaches such as exposure-based experi-
ments (Fatima et al., 2019; Ghosh et al., 2020; Yadav
et al., 2020a), observation based studies (Kumari
et al., 2020; Sinha et al., 2015) and O; flux-based
and model-based approaches (Fischer, 2019; Sharma
et al., 2019; Yadav et al., 2021a) which are given in
Table 2.

Exposure-based study

A study in the Delhi NCR region found reductions
in rice yield by 6.3% using AOT40 index and 23%
by total AOTX (AOT40, AOT30, AOT25, AOT20,
AOT15, AOT10, AOTS5, and AOTO0), while only 2%
at M7 index (Saxena et al., 2020). The study also indi-
cated that among all the indices, AOT 40 is the most
suitable index for evaluating the impact of O; on rice
in Indian climate. Ramya et al. (2021) estimated the
responses of fifteen rice cultivars at a mean 50 ppb O,
for 30 days, and found average reductions of 0.62%
in test weight of 1000 seed and 23.83% in straw
weight compared to control (Table 2). This finding
further revealed intra-species variability in responses
of rice cultivars to elevated Oj; stress. At ambient O,
concentration, rice cultivar NDR 97 exhibited more
reduction in grain yield compared to Saurabh 950.
However, more decrement in test weight suggested
that number of grains was enhanced but weight of
grains decreased (Rai et al., 2010). Two rice culti-
vars, Shivani and Malviya dhan 36 treated at elevated
O; (ambient+20 ppb), showed yield reductions by
45 and 39%, respectively (Sarkar & Agrawal, 2012).
More reduction in yield of Shivani was ascribed to
greater utilization of photoassimilates in alleviat-
ing the harmful effects of O; rather than investment
in reproduction (Sarkar et al., 2015) (Table 2). Simi-
larly, Surabhi et al. (2020) reported Pusa Basmati-1, a
cultivar of rice, to be more susceptible due to greater
yield loss than Sarjoo-52 cultivar under ambient O,
exposure.
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Table 2 (continued)

Reference

Reduction in yield

Ozone

Method Duration of study
(year)

Crops/vegetables

Type of study

concentration

Kumari et al., 2020

15% in wheat

7.5% in rice
9-30%

2010-2015

AOT 40 index estimat-
ing the RYL

MOZART-2 global
model

Triticum aestivum L
and Oryza sativa L

Avnery et al., 2011

2000

Model based simulation Triticum aestivum L

study

Ghude et al., 2014

3.5% in wheat
2.1% in rice

2005

WRF-Chem model

Triticum aestivum L
and Oryza sativa L

Mills et al., 2018b

22% (AOT 40), 20%

2010-2012

EMEP MSC-W, chemi-

cal

Triticum aestivum L

(M7), 12% (PODy)

transport model

Sharma et al., 2019

21% in wheat
6% in rice
39%

2014-2015

WRF-Chem model

Triticum aestivum L
and Oryza sativa L

Schauberger et al., 2019

2008-2010

Chemical

Triticum aestivum L

transport models

In India, yield reductions in wheat due to surface
O; ranged from 11 to 20.7% (Mukherjee et al., 2020).
Recently, Mina et al. (2021) reported reductions in
grain yield by 9.2% and biomass by 11% in wheat cul-
tivar HD 2967 under elevated O; (ambient+ 70 ppb)
using FACE (free-air concentration enrichment). Ele-
vated O; (ambient+20 ppb) exposure led to decline
in grain weight by 27.3% and harvest index by 16.8%,
in HD2967 cultivar of wheat compared to ambient
O; using open top chambers (Ghosh et al., 2021)
(Table 2).

At identical O; concentrations, the variability in
crop yield losses was reported mainly due to the dis-
tinct sensitivity of cultivars to O; (Rai et al., 2010;
Singh et al., 2018b; Yadav et al., 2019). Modern and
old wheat cultivars showed distinct variations in yield
and quality parameters under elevated O;, where mod-
ern high yielding cultivar was found more susceptible
to O; compared to old low yielding cultivar (Yadav
et al.,, 2020a). Furthermore, fourteen Indian wheat
cultivars based on grain yield response under elevated
O; depicted that early released cultivars (before year
2000) were less sensitive compared to newly released
cultivars (Singh et al., 2018b) (Table 2). Wheat culti-
vars (Kharchiya 65-O; tolerant; PBW-intermediately
sensitive and HD 2987-O; sensitive) selected from
study of Singh et al. (2018b) were further examined
for the impact of elevated O; on yield attributes.
Losses in test weight by 12.9% in Kharchiya 65,
27.1% in PBW and 42.2% in HD 2987 were observed
(Fatima et al., 2018). Similarly, Mishra et al. (2013)
observed reductions in grain weight plant™' in both
dwarf (HUW-37) and tall (K-9107) cultivars of wheat
under elevated O; (ambient+ 10 ppb) (Table 2). How-
ever, dwarf cultivar having better yield was found
to be more susceptible to O; compared to tall cul-
tivar having lower yield potential. The shifting of
crop calendar to bypass the peak concentration of O,
exposure to wheat was not effective, as delay in sow-
ing time by 20 days decreased grain yield by 45.3%
compared to timely sowing, which had only a 16.2%
reduction (Ghosh et al., 2020).

In maize cultivars, elevated O; (70 ppb) reduced
the grain weight cob™! in HQPM-1 by 5.8% and in
PMH-1 by 11.3% compared to those at ambient con-
centration (Yadav et al., 2021c). Kernel weight m™2
and 1000 kernel weight declined more in DHM117
(normal maize) than HQPM-1 (quality protein maize)
under exposure of elevated O;, suggesting greater

@ Springer
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susceptibility of DHM117 (Singh et al., 2019). The
greater reduction in yield of DHM117 was contrib-
uted due to more depletion of carbohydrate content
than HQPM-1 (Table 2).

Two soybean cultivars, PK472 and Bragg, were
assessed for their response under elevated O; and
yield reduction was 20% and 33.6% in newly devel-
oped variety (PK472) while old variety (Bragg)
showed reduction of 12% and 30% under 70 and
100 ppb O; treatment, respectively (Singh et al.,
2010a). Some other economically important crops
of IGP also showed sensitivity under prevailing O,
stress. Singh et al. (2013) reported decrement in seed
yield ranging between 22.7 and 26.2% under elevated
O; in Pusa Tarak cultivar of mustard (Brassica jun-
cea L.). In an analysis on elevated O; exposure and
yield response of six mung bean cultivars, Chaudhary
and Agrawal (2015) found that weight of seeds was
reduced maximally in HUM-1 by 15.4% and mini-
mally in HUM-23 by 9.8% (Table 2). Recently, an
O;-FACE experiment based study also recorded
losses in yield and harvest index of Chickpea (Cicer
arietinum L.), a pulse crop by 21.9% and 36.10%,
respectively at 60 ppb O concentration (Singh et al.,
2021).

Horticultural crops are essential food as they pro-
vide necessary nutrients, minerals, and vitamins
to human beings. India is ranked second in terms
of horticultural crop production (Rais & Sheoran,
2015). Suganthy and Udayasoorian (2020) assessed
the impact of elevated concentration of surface O; at
high altitude of Western Ghat on ten potato (Solanum
tuberosum L.) cultivars at tuber initiation stage. The
reduction in yield ranged from 4.56 to 25.5% with
Kufri Surya to be moderately resistant to O; with
highest yield (Table 2). Both ambient and elevated
levels of O, detrimentally affected the yield of Kufri
chandramukhi cultivar of potato owing to declines in
weight and number of tubers (sizes > 35 mm) (Kumari
& Agrawal, 2014). A study on tomato (Solanum lyco-
persicum L.) depicted that elevated O; caused maxi-
mum reduction in yield during late vegetative phase
(45 days old plant) than early vegetative and fruiting
phases (Mina et al., 2010). Among leafy green veg-
etables, Palak (Beta vulgaris L.) is largely grown in
suburban regions of India due to its high content of
iron and folic acid and found to be extremely suscep-
tible to O5 (Tiwari et al., 2010). Response of Palak
to O; was studied by Kumari et al. (2013) and 25%

@ Springer

loss in yield was recorded (Table 2). Recently, Yadav
et al. (2020b) screened forty Amaranthus hypochon-
driacus L. cultivars under FACE facility. Cultivars
IC-5569 (91.4%) and IC-4200 (94.9%) showed very
high decline in yield, while IC-5527 (7.8%) exhibited
lowest yield loss.

Observation-based studies

An investigation of effects of surface O; concentra-
tions in Delhi revealed relative yield loss (RYL) of
7.5%, 5.4%, and 1.8% in the winter season and 22.7%,
16.3%, and 5.5% in the pre-monsoon season for
wheat, soybean, and rice, respectively over a 7-year
period (1997-2004) (Ghude et al., 2008). Another
observation-based evaluation of 17 sites from India
between 2011 and 2014 reported 4.2 to 15% annual
yield loss in wheat and 0.3 to 6.3% in rice due to
tropospheric O; (Lal et al., 2017). Based on in situ O;
measurements for 2-year period (2011-2013) in Pun-
jab and Haryana region of India reported that yield
losses in wheat ranged between 27 and 41%, maize
between 3 and 5%, and rice between 21 and 26%
(Sinha et al., 2015). A recent study by Feng et al.
(2022) has reported the RYL of 33%, 9%, and 23% for
wheat, maize, and rice, respectively in China which
is~US $63 billion in terms of annual economic loss.

A detailed analysis of O; exposure based yield
losses in the IGP region from 2010 to 2015 revealed
losses of 1-5% at M7 (7-h mean O; concentration)
and 6-15% at AOT40 in wheat, and 0.3-0.7% at M7
and 7.2-7.5% at AOT40 in rice (Kumari et al., 2020).
The RYL ranged from 10-34% for wheat, and 7-10%
for rice based on AOT40, while under M7, RYL for
wheat ranged from 3 to 11% and for rice from 0.7 to
4% (Kumari et al., 2021). Osborne et al. (2016) gath-
ered O; exposure yield related data (1998-2014) of
49 soybean cultivars from around the world at M7 of
55 ppb and discovered that Indian cultivars (which
lost yield by 38%) are more susceptible to O; than
cultivars from China and the USA.

Model-based studies

A study by Van Dingenen et al. (2009) assessed the
impact of tropospheric O; on crops using global-
scale modelling and predicted the annual yield loss
for wheat ranging between 13 and 28% and for rice
between 6 and 8% in India. Weather Research and
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Table 3 Yield response of ozone exposed plants upon EDU treatment

Crop species Cultivar EDU Duration (applica-  Parameter Response (% Reference
Dose tion interval in days) increase in
(ppm) yield)
Triticum aestivum  HD 2329 500 7 Weight of grain 22 Agrawal et al., 2004
L. (Wheat) HUW 234 plant™! 27
HUW 468 36.3
Malviya 234 150 10 Weight of seeds  24.8 Tiwari et al., 2005
300 plant™! 66.9
450 66.8
Malviya 533 18.8
19.1
20.5
HUW468 400 12 Weight of seeds ~ 25.8 Singh et al., 2009b
HUWS510 plant’! 20.5
HUW234 11.2
Sonalika 10.2
PBW243 1.9
HD 2987 400 10 Weight of grains  32.9 Fatima et al., 2019
PBW 502 plant’! 133
Kharchiya 65 8.8
WR544 300 10 Harvest index 374 Mina et al., 2021
Oryza sativa L. 18 cultivars 300 15 Weight of grains 25 Pandey et al., 2015
(Rice) Banthra site plant‘l 48
Lucknow site
Sarjoo-52 200 7 Weight of grains 8.9 Surabhi et al., 2020
plant'l
Harvest index 17.8
PB-1 25
44
Zea mays L. Buland 200+A0; 10 Weight of kernels 4.8 Singh et al., 2018a
(Maize) 2004+EO; plant’! 7.3
Prakash 11.8
14
SHM3031 50 7 1000 weight of 20 Gupta et al., 2020
200 seeds 14.2
PEHMS 15.15
17
Glycine max L. PUSA 9712 400+A0; 10 Weight of seed 29.8 Singh & Agrawal,
(Soybean) 400+EO; plant’! 33 2011a
PUSA 9814 28.2
29.0
JS 335 400 10 Weight of seed 26.7 Rai et al., 2015
plant’!
Brassica compestris Kranti 200 7 Weight of seeds 7 Pandey et al., 2014
L. (Mustard) 400 plant™! 17
Peela Sona 59
34
Arachis hypogaea  GG-20 500 12 Weight of seeds  47.8 Chaudhary &
L. (Groundnut) plant’l Rathore, 2020
Harvest index 23.7
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Table 3 (continued)

Crop species Cultivar EDU Duration (applica- ~ Parameter Response (% Reference
Dose tion interval in days) increase in
(ppm) yield)
Mung Bean (Vigna Malviya Jyoti 500 7 Weight of seeds  32.2 Agrawal et al., 2005
radiata L.) plant™!
Malviya Janpriya 400 10 Weight of seeds ~ 32.2 Singh et al., 2010b
plant™!
Vigna mungo L. Barkha 400 10 Weight of seeds  36.4 Singh et al., 2010c
Shekhar plant! 35.6
Azad-1 400 10 Weight of seeds  44.4 Singh & Agrawal,
BHU-1 plant’! 40.9 2011b

Forecasting model coupled with Chemistry (WRF-
Chem model) estimated 3.5+0.8% losses in wheat
and 2.1+0.8 losses in rice, with maximum losses
occurring in central and north India (Ghude et al.,
2014). Recently, Sharma et al. (2019) reanalyzed the
yield loss in India using the WRF-Chem model and
found 21% and 6% yield losses in wheat and rice,
respectively, which are considerably higher than pre-
vious studies (Table 2). An analysis of 2-year data
based on O;-flux model on four Indian wheat culti-
vars depicted that the loss in grain yield was higher
(23.9%+1.35) in early sown cultivars compared
to late sown cultivars (11.5%+0.37) under ambi-
ent+20 ppb O; (Yadav et al., 2021a).

EDU as a research tool in estimating the yield
losses against O;

Ethylene diurea (EDU; [N-(2-2-oxo-1-imidazolidi-
nyl) ethyl]-N-phenyl urea) is a well-known antio-
zonant research tool that was first described by
Carnahan et al. (1978). Due to its phytoprotective
responses, it is widely used for screening the culti-
var’s specific sensitivity, and assessing losses in yield
under ambient and elevated O; conditions (Singh
et al., 2015b). Application of EDU as control in com-
parison to ambient O; is beneficial for adequate mon-
itoring of effects of ambient O; on agricultural crops
in rural areas of India with electricity limitations
(Manning et al., 2011; Tiwari et al., 2005). In India,
several experiments using EDU as protectant to O;
have been investigated for determining the variabil-
ity among cultivars in terms of improvement in yield
such as for wheat (Singh et al., 2009b), rice (Pandey
et al., 2015), mustard (Pandey et al., 2014), and soy-
bean (Singh & Agrawal, 2011a) (Table 3).

@ Springer

Recently, Mina et al. (2021) assessed the responses
of thermotolerant wheat cv. WR544 to O; by apply-
ing 300 ppm EDU and found that harvest index was
higher in EDU treated plants (37.4%) as compared to
non-treated plant. Another study on three wheat cul-
tivars by Fatima et al. (2019) found that EDU treat-
ment (300 ppm) increased yield of HD 2987 (O,
sensitive) by 32.9%, PBW 502 (intermediately sen-
sitive) by 13.3%, and Kharchiya 65 (O; tolerant) by
8.8% (Table 3). Similarly in two rice cultivars, PB-1
(O sensitive) showed about 25% increase in seed
weight plant™" in EDU treated plants than Sarjoo-52
(O; tolerant) which showed lower increment of 8.9%
(Surabhi et al., 2020). Application of 50 and 200 ppm
EDU on two maize cultivars showed protection by
enhancing anti-oxidative defence machinery, ulti-
mately greater yield in SHM3031 (sensitive variety)
as compared to PEHMS (tolerant variety) in response
to high O; concentration (Gupta et al., 2020). A simi-
lar finding was also observed for the maize cultivars
Buland and Prakash with 200 ppm EDU doses under
ambient and elevated O; (Singh et al., 2018a).

The exact mode of action of phytoprotection pro-
vided by EDU against O induced damage has remained
unclear till now. An expected mechanism has been
ascribed to its capability to induce enzymatic and non-
enzymatic antioxidants which detoxify ROS (Pandey
et al., 2015; Singh et al., 2018a). Agathokleous (2017)
in its review gave another view of perception towards
the phytoprotective mechanism of EDU by showing hor-
metic (means activating plant defense at a low stress dose)
responses against ambient and elevated O; stress. There
are several evidences that showed hormesis in a plant
species by using low doses of abiotic agents like O; or
specific chemicals such as EDU (Agathokleous & Kitao,
2018; Agathokleous et al., 2019; Calabrese & Blain,
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2011). The EDU mediated hormetic responses were
measured in various endpoints such as growth, physi-
ology, reproduction, and productivity (Agathokleous
& Kitao, 2018; Agathokleous et al., 2019). Dose
response study manifested that treatment of EDU
(0-800 mg-L_l) induced hormesis in radish (Rapahanus
sativus L.) plant (by stimulating fresh weight of coty-
ledons and dry weight of root) placed in nonfiltered air
receiving ~25 ppb O; concentration, and the maximum
stimulation was recorded at 300 mg L™' (Agathokleous,

2017; Kostka-Rick & Manning, 1993). Another experi-
ment with carrot (Daucus carota L.) grown in ambient
O; concentration on treatment with EDU (0450 mg
L™!) mediated hormetic responses in terms of growth
and nutritional aspect, and the highest immensity of
positive response was recorded at 150 mg L' (Tiwari
& Agrawal, 2010). Earlier, an EDU-mediated hormetic
response has also been reported in wheat (Archambault
et al., 2002). Further, it is shown that conditioning may
be an important aspect of hormesis and O; may activate

Table 4 Responses of plants tropospheric O; under N fertilization

Crops/vegetables

Ozone concentration

Nitrogen dose

Effects on yield/quality

References

Brassica
campestris L
Kranti

Brassica
campestris L

Vardan and
Aashirwad

Triticum aestivum
L

HUW 510 and
LOK-1

Triticum aestivum
L. HD2967 and
Sonalika

Zea mays L.

Malviya hybrid-2
and

HHM-1

Cymopsis
tetragonoloba L

PUSA-N and
S-151

Beta vulgaris L
Allgreen

Ambient O5(41.65—
54.2 ppb), 12 h mean

Ambient O5 (27.7 and
59.04 ppb), 12 h mean

Ambient O (10.3 to
110 ppb), 12 h mean

Ambient O,
(52.4 ppb)+20 ppb, 8 h
mean

Ambient O5 (50.50 ppb),
8 h mean

Ambient O5 (56 ppb), 8 h
mean

Ambient O (42.60 ppb),
8 h mean

1.5 times RNPK, RNPK

1.5 times RNPK, RNPK

1.5 times RNPK, RNPK

RN, 1.5 times RN (high N)

RNPK, 1.5 times RNPK and

2 times RNPK

RNPK, 1.5 times RNPK and

2 times RNPK

RNPK, 1.5 times RNPK

Reductions in seed yield by
16.4% and oil content by
13.1% at RNPK, while
insignificant differences at
1.5 times RNPK

Reductions in seed yield by
7.1% and oil content by
11.15% in Vardan and in
Aashirwaad by 19.3% in
seed yield and 12.8% in
oil content at RNPK. No
significant differences at
1.5 RNPK

Reduction in yield by 16.2%

at RNPK but no significant

difference at 1.5 RNPK in

LOK-1, while in HUW 510

no significant changes at
both N doses

Reduction in grain yield
by 18% at RN and no
improvement at high N
(19%) while insignificant
differences in HD2967

Increase in weight of kernels

cob™! by 38.5, 103

and 104% in Malviya
hybrid-2 respectively at
RNPK, 1.5 RNPK and
2RNPK and by 27.5, 58.6
and 58.8% in HHM-1
respectively

Antioxidative defense
machinery more
strengthened in PUSA-N
than S-151 at 1.5 RNPK

2 RNPK did not provide
extra advantage

Increment in yield by

58.12% at RNPK and by
71.2% at 1.5 RNPK

Singh et al., 2009a

Singh et al., 2012

Singh et al., 2015a

Pandey et al., 2018

Gautam et al., 2020

Gupta & Tiwari, 2020

Sahoo & Tiwari, 2021
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conditioning in plant defense strategy (Sandermann et al.,
1998). Preconditioning of tomato calli with 100, 200, or
300 ppb O, for 7 days (30 min d™") induced resistance in
regenerated plantlets towards O5 exposure (200 ppb, 2 h)
by altering the antioxidant potential (Nagendra-Prasad
et al., 2008). Similarly, Li et al. (2017) also showed such
response in bean (Phaseolus vulgaris L.) plants on pre-
treatment of O; (=200 ppb for 30 min), which prevented
against more extensive exposure to O; (600 ppb for
30 min).

Nitrogen fertilization in alleviating the impact
of tropospheric O; on crops and vegetables

Inorganic nitrogen (N) fertilizers are widely used
to increase grain production (Akhtar et al., 2020).
There have been a lot of studies done on the connec-
tion between elevated O; and nitrogen management,
but the obtained results were variable (Feng et al.,
2019). Singh et al. (2015a) found an antagonistic
response where a high dose of N mitigated the nega-
tive response of O stress on wheat plants. At recom-
mended NPK (RNPK), mustard cultivars Vardan and
Aashirwad, which were grown in non-filtered cham-
bers (NFCs) receiving ambient O;, had significant
drops in their micronutrient, protein, and seed oil con-
tents. But at 1.5-times the RNPK, they did not have
significant changes (Singh et al., 2012). In a study on
interactive effects of different concentrations of N and
elevated O; on wheat cultivars, HD2967 and Sonalika
showed differential responses (Pandey et al., 2018). In
Sonalika, treatment with a high dose of N did not alle-
viate the O; phytotoxicity in relation to yield, while
HD2967 showed alleviation (Pandey et al., 2018).
Another study by Singh et al. (2015a) with LOK-1
and HUW 510 cultivars of wheat depicted that ambi-
ent O; negatively affected the N acquisition, which
increased the demand of N in sensitive cultivar LOK-1
and hence increase in yield was recorded at 1.5-times
recommended N dose (Table 4). However, HUW 510,
being less sensitive, showed an increase in yield under
ambient O; at recommended N. Similarly, Gautam et al.
(2020) found that 1.5-times recommended dose of N
was sufficient to relieve the negative impact of ambient
O; on maize cultivars (Malviya hybrid-2 and HHM-1)
by enhancing crop productivity, while 2-times recom-
mended dose of N did not provide any additional ben-
efit to plant metabolism compared to 1.5 times N dose

@ Springer

Fig. 1 Schematic representation illustrating A) the impact of
elevated O; on nitrogen metabolism and yield reduction, and
B) role of nitrogen addition in combating harmful effect of trop-
ospheric O; on plants. Nitrogen addition scavenges O induced
reactive oxygen species by upregulating antioxidative and
Halliwell-Asada pathway enzymes. Contrarily, nitrogen addi-
tion mediated the carbon pool partitioning away from sucrose
synthesis by deactivating SPS and being assisted towards
amino acid synthesis by activating PEPcase. GS, glutamine
synthetase; GOGAT, glutamine oxoglutarate aminotransferase;
SPS, sucrose phosphate synthase; PEPcase, phosphoenolpyru-
vate carboxylase; PK, pyruvate kinase; PEP, phosphoenolpyru-
vate, OAA, oxaloacetic acid. Pointed arrow end represents
induction and blunt end represents inhibition. Enhancements in
parameters are shown by 1 and reduction by |

(Table 4). Further, differences in allocation strategies
during developmental phases led to greater increment
in yield of Malviya hybrid-2 than HHM-1. Under ambi-
ent O; conditions, N amendments (in the form of NPK)
induced antioxidant defense machinery in a more com-
petent manner in tolerant cultivar (PUSA-N) of Cluster
bean (Cymopsis tetragonoloba L.) compared to sensi-
tive cultivar (S-151), which showed decline in stomatal
conductance as an avoidance strategy (Gupta & Tiwari,
2020). An experiment on Palak (Beta vulgaris L.) also
found that adding nitrogen to the soil helped to lessen
the effects of O; stress by changing the plant’s antioxi-
dative properties (Sahoo & Tiwari, 2021).

The possible mechanism of alleviation of O; tox-
icity under N supplementation relies on positive
impact of N on photochemical processes followed
by increased carbon assimilation rate. This type of
reaction could be linked to the expenditure of avail-
able N in protein, which may enhance the photosyn-
thetic ability (Singh et al., 2015a). The proteins are
important factors for defense machinery and, hence,
N addition alleviates O5 phytotoxicity (Yendrek et al.,
2013). Insufficient N fertilization restricts the photo-
synthetic N use efficiency, which declines the grain
yield. However, optimum N addition enhances the
grain yield (Singh et al., 2015a).

The beneficial role of nitrogen on performance of
plants exposed to O can also be assigned to upregu-
lation of enzyme activities of Halliwell-Asada path-
way (APX, ASA, and DHA) under nitrogen imple-
mentation (Fig. 1B; Gupta & Tiwari, 2020; Pandey
et al., 2018). Elevated O; exposure led to decline in
seed protein in soybean, which is correlated with a
detrimental reaction to nitrogen fixation (Broberg
et al., 2020). It is also shown in rice that elevated O,
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treatment declines the nitrate reductase (NR) activity,
NH,*-N and NO,;™-N contents (Fig. 1A; Huang et al.,
2012). So, implementation of N may trigger N metab-
olism and may alter the allocation of N towards struc-
tural proteins and photosynthesis (Liu et al., 2018).
Under Oj stress, application of high dose of nitrogen
delayed the leaf senescence process by conserving
high protein content (Pandey et al., 2018).

It is observed that the biosynthetic pathways of
sucrose and amino acids compete for energy and car-
bon skeleton (Champigny & Foyer, 1992). A study on
effect of nitrate on wheat seedlings showed an inverse
response between the rate of sucrose formation and
the assimilation rate of NO;™ (Van Quy et al., 1991).
The two key enzymes, sucrose phosphate synthase
(SPS) and phosphoenolpyruvate carboxylase (PEP-
case), are responsible for carbon assimilation parti-
tioning, and are modified by protein phosphorylation
under nitrogen addition. But the reactions of both
the enzymes show the opposite trend. Application
of nitrogen reduces the content of PEP and activates
PEPcase in leaves, which is linked to increased car-
bon flux towards amino acids (Fig. 1B). Accordingly,
decrement in SPS activity restricts the synthesis of
sucrose in leaves, suggesting that SPS plays a major
role in flux of carbon towards sucrose (Champigny &
Foyer, 1992). Although, in our understanding, there
are very few studies indicating mechanism of carbon
partitioning in crops and vegetables, which needs to
be explored in future to assess the exact mechanism of
nitrogen supplementation in alleviating Oj stress.

Conclusions and future prospects

The present compilations of data on Indian agricul-
tural crops clearly highlight the crop’s sensitivity to
present and future levels of O;, experiencing signifi-
cant yield losses. Ozone pollution is worsening and
heavily impacting the crop’s productivity, thus posing
a threat to food security in near future. Cumulative
stress response index, phytotoxic O; dose, and foliar
injury are some important tools for estimating the sen-
sitivity of crops against O stress. The studies clearly
indicate that wheat is the most sensitive crop to O; and
hence showed greater loss in yield than rice. Maize is
found to be less sensitive to O; in IGP region under
present O5 scenario. The sequence of susceptibility of
major crops is wheat ~ mustard > rice > maize in IGP
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region. Under high O; concentration, Ethylenediu-
rea (EDU), an Oj-protectant, is beneficial to evaluate
crop yield losses in remote areas where electricity and
infrastructures are limited. Implementation of N ferti-
lizers (1.5 times the recommended NPK) effectively
ameliorated the loss in grain yield under ambient and
elevated O; by activating antioxidative pathway.
Taking into consideration the vulnerability of eco-
nomically important crops and vegetables in India
to elevated surface O; concentration, mitigation per-
spective should be taken to reduce emission of Oj
precursors. In European Union and United States
of America, various strategies and implementation
plans such as European Crop Loss Assessment Net-
work (EUCLAN) and National Crop Loss Assess-
ment Network (NCLAN) program were initiated and
implemented, which effectively led to decline in O;
concentrations. Such network programs are needed in
India to assess the countrywide yield losses. Ozone
biomonitoring and assessment programs may also
include Oj-sensitive common biomonitors such as
clover NC-S, snap bean genotype S156, and tobacco
cultivar Bel-W3 to recognize air quality and climatic
conditions in a specific region. Recently, some bio-
monitoring concepts such as O;-Gardens of ICP Veg-
etation and the Os;-Bioindicator Garden Project of
NASA were introduced for creating gardens having O,
sensitive and resistant varieties of plants and raising
public awareness of the threats posed by tropospheric
O; across the region. Such awareness programs must
be initiated by other countries at local and large scale.
In India, one of the biggest issues is the inadequate
monitoring setup in rural areas that should be strength-
ened to provide accurate data regarding O5 concentra-
tion. The accessibility of EDU chemical should be
promoted in rural areas for cost-effective short-term
O; biomonitoring and also for identifying indicator
plant species against ambient O5 in natural habitat.
Solar radiation, drought, temperature, and CO,
are major factors that directly or indirectly modulate
the effects of elevated O; on plants. These interac-
tions need detailed analyses under various crop-
ping pattern in the future. Therefore, O;-flux-based
metrics should be considered over the exposure-
based metrics by the researchers for precise O;
risk assessment and flux-response functions. The
impact of elevated O; on plants differs with the
addition of nitrogen as a fertilizer. Therefore, more
studies on responses of crops and vegetables after
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implementation of an appropriate dose of nitrogen
under O; stress should be promoted to understand
the exact mechanism of plants. Use of beneficial
agricultural practices in ameliorating the negative
impact of tropospheric O; on productivity of crops
could be worked out in future.

It is evident that to reduce yield losses, O; tolerant
cultivars should be encouraged in future to withstand
O; stress condition. Therefore, different cultivars of
crops and unexplored cultivars need to be screened
for their tolerance and sensitivity to O;. Biotechno-
logical tools and conventional breeding approaches
are required to produce Oj tolerant cultivars by modi-
fying antioxidant defense pathways, stress regulated
genes, and signaling pathways, which may be ben-
eficial to restrict yield losses due to elevated O; in
future.
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