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landslide inventory map development and temporal 
change analysis. Spectral information combined with 
topographical, contextual, textural, and morphological 
characteristics of the landslide in Sentinel-2 images is 
applied for landslide detection. Subsequently, spatio-
temporal landslide susceptibility maps are developed 
utilizing the weight of evidence statistical modeling 
with seven causative factors, i.e., elevation, slope, geol-
ogy, aspect, distance to fault, distance to roads, and 
distance to streams. The results reveal that landslide 
occurrence increased from 2016 to 2021 and that the 
coverage of areas of relatively high susceptibility has 
increased in the study area.

Keywords Landslide · Spatial and temporal 
changes · Sentinel-2 MSI · Object-based image 
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Introduction

Earthquakes and rainfall are major triggers for wide-
spread landslides with ruinous impacts on the physical 
environment and human lives (Lu et al., 2011; Stumpf 
et  al., 2017a, b). The Himalayan Mountain ranges in 
northern Pakistan are repeatedly affected by landslides 
(Bacha et  al., 2018; Rehman et  al., 2020) due to the 
presence of rough topography, fractured rock, active 
tectonics, anthropogenic involvement on fragile slopes, 
and extreme weather conditions (Basharat et al., 2016; 
Derbyshire et  al., 2001; Kamp et  al., 2008; Khattak 

Abstract The 2005 Kashmir earthquake has triggered 
widespread landslides in the Himalayan mountains 
in northern Pakistan and surrounding areas, some of 
which are active and are still posing a significant risk. 
Landslides triggered by the 2005 Kashmir earthquake 
are extensively studied; nevertheless, spatio-temporal 
landslide susceptibility assessment is lacking. This can 
be partially attributed to the limited availability of high 
temporal resolution remote sensing data. We present a 
semi-automated technique to use the Sentinel-2 MSI 
data for co-seismic landslide detection, landslide activi-
ties monitoring, spatio-temporal change detection, and 
spatio-temporal susceptibility mapping. Time series 
Sentinel-2 MSI images for the period of 2016–2021 and 
ALOS PALSAR DEM are used for semi-automated 
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et al., 2010). Hundreds to thousands of landslides have 
been triggered by the 2005 Kashmir earthquake in the 
surrounding areas (Kamp et al., 2008; Mahmood et al., 
2015). Many of the earthquake-triggered landslides are 
still active and cause a threat to people and infrastruc-
ture (Bacha et al., 2020). Monitoring of landslide activ-
ity, understanding the spatio-temporal distribution of 
landslides, and spatio-temporal landslide susceptibility 
assessment (LSA) help to identify areas that are prone 
to future landslide activity, which is important for land-
slide hazard and risk assessment (Guzzetti et al., 2012; 
Stumpf et al., 2017b).

Temporal landslide inventory development is a pre-
requisite for the determination of spatio-temporal land-
slide susceptibility, hazard and risk assessment, and 
disaster coping strategies (Kirschbaum et  al., 2015). 
Many studies have presented the utility of satellite and 
aerial images using manual digitization, object-based 
image analysis (OBIA), machine learning, and pixel-
based image classification techniques for landslide 
inventory development (Aksoy & Ercanoglu, 2012; 
Bacha et  al., 2018; Kamp et  al., 2008, 2010; Khan 
et  al., 2013; Martha et  al., 2010; Owen et  al., 2008; 
Saba et al., 2010). However, compared to other land-
slide detection methods, OBIA techniques have better 
applicability, time efficiency, and interpretability for 
object selection in image classification techniques (Li 
et al., 2015). In recent years, OBIA techniques are fre-
quently used for image analysis and landslide delinea-
tion by applying the spectral, contextual, textural, topo-
graphical, and geometrical characteristics of remote 
sensing images for feature detection (Blaschke et  al., 
2014; Martha et al., 2013). Spectral indices like mean 
brightness (MB), Normalized Difference Vegetation 
Index (NDVI), Soil Adjusted Vegetation Index (SAVI), 
and Moisture Stress Index (MSI) are commonly used 
for landslide detection in OBIA techniques. These indi-
ces certainly differentiate barren and landslide features 
in OBIA techniques and thus precisely detect landside 
compared to other landslide detection methods. Subse-
quently, accurately OBIA-derived landslide inventory 
is useful for suitable landslide susceptibility mapping, 
as also used by Martha et al. (2013).

Many research studies have assessed landslide spa-
tio-temporal change detection (Behling et  al., 2014; 
Mora et  al., 2018; Qingqing et  al., 2017; Shafique, 
2020a; Yang et  al., 2017). Saba et  al. (2010) studied 
spatio-temporal landslide detection using QuickBird, 
IKONOS, SPOT-5, and WorldView-1 for the 2005 

Kashmir earthquake-affected regions, specifically in 
the Muzaffarabad area. Yang et al. (2017) used Quick-
Bird, SPOT-5, Pleiades, World view-2, and aerial pho-
tography for spatio-temporal change detection after 
the 2008 Wenchuan earthquake. Similarly, Shafique 
(2020a, b) studied the spatio-temporal analysis of 
co-seismic landslide induced by the 2005 Kashmir 
earthquake in the Balakot and Muzaffarabad regions 
and utilized SPOT-5, SPOT-6, and ASTER data. The 
aforementioned studies used different satellite sensors 
with low temporal resolution data and investigated a 
limited area of the widespread affected regions of the 
earthquake. Furthermore, the abovementioned studies 
used commercial data. The commercial data utiliza-
tion for regional-scale landslide studies with high tem-
poral coverage is costly, and acquiring this data soon 
after a landslide triggers events like rainfall and earth-
quake is rarely available and challenging. However, 
Sentinel-2 MSI data with its free availability, high 
temporal, and spatial resolution provides an effective 
opportunity for temporal landslide mapping from local 
to regional scale (Yang et al., 2019).

The Sentinel-2 sensor provides multi-spectral and 
high-temporal (5  days repetition) resolution imagery 
(Drusch et  al., 2012) and can be used for regional-
scale disaster emergency operations situations, spatio-
temporal landslide inventory development (Stumpf 
et al., 2017a, b), and spatio-temporal LSA. Landslides 
triggered by the 2005 Kashmir earthquake are broadly 
studied; nevertheless, spatio-temporal LSA is still 
lacking for the area. This study aims to use Sentinel-2 
MSI data for post-disaster landslide inventory devel-
opment, spatio-temporal landslide change detection, 
and temporal landslide susceptibility assessment in 
the 2005 Kashmir earthquake-affected area.

Study area

The 3761  km2 study area is situated in the Himala-
yan mountains of northern Pakistan and comprises 
the Muzaffarabad and Balakot cities (Fig. 1). Climati-
cally, the study area is located in the sub-tropical high 
land climate zone. The elevation of the study area 
ranges from 333 to 5243 m above sea level (Fig. 1). 
In summer, rainfall occurs in monsoons during July 
and August and brings heavy rainfall which causes 
landslides and floods.
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Geologically, the study area is situated in the 
Hazara-Kashmir Syntaxis (Calkins et al., 1975). The 
major geological formations in the study area are the 
Hazara, Murree, Lockhart, Muzaffarabad, Salkhala, 
and Tanawal formations. The lithology ranges from 
Precambrian to Quaternary age. The oldest forma-
tion in the study area is Hazara which consists of 
phyllites, greywacke, and argillaceous (Calkins et al., 
1975). The Murree formation is early Miocene in 
age and comprises siltstones, argillaceous sandstone, 
shale, and intraformational conglomerate and lenses 
(Baig et  al., 1988). The Tanawal Formation belongs 
to the Precambrian age and comprises metasediments 
quartzite, graphitic schist, and marbles (Qasim et al., 

2014). The Muzaffarabad Formation is of Cambrian 
age; it consists of limestone, rubbly black shales, and 
thinly bedded and highly fractured dolomites (Baig 
et  al., 1988). Major active faults in the vicinity of 
Muzaffarabad and Balokot are the Main Boundary 
Thrust (MBT), the Panjal fault, and the Muzaffarabad 
fault (Baig et al., 1988) (Fig. 1).

The Kashmir earthquake severely affected the study 
area and had widespread co-seismic landslides. Many 
landslides are stabilized with time after the earth-
quake (Shafique, 2020b). However, some landslides 
are active and cause damage to people and infrastruc-
ture (Bacha et al., 2020). These landslides are mainly 
active due to fractured geology, the existence of loose 

Fig. 1  Location of the study area
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weather materials on the steep slope, earthquakes, 
deforestation, construction on the steep slope, and pro-
longed and heavy rainfall during the winter and sum-
mer seasons (Bacha et al., 2020).

Materials and method

Multiple Sentinel-2 MSI (Level-1C) images of 2016, 
2017, 2018, 2019, 2020, and 2021 and an ALOS PAL-
SAR DEM are used for landslide and temporal change 
detection (Table 1). The 10-m (B2, B3, B4, and B8), 
20-m (B5, B6, B7, B8a, B11, and B12), and 60-m 
(B1, B9, and B10) resolution bands of Sentinel-2 MSI 
were resampled using the nearest neighbor method to 
the 10-m multi-spectral resolution bands.

To develop the LSM, the seven landslide causa-
tive factors, i.e., slope, elevation, aspect, geology, 
distance to streams, distance to roads, and distance 
to faults, are used. These factors are selected due to 
their importance in landslide occurrences and dis-
tribution in the study area. Detailed steps followed 
for the methodology are under.

Landslide inventories

Manually digitized and interpreted regional-scale land-
slide distribution is a time-consuming, intensive, and 
laborious task (Yang et al., 2017). Therefore, landslides 
in Sentinal-2 MSI images of 2016, 2017, 2018, 2019, 

2020, and 2021 in the study area are delineated using 
OBIA techniques. The acquired images were pro-
cessed using the eCognition developer 9.0 (eCognition  
Developer, 2014). Sentinel-2 data along with DEM-
derived factors, i.e., stream network, slope, and eleva-
tion layers, were combined and used in multi-resolution 
segmentation (MRS) and subsequent rule-based classi-
fication for semi-automated landslide delineation. The 
segmentation process mainly used three parameters for 
the computation of object size, which are shape, scale 
parameter (SP), and compactness (Duro et al., 2012). 
Among these three parameters, the SP is an important 
parameter for image segmentation (Li et  al., 2015) 
because it manages the average size of image objects 
and affects the accuracy of image classification (Benz 
et  al., 2004; Smith, 2010). The ESP-2 (Estimation of 
Scale Parameter) tool proposed by Drăguţ et al. (2014) 
was used for selecting a suitable SP value.

Image segmentation is followed by rule-based 
image classification for delineation of landslides. 
Trial and error with expert knowledge were used for 
setting parameters to separate true landslides from 
false-positive candidates (non-landslide features). 
Selecting features related to landslide occurrence is 
independent due to the high dependency on expert 
knowledge (Dou et al., 2015). Parameters applied for 
separation of false-positive candidates and demarca-
tion of landslides are NDVI, NDWI, MSI, SAVI, tex-
ture, mean brightness (MB), and slope. Details of the 
spectral indices are shown in Table  1. The selected 

Table 1  Spectral indices are used for feature selection

Index Equation Description

NDVI NDVI =
(NIR−Red)

(NIR+Red)
NDVI is a commonly used index for the identification of vegetation in remote sensing 

image classification (Blaschke et al., 2014; Martha et al., 2010).
NDWI NDWI =

(Green−NIR)

(Green+NIR)
NDWI is commonly used for the delineation of open water features and enhance their 

existence in remotely sensed imagery (Li et al., 2013).
MSI MSI =

NIR

SWIR

MSI plays a vital role in the identification of moisture contents on land surface features 
in remote sensing data (Yue et al., 2019).

SAVI SAVI =
(NIR−Red)

(NIR+Red+L)
(1 + L) SAVI is a modified NDVI index that adjusted the soil brightness influence on the 

NDVI results when the vegetation cover is low (Huete, 1988).
Where, L is the canopy background adjusted factor and we used a value of 0.5 to avoid 

opening a can of worms.
Mean brightness

MB =
1

Nvis

Nvis
∑

i=1

Ci(vis)
  

Brightness characteristics in remote sensing images are commonly used for the  
detection of bright objects of land surface features. Landslide-affected areas have 
high brightness properties due to the removal of surface vegetation and exposure to 
bare soil and rock.

Where, MB is mean brightness, and Ci(vis) is the summation of visible bands divided 
by Nvis , which is the total number of visible bands.
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parameters and thresholds for segmentation and rule-
based classification were tested on the 2016 Sentinel- 
2 MSI image and subsequently applied to 2017, 
2018, 2019, 2020, and 2021 images for landslide 
detection. Finally, the landslide features are merged 
and exported to a shape-file for accuracy assessment, 
landslide temporal change analysis, and LSA.

The resultant landslide inventories are validated 
through recall (R), precision (P), and F1 meas-
ure (Keyport et al., 2018; Wang et al., 2021). The P 
measure is useful to find out how many pixels of a 
landslide are detected in the image. The R measure is 
applied to describe how many actual landslide pixels 
are detected in the image. The F1 measure is defined 
as the balance between P and R. The P, R, and F1 
measures are estimated through Eqs. 1, 2, and 3. For 
calculation of P, R, and F1, an accurate landslide 
inventory is requisite, which is also prepared in this 
study through manual digitization by visual interpre-
tation of a Sentinel-2 MSI that is verified in the field. 
A detailed field visit was conducted to observe the 
location (through GPS), type, and activity and take a 
photographic record of the landslides and observe the 
significant causative factors of landslide occurrences. 
Landslides that are accessed by roads are visited and 
verified on the digitized printed map. The collected 
GPS points of landslides are used for verification 
using a confusion matrix.

where TPs represent true positives and indicate the 
landslide scarp are correctly delineated. FPs repre-
sent false positives and describe non-landslide areas 
demarcated as landslide area in the image, while FNs 
represent false negatives and indicate actual landslide 
pixels which are not detected in the image.

For landslide susceptibility map development and 
validation, the 2016, 2017, 2018, 2019, 2020, and 
2021 landslide inventories are randomly classified 
into a model calibration (80%) and a validation set 
(20%).

(1)P = TPs∕(TPs + FPs)

(2)R = TPs∕(TPs + FNs)

(3)F1 = 2 × P × R∕(P + R)

Landslide susceptibility assessments

For the development of a LSM, the seven significant 
causative indicators of landslide occurrence are used, 
i.e., slope, elevation, aspect, distance to stream, dis-
tance to fault, distance to roads, and geology.

The weight of evidence statistical model is utilized 
to estimate the influence of causative indicators for 
LSM development. The weight of evidence model 
can be expressed through the following equations. 
These equations are defined by Van Westen et  al. 
(2006).

where, Np1 defines the presence of causative and 
landslide pixels; Np2 defines the presence of land-
slides and absence of causative factor pixels; Np3 
represents the absence of landslides and existence of 
landslide causative factor pixels; and Np4 describes 
the absence of both causative factors and landslide 
pixels. The final weight  (Wfinal) is calculated as:

The Wfnial (total final derived weight) is the con-
trast between Wplus and Wminus and describes the spa-
tial association of the causative factors and landslides.

Finally, the landslide susceptibility index (LSI) 
map is calculated by summation of the causative fac-
tors using the following equation

The LSI map accuracy assessment is carried out 
through the success rate curve (SRC) and the area 
under the curve (AUC). The SRC is computed by 
crossing the LSI map with the validation landslide set 
(Mezughi et al., 2011). First, the LSI map values are 
classified into 100 classes with 1% cumulative inter-
vals (Mezughi et al., 2011). Then the derived classi-
fied LSI is combined with the validation landslide set 

(4)Wplus{

(
[

Np1
]

[

Np1
]

+
[

Np2
]

)

∕

(
[

Np3
]

[

Np3
]

+
[

Np4
]

)

(5)Wminus{

(
[

Np3
]

[

Np1
]

+
[

Np2
]

)

∕

(
[

Np4
]

[

Np3
]

+
[

Np4
]

)

(6)Wfinal =
(

Wplus
)

−Wminus

(7)LSI =
∑

W
c
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and, subsequently, the percentage of landslide occur-
rences is found in each susceptible class. Finally, the 
LSM map is divided into five susceptibility zones, 
i.e., very low (VL), low (L), moderate (M), high (H), 
and very high (VH).

Results

Landslide detection

The result of the ESP-2 tool for MRS is shown in a 
ROC-LV graph (Fig. 2). Peak values in the ROC-LV 
graph specify the SP value at which appropriate image 
objects are produced. Peaks in the ROC-LV graphs, 
i.e., 40, 53, 67, and 81 (Fig. 2) SP values, were applied 
for image segmentation. By visual interpretation of all 
these object levels, a value of 67 (Fig. 2) was applied 

for the segmentation process. Scale values of 40 and 
53 produced over-segmentation, while a scale value of 
83 produced under-segmentation objects.

After image segmentation, the next step was 
rule-based classification. In the rule-based classifi-
cation process, several parameters were required to 
distinguish non-landslide objects from a landslide. 
Object feature selection threshold values for detec-
tion of non-landslide and landslide features are 
given in Table 2.

Landslide inventories and temporal change

A total of 432, 445, 454, 456, 463, and 468 landslides 
were detected in 2016, 2017, 2018, 2019, 2020, and 
2021 images, respectively. The landslide invento-
ries of these six different years are shown in Fig. 3. 

Fig. 2  ROC-LV graph 
shows the results of the 
ESP-2 tool and describes 
peaks that indicate an 
optimal SP value for image 
segmentation. An SP value 
of 67 is selected as an 
optimal scale parameter for 
image segmentation

Table 2  Non-landslide 
feature classes and landslide 
selection criteria are used 
in the OBIA classification. 
These thresholds are 
determined using trial and 
error in combination with 
expert knowledge

Feature Feature selection criteria

Shadow Mean brightness < = 600
River NDWI = > 0.07

Mean band 08 < 1254
Mean elevation < 2100

Forest (thick vegetation) Mean band 05 < = 973
NDVI > = 0.5

Thin vegetation NDVI > 0.35 and < 0.5
Built-up MSI > 0.1 and < 1.5

GLCM all dir. of red band > = 0.024
Mean slope < 22°
Mean red band = > 700

Sand Existence of stream shapefile
Barren SAVI = > 0.3

Mean brightness = > 1249
Landslides NDVI < 0.2

Mean slope > = 15°
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Fig. 3  Temporal landslide number and area
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In all 6  years, most landslides were observed in the 
Murree formation, which covers 55% of the study 
area. Observed landslides in the Murree formation 
are 52.4% in 2016, 53.0% in 2017, 53.5% in 2018, 
53.7% in 2019, 56.6% in 2020, and 57.0% in 2021. 
The Muzaffarabad formation had the second-highest 
number of observed landslides, which covers 2% of 
the study area. The observed landslides in the Muzaf-
farabad formation are 14% in 2016, 14.2% in 2017, 
and 14.6% in 2018, 2019, 2020, and 2021.

Detected landslide area and number for each year 
are shown in Fig.  4. The area affected by landslides 
was 21.12  km2, 22.65  km2, 24.01  km2, 24.32  km2, 
25.13  km2, and 25.87  km2 in 2016, 2017, 2018, 2019, 
2020, and 2021, respectively. The area affected by 
landslides has increased from 2016 to 2021, indi-
cating the occurrence of new landslides each year 
(Fig. 5). Landslide area has also increased due to the 
enlargement of landslide scrap (Fig.  6). Anthropo-
genic involvement in the removal of landslide material 
from the toe lets the material slide down and there-
fore increases the area of the landslide scarp (Fig. 2 in 
the Supplementary document). New landslides also 
occurred due to the construction of new roads in 
2018, 2019, and 2020 (Fig.  1  in the  Supplementary 
document).

Relationship of causative factors and landslide

The causative factor maps are shown in Fig.  3  in the 
Supplementary document. These causative factors were 
combined with the calibration landslide set using Eqs. 4 

and 5. The resultant weights of each causative factor 
from 2016 to 2021 are shown in Fig. 7.

Landslide susceptibility and temporal change

The classified LSM for 2016, 2017, 2018, 2019, 2020, 
and 2021 of the study areas is shown in Fig. 8. Land-
slide susceptibility class areas in percentage are shown 
in Fig. 9(a). In 2016, maximum area is covered by the 
L susceptibility class which is 28.3%. A 18.7% area 
is covered by VH susceptibility class in 2016, while 
in the same year, a 16.5% area is covered by H sus-
ceptibility class (Fig. 9a). In 2021, maximum area is 
covered by VH (28.6%) and H (25.2%) susceptibility 
classes. High and very high landslide susceptibility 
classes mostly cover the Murree and Hazara forma-
tions in all years. In 2016, H and VH susceptibility 
classes covered an area of 69% and 58%, respectively, 
in the Murree formation. While in 2021, the H suscep-
tibility class area is increased to 81% and 69% in the 
Murree formation. The Hazara formation covers an 
area of 11.5% and 22% of VH class in 2016 and 2021, 
respectively.

Temporal changes in landslide susceptibility 
classes from 2016 to 2021 are shown in Fig. 9(b). It 
can be observed that the highest increase in suscep-
tibility classes from 2016 to 2021 has occurred in H 
and VH. A 1.4% and 2.6% increase has occurred in 
H and VH susceptibility classes from 2016 to 2017, 
respectively. From 2017 to 2018, a 2.9% increase can 
be seen in the VH susceptibility class. Similarly, from 
2019 to 2021, a 4.7% and 3.3% increase has occurred 
in VH and H susceptibility classes. Other susceptibil-
ity classes, i.e., M, L, and VL temporal change from 
2016 to 2021, are shown in Fig. 9(b).

The accuracy assessment of the LSM is derived 
from an AUC and SRC, which are shown in Fig. 10.

Discussion

This study has developed a semi-automated technique 
for landslide temporal change detection, landslide mon-
itoring, and spatio-temporal susceptibility assessment 
using Sentinel-2 MSI and ALOS PALSAR DEM. The 
analysis of Sentinel-2 MSI data over an area affected by 
frequent landslide activity shows that these high tem-
poral resolutions and freely available data can be used 
for temporal change detection and monitoring landslide 

Fig. 4  The landslide inventories of 2016 (a), 2017 (b), 2018 
(c), 2019 (d), 2020 (e), and 2021 (f). New landslides that 
occurred in 2017, 2018, 2019, 2020, and 2021 are shown in the 
black polygon
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activity. However, small landslides which have an area 
less than 100  m2 cannot be detected due to the medium 
resolution (10 m) of the Sentinel-2 MSI data.

A multi-scale segmentation and expert knowledge 
approach were adopted to recognize landslides. Spectral 
properties such as mean brightness, NDVI, SAVI, and 

slope of objects were used to quantify expert knowledge 
for landslide recognition. However, local knowledge 
through discussion with local researchers and the com-
munity is also considered during the study. The mean 
brightness index was useful for the detection of bright 
objects in OBIA methodologies. Landslide-affected 

Fig. 5  Temporal change from 2016 to 2021 in different loca-
tions in the study area, shown with NDVI layers (a and b) and 
Sentinel-2 MSI true color composite (c and d). Mostly, new 

landslides occurred in 2017, 2018, 2020, and 2021. Landslide 
types shown in the image (b) of 2017, 2018, and 2021 are active 
while the landslide shown in image (b) of 2020 is inactive

Environ Monit Assess (2022) 194:845 Page 9 of 17    845
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areas give bright appearances, because of the absence 
of vegetation and exposure to fresh rocks and soil and 
making them different from other false positive can-
didates. The presence of green grass on old landslides 
has almost the same reflectance (brightness) properties 
as grasslands and bare soil with little grass. The use of 
the SAVI index corrects the influence of soil bright-
ness with low vegetation cover on the old landslide. 
Therefore, SAVI was useful to differentiate bare soil 
from old landslide scarp in such cases. NDVI was use-
ful to discriminate vegetation objects from landslides as 
also used in various semi-automated landslide studies 
like Lahousse et  al. (2011), Martha et  al. (2010), and 
Blaschke et al. (2014).

Observation from the analysis of landslide tempo-
ral change shows that area and numbers of landslides 
have slightly increased from 2016 to 2021. Landslide 
number and area increased to 8.3% and 13%, respec-
tively, from 2016 to 2021. Landslide number and area 
have increased due to occurrences of new landslides 
in the study area in 2017, 2018, 2019, 2020, and 2021 
(Fig.  5). Some landslides are active and their scarp 
area has increased from 2016 to 2021 (Fig.  6) due 
to natural environmental phenomena. Excavation of 
material from the landslide site which is accessible 
to roads has also increased the area of some land-
slides. New landslides are mostly induced by road 
construction. Landslide temporal changes were com-
pared with existing landslide inventories developed 
by Shafique (2020a, b). Shafique (2020a, b) studied 
only the Muzaffarabad and Balakot surrounding area 
and observed that the landslide area significantly 

decreased from 2016 to 2018. However, the results 
from this study reveal that in the same area, no tem-
poral changes in landslides were observed from 2016 
to 2018. This might be due to variation in applied 
delineation techniques, remote sensing data, and time 
of mapping. Our result findings are contrary to Saba 
et  al. (2010) and Shafique (2020a, b) because we 
investigated a relatively large area. Moreover, Saba 
et al. (2010) and Shafique (2020a, b) have studied co-
seismic landslides and found that landslides are sta-
bilized. However, landslides existed even before the 
2005 Kasmir earthquake (Kamp et al., 2008) and are 
currently active, due to exposure and fractured geol-
ogy, steep slope, the existence of weather material on 
the steep slope, prolonged and heavy rainfall in win-
ter and monsoon season, and anthropogenic activities 
on fragile slopes like construction of roads, build-
ings, and deforestation (Bacha et  al., 2020). In all 
6 years, the largest number of landslides is observed 
in the Murree and Muzaffarabad formations along 
with the MBT. The highest increase in landslides was 
observed in the Murree formation, followed by the 
Muzaffarabad formation.

The seven causative factors were selected consider-
ing their observed influence on landslides in the study 
area and area-specific literature. The data sources of the 
selected causative factors as given in the “Materials and 
method” section are collected from authentic sources 
and partly verified in the field and also effectively uti-
lized by the area and topic-specific publications. The 
weightage of the selected parameters and their influ-
ence on the landslide inventory distribution is derived 

Fig. 6  Active landslides in the study area in two different locations a and b, shown on the NDVI layer. Images c and d are showing 
landslide scrap in Sentinel-2 MSI true color for the year 2021. The landslide area has increased from 2016 to 2021
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through the utilized weight of evidence statistical model. 
It is clear from the relationship of landslide and causa-
tive factors that, in the geology layer, the Hazara, Mur-
ree, and Muzaffarabad formations are most prone to 
landslides, because the Murree formation consists of 
vastly fractured and cleaved rocks. A similar observation 
is also found by Kamp et al. (2010) and Mahmood et al. 
(2015). Similarly, in the geology layer, the Muzaffar-
abad formation is extremely fractured and consisted of 
thinly bedded Precambrian dolomites and silicates along 
the hanging wall of MBT (Kamp et  al., 2008; Owen 
et al., 2008). In the elevation layer, the highest weights 

are calculated for 1000 m to 1500 m classes. The pres-
ence of glaciers and snow at higher elevations was a hin-
drance to the detection of landslides. In the slope angles 
layer, the highest landslide susceptibility is observed for 
31° to 70° classes. The slope angles between 51° and 
70° are more susceptible to debris flow and rock slide 
in all 3 years; similar observation is also found by Bacha 
et  al. (2018). In the case of aspect factor, the south- 
facing slope, i.e., S, SE, and SW, is highly susceptible. 
In the Himalayan mountain regions, maximum sun rays 
and rainfall falls on south-facing slopes (Kamp et  al., 
2010) and therefore more prone to landslides. Landslide 

Fig. 7  Calculated weight  (Wf) of causative factors from 2016 to 2021
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susceptibility increases as the distance from roads 
decreases. The study area is largely mountainous and 
most of the roads are constructed by cutting the slopes 
and therefore the utilized road map can be considered as 
the road cut map. It is observed from the results that road 
impacts on landslide occurrence have increased from 
2016 to 2021. In 2016, calculated weight for < 50  m 
distance class is 2.52 and has increased to 4.23 in 2021, 
due to the construction of new roads. Hence, road con-
struction in the hilly region increases landslide suscep-
tibility, so better planning and construction management 
are required to mitigate the impact of road construction 
on landslide susceptibility. Future road construction 
should be avoided in the area highlighted as very high 
or highly susceptible areas to reduce the landslide- 
associated risk. Similar observations were also found by 
Sato et al. (2007) and Owen et al. (2008) that construc-
tion of roads in the hilly regions is the most important 
factor for landslides. Similarly, it is observed from the 
results that the susceptibility increases as the distance 
from the stream increases. In the mountainous region, 
roads are mostly constructed parallel to streams; there-
fore, rivers and roads play an important role in more 
landslide occurrences. It is a common observation that 
landslides mostly occur along the faults. However, it is 
clear from our analysis that impacts of fault on land-
slide susceptibility have decreased from 2016 to 2021, 
because in recent years, no large seismic activity has 
been recorded in the study area. Information regard-
ing seismic activity is observed from the US Geologi-
cal Survey (USGS) earthquake catalog website (https:// 
earth quake. usgs. gov/ earth quakes/ search/) of the study 
area for the period of 2016–2021. The USGS earthquake 
catalog shows no seismic events higher than 4.7 Mw and 
indicating the negligible impacts of the tectonics events 
on the temporal variation of the landslides in the region. 
The major trigger of the landslides in the region is mon-
soonal precipitation and human activities including road 
construction, repair, extension, and excavation for con-
struction material on the fragile slopes.

It is observed from our results that the suscep-
tibility class area showed a shift from 2016 to 2021 
(Fig.  9). The highest shift is observed from “H” to 
“VH” and from “VL” to “L” susceptibility classes. 
It is because of the increase in landslide number and 

area from 2016 to 2021. The temporal landslide sus-
ceptibility analysis is showing that the surroundings 
of the main settlement, i.e., Muzaffarabad and Bala-
kot, are high and very highly susceptible to future 
landslides. Therefore, the construction of buildings 
and roads must account for landslide potential threats. 
The landslide susceptibility maps produced in this 
study give an accuracy of 79.3%, 80.1%, 81.5%, 81%, 
81.6%, and 80.4% for 2016, 2017, 2018, 2019, 2020, 
and 2021 respectively.

Based on derived results from this study, the fol-
lowing recommendations for future research work can 
be drawn:

 i. Manual digitization coupled with field inves-
tigation for landslide detection at the regional 
scale is laborious and time-consuming. There-
fore, the transferability and efficacy of object 
features and threshold value used in this study 
for prompt semi-automated landslide detection 
should be tested in other regions with similar 
topographic, climatic, and geological character-
istics to cope with landslide hazards and facili-
tate land-use planning.

 ii. The applicability of the proposed OBIA method 
should be further improved with the addition 
of more object features for complex landslide 
delineation in vegetated terrain and for the clas-
sification of landslides using high spatial reso-
lution DEM and multi-spectral remote sensing 
imageries.

 iii. It is observed by many researchers that multi-scale 
landslide susceptibility is better for comprehen-
sive landslide management plans. Guzzetti et  al. 
(1999) studied landslide susceptibility assessment 
at various scales using several methodologies and 
concluded that their results may help in formu-
lating suitable planning strategies to cope with 
landslide hazards. Similarly, Crozier and Glade 
(2005) examined the scale dependency in land-
slide hazard and risk assessment and found that 
scale-dependent analysis is important to mitigate 
landslide hazard damages at the different scales of 
occurrences. Therefore, multi-scale landslide sus-
ceptibility must be carried out in the study area, 
especially, where landslides are frequently occur-
ring at the regional scale.

Fig. 8  Landslide susceptibility maps of 2016 (a), 2017 (b), 
2018 (c), 2019 (d), 2020 (e), and 2021 (d)

◂

Environ Monit Assess (2022) 194:845 Page 13 of 17    845

https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/


1 3
Vol:. (1234567890)

 iv. Besides multi-scale susceptibility assessment, 
a physical-based analysis is also recommended. 
Physical-based methods are suitable for calcu-
lating the impacts of specific factors responsi-
ble for the initiation of landslides. Physical-
based methodologies emphasize mostly the 
analysis of geotechnical properties of landslide 
materials, slope angle, and pore water pressure 
parameters.

 v. Semi-automated developed landslide inven-
tory and susceptibility in this study may be 
checked for landslide hazard and risk assess-
ment.

Despite the advantages of Sentinel-2 MSI and 
OBIA techniques for spatio-temporal landslide detec-
tion, monitoring, and susceptibility assessment, espe-
cially for regional-scale landslide studies, it has also 
some limitations in landslide detection. Landslide 
delineation and separation from other similar charac-
teristic objects like barren, buildings, and sand with 
OBIA are challenging and are the main hindrance of 
the applied method. The detection threshold values 
used in this study are area-specific and subjective 
and can be different for other investigated areas and 
data sets. In this study, only those landslides that were 
larger than 100  m2 dimensions were mapped. Small 

Fig. 9  Temporal susceptibility class area from 2016 to 2021 (a). Change in susceptibility class from 2016 to 2021 (b). The highest 
positive change has occurred in very high and high susceptibility classes

Fig. 10  Success rate curve 
(SRC) and area under the 
curve (AUC), showing the 
accuracy assessment of 
the resultant susceptibility 
maps of 2016, 2017, 2018, 
2019, 2020, and 2021
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landslides with less than 100  m2 dimensions were 
ignored, due to Sentinel-2 MSI spatial resolution 
(10 m).

Conclusion

This study presents a multi-temporal landslide inven-
tory and susceptibility change using multi-temporal 
Sentinel-2 MSI data. In addition to Sentinel-2 MSI 
data, an ALOS PALSAR DEM is also utilized. In the 
investigated area, landslides were mostly triggered by 
the 2005 Kashmir earthquake and over time most land-
slides were stabled. However, new landslides occurred, 
due to the construction of roads. The Muzaffarabad and 
Murree formations showed the highest increase in land-
slide number and area. The Murree, Hazara, and Muzaf-
farabad formations showed the highest increase in land-
slide susceptibility. Landslide occurrences along faults 
have decreased from 2016 to 2018. With this research, 
we have developed an updated landslide inventory and 
susceptibility map for landslide-prone areas of northern 
Pakistan. It is concluded from this study that using high 
temporal resolution remote sensing data (Sentinel-2 
MSI) can be used for spatio-temporal landslide change 
detection and susceptibility assessment. The method 
and results of this study can be helpful for rapid land-
slide detection at a regional scale, landslide hazard, and 
risk assessment for land-use management.
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