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and 2% (96% CI:1.3–2.5) decrease in PM1 and PM10, 
respectively per 1% increase in relative humidity, 
0.032 (95% CI: 0.024–0.040) decrease in transformed 
value of PM2.5 per 1  mm increase in rainfall, and 
7.3% (95% CI: 1.3–15.9) decrease in PM10 per 1 m/s 
increase in wind speed are also detected. In conclu-
sion, meteorological conditions are found significant 
contributing factors in determining air pollution lev-
els in Kathmandu valley. On the long run, atmos-
pheric conditions can play vital roles in air pollution 
situation shifts mainly due to climate change charac-
terized by changes in meteorological values.

Keywords  Box-Cox transformation · Exponential 
model · Gamma generalized linear model · 
Meteorology · Ozone air pollution · Particulate air 
pollution

Introduction

Air pollution levels in the ambient air is primarily 
dependent upon its sources such as vehicular, indus-
trial, and domestic fuel combustion, and solid waste. 
Most of the air pollution studies have been focused on 
sources of air pollution. Consequently, many source 
apportionment studies have been conducted at differ-
ent parts of the world including Kathmandu valley 
(Angelevska, Atanasova & Andreevski, 2021). Apart 
from these sources, the temporal variation in air pol-
lution can also be attributed to local topography 
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such as plain Terai region, hilly region, or moun-
tainous region, weather or meteorological condition 
assessed by different parameters like temperature, 
rainfall, humidity and wind speed and direction, 
regional transport and atmospheric chemistry. Even 
though many studies have been conducted to assess 
the dependence of air pollution levels on weather 
parameters through model building at other parts 
of the world, such studies conducted in Kathmandu 
have been very few so far. Because of the lack of 
adequate number of studies that actually quantified 
the relationship between air pollution levels with 
atmospheric conditions based upon local daily data, 
the present study has been carried out to fulfill the 
gap which is based upon statistical modeling using 
local available air pollution and meteorological data. 
Moreover, air pollution situation in Kathmandu valley 
has been important environmental and public health 
concerns to Kathmandu valley inhabitants as shown 
by many studies conducted previously (CBS,  2019; 
DoEnv,  2017; Gurung & Bell, 2012; Islam et  al., 
2020; NHRC, 2016; Shrestha, 2007; Shrestha, 2012). 
According to world air quality report 2021, Nepal is 
among the top 10 air-polluted nations in the world, 
ranked 10th as worst polluted as per the population 
weighted ambient PM2.5 level (46 µg/m3) and Kath-
mandu ranked sixth worst air polluted among capital 
cities of the world with average population weighted 
PM2.5 level equivalent to 50.9 µg/m3 (IQAir, 2021).

Many studies conducted earlier at different places 
have shown association between air pollution and 
meteorological parameters but with their varied 
effects on air pollution levels measured by particu-
late air pollution (PM10, PM2.5, SPM, etc.) and gas-
eous air pollutants such as SO2, NOX, CO, and O3.  
Meteorological parameters like temperature, rainfall, rel-
ative humidity, and wind not only affect air pollution but  
also contribute to the overall climatic conditions and 
global warming mainly due to greenhouse effect. More-
over, in a study, water vapor is found to be the domi-
nating “greenhouse gas” of the marine troposphere  
with a typical relative humidity of 80% at its sur-
face (Fiestel & Hellmuth, 2021). Methodologically, 
air pollution and meteorology related studies have 
been based upon regression techniques though the 
types of regression models applied were also varied 
from linear to nonlinear models. A study conducted  
at North Chennai, India, covering different sea-
sons during 2010–2011 used regression method and  

found that ambient gaseous pollutants (SO2, NOx) 
were negatively correlated with temperature in sum-
mer but moderately and positively correlated during 
post-monsoon season. Additionally, positive correla-
tions were found between temperature and particulate 
pollution but negative correlation between humid-
ity and particulate pollution (Jayamurugan et  al.,  
2013). Similarly, a study conducted in Dhaka, Bang-
ladesh, during 2013–2017 using linear and curvilin-
ear regressions showed that PM (PM2.5 and PM10) 
was negatively related with temperature and relative 
humidity. Though relationships of PM and tempera-
ture in all other seasons were negative, positive rela-
tionship was detected during monsoon season (Kayes 
et al., 2019). In 2013, data of hourly average concen-
trations of six air pollutants (CO, NO2, O3, PM10, 
PM2.5, and SO2) measured through monitoring sta-
tions in major Chinese cities showed relationship 
with meteorology which explained more than 70% 
of the variance of daily average pollutant concentra-
tions (He et al., 2013). Moreover, a study conducted 
in Turkey during 2003–2005 investigated relation-
ships between air pollutant levels such as SO2 and the 
total suspended particles (TSP) and meteorological 
conditions, namely wind speed, temperature, relative 
humidity, and atmospheric pressure during October– 
March. According to the results, it was found that 
there were weak to moderate levels of association 
between air pollutant concentrations and the meteoro-
logical factors (Akpinar et al., 2009).

A study conducted in Kano metropolis, Nigeria, 
during 2018 monitored ambient day-time concen-
tration of NO2, PM10, SO2, H2S and CO in dry 
(April) and wet (August) months and corresponding 
meteorological data were collected from Nigerian 
Meteorological Agency. Meteorological parameters 
like temperature, relative humidity, and precipita-
tion showed significant effect on the pollutants with 
lower concentration detected for increased precipita-
tion, lower temperature, and increased humidity level 
(Oji & Adamu, 2020). A similar study investigated 
meteorological effects on the urban air pollution 
using measurement data of PM10, SO2, NO2, CO, 
and O3 and meteorological variables over the period 
of 1999–2016 in Seoul, South Korea. The effects of 
meteorology and emissions were quantitatively sepa-
rated using multiple linear regression. In terms of 
short-term variability, warm and stagnant conditions 
were related to high PM10, while low NO2 caused 
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by high winds at the rear of a cyclone were related to 
high O3. In terms of long-term trends, the decrease 
in PM10 and increase in O3 in Seoul were largely 
contributed by the meteorology-related trends (Seo 
et  al., 2018). There have been very few studies that 
associated air pollution with meteorological param-
eters in Kathmandu valley. One of the few studies 
conducted in Kathmandu valley during 2003–2005 
found associations between meteorological conditions 
like temperature, rainfall, humidity, atmospheric pres-
sure, wind direction and speed with concentrations of 
PM10 in Kathmandu valley. The increase of rainfall, 
temperature, and humidity showed negative correla-
tion with average PM10 concentration in Kathmandu 
valley (r =  −0.358 with rainfall and max. tempera-
ture, r =  −0.539 with humidity) whereas positive cor-
relation with atmospheric pressure (r = 0.237) and 
wind speed (r = 0.162) (Giri et al., 2008). Similarly, a 
more recent study conducted by NHRC in 2014/2015 
associated ambient PM2.5 with meteorological 
parameters and found negative association with tem-
perature (−0.711), rainfall (−0.345), and humidity 
(−0.207) based upon daily average data for one whole 
year (NHRC, 2016).

Time series study designs have been used to assess 
relationship between air pollution levels and mete-
orological parameters though variability have been 
assessed spatially also. Moreover, variation in air 
pollution levels has also been addressed differently 
between studies. For instance, a study conducted in 
Thailand used Bayesian confidence interval for ratio 
of the coefficients of variation of normal distributions 
to assess the variation of PM2.5 at different locations 
in Thailand (Thangjai et al., 2021). Many studies have 
been confined to computation of descriptive meas-
ures, correlational analysis, and comparative assess-
ment between seasons (Jayamurugan et  al., 2013; 
NHRC, 2016; Oji & Adamu, 2020). Literature review 
showed some studies using regression models which 
included linear as well as nonlinear models (Akpinar 
et al., 2009; Jayamurugan et al., 2013) with decompo-
sition of air pollution levels to long-term variations and  
seasonal variations. Studies have also used wavelet-
artificial neural network model for association air 
pollution with meteorological parameters (Guo et al., 
2020; He et al., 2013).

The present study explored different types of statis-
tical models including linear, curvilinear, and gener-
alized linear models for their suitability in modeling 

variation in air pollution levels temporally using mete-
orological parameters as predictor variables. Con-
founding effects have been addressed by seasonal-
ity and lag effects. The study is carried out with the 
research goal to quantify the effects of meteorologi-
cal parameters on air pollution in Kathmandu valley 
assessed by particulate air pollution (PM2.5 and PM10) 
and ozone air pollution basically to address the effects 
of meteorological conditions on air pollution varia-
tion. Even though many studies have been conducted 
to assess the dependence of air pollution levels on 
weather parameters at other parts of the world, such 
studies conducted in Kathmandu have been very few 
so far. Moreover, the studies have been supported only 
by descriptive analysis with computation of measures 
of associations only and there has been lack of quan-
tification of effects due to meteorological parameters 
on air pollution through statistical modeling. Because 
of the lack of studies that actually quantified the rela-
tionship between air pollution levels with atmospheric 
conditions based upon local daily data, the present 
study has been carried out to fulfill the research gap 
which is based upon statistical modeling using local 
available air pollution and meteorological data.

Materials and methods

Data

Air pollution

Air pollution data monitored by the Ministry of Pop-
ulation and Environment (MOPE), Department of 
Environment (DoEnv), Ministry of Forests and Envi-
ronment, and US Embassy was obtained specifically 
for Kathmandu valley. Data was compiled from web-
sites as follows.

•	 Daily PM10 and PM2.5 data for the years 2017–
2020 were compiled from Data Platform of the 
World Air Quality Project (https://​aqicn.​org/​city/​
kathm​andu/).

•	 Additionally, PM2.5 and Ozone data for 2017–
2020 was compiled from US Embassy website, 
specifically for US Embassy installed stations 
(Maharajgunj and Phora Darbar stations) (https://​

Page 3 of 14 684

https://aqicn.org/city/kathmandu/
https://aqicn.org/city/kathmandu/
https://www.airnow.gov/international/us-embassies-and-consulates/


Environ Monit Assess (2022) 194:684	

1 3
Vol:. (1234567890)

www.​airnow.​gov/​inter​natio​nal/​us-​embas​sies-​and-​
consu​lates/).

•	 PM1 data was obtained from Open Data Nepal for 
2019 (https://​opend​atane​pal.​com/).

•	 Altogether, seven stations within Kathmandu val-
ley, namely Ratnapark, Shankapark, US Embassy, 
Phora Darbar, Bhaisipati, Pulchowk, and Bhakta-
pur were incorporated for the analysis. Data for 
Kirtipur station was unavailable.

Meteorological data

Daily meteorological data was collected for tem-
perature (maximum and minimum), rainfall, relative 
humidity, and wind speed from the Department of 
Hydrology and Meteorology (DHM), Government 
of Nepal (GoN), Kathmandu, covering 3 years daily 
data 2017–early 2020. Data includes eight stations 
spread over all the three districts of Kathmandu val-
ley mainly for associating air pollution to atmospheric 
conditions. The stations are Bhaktapur, Nagarkot, 
Changunarayan, Godavari, Khokana, Khumalatar, 
Panipokhari, and Kathmandu Airport.

Analysis

Descriptive analysis and subsequent assessment 
are based upon monthly averages of meteorological 
parameters and corresponding air pollution averages 
with graphical representations. Effect quantifica-
tion of meteorological parameters, seasonality, trend, 
and autoregressive nature of time series variables is 
explored through statistical models including curvi-
linear and Gamma generalized linear model (GLM) 
based upon daily averages.

Models

Regression models are built to associate air pollution 
concentration levels on meteorological variables and 
confounders like seasonality and trend. Additionally, 
autoregressive terms are also explored and added to 
account the effects of autoregressive effects since 
the time series data of daily pollution levels can be 
autoregressive and found true after computing auto-
correlation coefficients at different lags. Since air pol-
lution levels are often highly skewed (as in the present 

study), the normality assumption of distribution of 
such variables is highly questionable. Additionally, 
the examination of relationships between air pollut-
ants and meteorological parameters showed nonlinear 
relationships rather than linear. Consequently, vari-
ous regression models like curvilinear models, Box-
Cox transformed models (Montgomery et al., 2012), 
and Gamma GLM are explored for their suitability 
for modeling. The functional forms of the accounted 
models are given below.

The exponential model

where y is the response variable (air pollution level), 
�is are unknown parameters, xi s are predictors (mete-
orological variables and confounders), and �′

s are 
residuals. The model can be linearized by log trans-
formation as follows and parameter estimates are 
found using ordinary least squares.

Box‑Cox transformed model

The Box-Cox transformation is shown below where λ 
is a constant determined by goodness of fit and model 
adequacy test results.
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transformations are deliberately avoided for difficulty 
in interpretation. In the model building process, the 
option of using gamma GLM is also explored since 
air pollution levels are found non-normal, positively 
skewed, and dependency of error variance on mean 
is detected even after using curvilinear and Box-Cox 
transformed models. Additionally, the assumption of 
homoscadasticity of residuals in linear regression is 
also relaxed while using gamma GLM (Ng & Cribbie, 
2016). Finally, the model is used if suitable regarding 
goodness of fit and other major model adequacy tests.

Results and discussion

Descriptive analysis

The monthly averages of air pollution levels (PM10, 
PM2.5, and Ozone) and corresponding meteorologi-
cal parameters (temperature, rainfall, relative humid-
ity, and wind speed) in Kathmandu valley during 
2017–2020 were assessed. For PM1, monthly aver-
ages were assessed only for 2019 because of data una-
vailability for the remaining years during 2017–2020 
period. The annual averages of temperature, rain-
fall, humidity, and wind are found to be 18.5  °C, 
1431.5  mm, 77.6%, and 1.3  m/s, respectively. The 
monthly variation shows lowest average temperature 
(11.8 °C; range: 0.6–13.4 °C) in winter with seasonal 
index lower than 36% compared to annual index (1.0) 
during when particulate air pollution levels are found 
to be highest (Tables  1 and 2). Temperature is rela-
tively warmer with average ranging between 15.6 to 
22.9  °C in spring and autumn months (March–May 
and September–November) during when the seasonal 
indexes are 2–5% higher compared to the annual 
index (Tables  1 and 2). Temperature is found high-
est with averages ranging between 23.7 and 23.9 °C 
during summer months (June–August) during when 
seasonal indexes also significantly higher by 28% 
compared to annual index, and particulate air pollu-
tion levels are found to be relatively low which ascer-
tains that temperature and particulate air pollution are 
inversely related (Tables 1 and 2).

Similarly, rainfall occurrence is distinctly very 
high in Monsoon (July–August) with monthly 
average between 334.4 and 404.2  mm, moderate 
in May, June, and September (116–181  mm) and 
low in other dry months (1–91 mm) with lowest in 

November. Considering seasonal index of rainfall, 
summer seasonal index is much higher (2.55) com-
pared to other seasons which ranged between 0.15 
and 0.5 (Tables 1 and 2). Regarding relative humid-
ity, monthly average shows that the monsoon or 
around monsoon months (July–September) were the 
most humid months with average ranging between 
80 and 85% and least averages detected in March 
and April time (70–72%) with relatively low rain-
fall during the period. Seasonal relative humidity 
index showed lower than annual index (0.93–0.96) 
in spring and winter whereas higher values in sum-
mer and autumn seasons (1.04–1.07) (Tables 1 and 
2). Regarding wind, monthly averages show that the 
most windy months in Kathmandu valley were from 
March to June during which period the average 
wind speed ranged between 1.6 and 1.8 m/s whereas 
lowest in winter or around winter time (November– 
January) with average ranging between 0.7 and 
0.95  m/s. Seasonal index of wind showed lower 
than annual index of wind in winter and autumn 
(0.77–0.78) whereas higher in summer and spring 
months (1.13–1.32) compared to annual index of 
wind (Tables 1 and 2).

Considering particulate air pollution, monthly 
averages were highest in winter with approximately 
85–99  µg/m3, 64–80  µg/m3, and 36–41  µg/m3 for 
PM10, PM2.5, and PM1, respectively. Seasonal index 
of particulate air pollution showed highest values 
in winter (1.46–1.64) and lowest values summer 
(0.34–0.51) (Tables  1 and 2). The averages clearly 
indicate inverse relationship between temperature and 
particulate air pollution levels. On the contrary, the 
averages are found to be lowest in summer/monsoon 
season with approximately 21–23  µg/m3, 13–18  µg/
m3, and 5–17  µg/m3 for PM10, PM2.5, and PM1, 
respectively. However, the pattern of monthly and 
seasonal variations in Ozone is found to be very dif-
ferent compared to particulate air pollution. The lev-
els are found to be highest in warm temperatures dur-
ing the months of spring/summer (March–June) with 
values ranging between 67 and 79 µg/m3 and lowest 
during most of the winter time (December–January) 
with values ranging between 31 and 33  µg/m3. The 
seasonal index of ozone level is found to peak in drier 
spring (1.55) with adequate sunlight and photochemi-
cal generation of O3 and lowest in winter (0.7). In 
summer/monsoon season, also the O3 seasonal index 
is below the annual index of 1.0 (0.95) mainly due to 
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rainy days without enough sunlight during daytime 
(Tables 1 and 2). Figure 1 depicts monthly meteoro-
logical averages and corresponding air pollution aver-
ages and useful for the comparative assessment.

Modeling effects

Air pollution level measured by PM2.5 and PM10, PM1, 
and O3 are modeled on different predictors includ-
ing meteorological parameters, seasonal effects, and a 
daily trend variable. Additionally, lag effects are also 
explored since data for modeling are essentially time 
series. Data exploration of air pollution levels showed 
significant positive skewness for all the parameters con-
sidered which suggested suitability of curvilinear, mod-
els with transformation, and nonlinear models including 
Gamma generalized linear model (GLM) rather than 
the linear models since normality assumption of the 
air pollution levels cannot be accepted for substantially 
skewed variables. Exponential model with logarithmic 
transformation, Box-Cox transformed model (response 
variable with Box-Cox transformation), and gamma 
GLM were  explored for their suitability and the model 
which is found to be the best among them was cho-
sen for modeling considering various model adequacy 
tests including goodness of fit assessed by adjusted 
R2 or Omnibus test, heteroscadasticity by residual 
plot, normality by Kolmogorov–Smirnov (KS) test, 

autocorrelation by plots up to sufficient lag, and mul-
ticollinearity by variance inflation factor (VIF). Models 
with estimated parameters with 95% confidence interval 
and p values are shown in Tables 3 and 4. Moreover, the 
model adequacy test results are also shown. Exponen-
tial model, Box-Cox transformed model, and Gamma 
GLM are found to be suitable for explaining variation 
of PM10, PM2.5 and ozone, and PM1, respectively. Con-
sidering the Box-Cox transformed models, the values of 
the parameters (λ) found relatively better for PM2.5 and 
O3 are 0.333 and 0.75, respectively, which yielded bet-
ter goodness of fit and other model adequacy tests.

Effects

Temperature

Effects of temperature on pollution level have been 
found most evident among the predictors for all air 
pollutants and statistical models explored with 1 °C 
increase in average temperature found associated 
with 5.1% (95% CI: 3.4–6.9%) and 4.6% (95% CI: 
2.9–6.3%) decrease in PM10 and PM1 levels, respec-
tively. Similarly, 1  °C increase in average tempera-
ture is also found associated with 0.083 decrease in 
Box-Cox transformed unit of PM2.5 and conversely, 
0.177 increase in Box-Cox transformed unit of ozone 

Table 2   Seasonal average 
and index of meteorological 
and air pollution parameters 
in Kathmandu valley

Overall statistics computed 
from monthly data and 
marginally different from 
overall statistics computed 
from daily data; Annual 
seasonal index = 1.00

Parameter Measure Seasonal

Winter Spring Summer Autumn Annual

Temperature Average (°C) 11.77 18.94 23.78 19.39 18.51
Seasonal index 0.64 1.02 1.28 1.05 1.00

Rainfall Average (mm) 55.07 259.55 913.86 202.99 357.87
Seasonal index 0.15 0.73 2.55 0.57 1.00

Relative humidity Average (%) 74.63 71.85 83.21 80.54 77.57
Seasonal Index 0.96 0.93 1.07 1.04 1.00

Wind Average (m/s) 0.99 1.70 1.46 1.01 1.29
Seasonal index 0.77 1.32 1.13 0.78 1.00

PM10 Average (µg/m3) 90.67 71.35 21.29 64.29 61.90
Seasonal index 1.46 1.15 0.34 1.04 1.00

PM2.5 Average (µg/m3) 68.47 45.70 16.91 36.16 41.81
Seasonal Index 1.64 1.09 0.40 0.86 1.00

PM1 Average (µg/m3) 34.50 22.00 10.82 18.29 21.40
Seasonal index 1.61 1.03 0.51 0.85 1.00

O3 Average (µg/m3) 33.89 74.78 45.57 38.50 48.19
Seasonal index 0.70 1.55 0.95 0.80 1.00
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(Tables  3 and 4; Fig.  2). The negative association 
between temperature and particulate air pollutants 
demonstrates cold weather increases particulate air 
pollution in the ambient air significantly compared 
to warm atmospheric condition mainly because par-
ticulate pollutants are trapped near the ground dur-
ing colder, calmer months due to temperature inver-
sion. During a temperature inversion, smoke and 
dust particles are difficult to rise and disperse in the 
atmosphere which is very much evident in a place 

like bowl shaped Kathmandu valley characterized by 
low wind flow. On the contrary, ground level ozone 
is found relatively higher in warm temperature com-
pared to cold temperature primarily because pol-
lutants emitted by vehicles and industries and other 
sources chemically react in the presence of sunlight 
producing ozone and therefore is most likely to reach 
unhealthy levels during hot sunny days in urban envi-
ronments. Based upon the present literature review, 
even though descriptive and correlational analyses 

Table 3   PM2.5 and PM10 model estimates

Parameter PM2.5
Box-Cox transformed model for λ = 0.333

PM10
Exponential model

Coefficient Sig Lower bound Upper bound Coefficient Sig Lower bound Upper bound

Constant 8.997 0.000 7.963 10.031 5.882 0.000 5.234 6.531
Temperature  −0.083 0.000  −0.108  −0.058  −0.051 0.000  −0.069  −0.034
Rainfall  −0.032 0.000  −0.040  −0.024 - - - -
Relative Humidity  −0.026 0.000  −0.036  −0.016  −0.019 0.000  −0.025  −0.013
Wind  −0.148 0.008  −0.257  −0.038  −0.073 0.095  −0.159 0.013
Trend  −0.001 0.000  −0.001 0.000 0.000 0.017 0.000 0.000
Spring 0.594 0.000 0.377 0.810 0.597 0.000 0.412 0.781
Autumn 0.176 0.075  −0.018 0.370 0.428 0.000 0.294 0.561
Winter 0.278 0.095  −0.048 0.603 0.166 0.139  −0.054 0.386
LAG 0.049 0.000 0.046 0.052 0.006 0.000 0.005 0.007
Adjusted R2 0.852 0.791
Autocorrelation  −0.12 < r < 0.12  −0.0 8 < r < 0.2
Constant variance More or less constant More or less constant
Normality Slightly non-normal Slightly non-normal

Table 4   PM1 and O3 model estimates

Parameter PM1 Gamma GLM O3 Box-Cox transformed model for λ = 0.75

Coefficient Sig Lower bound Upper bound Coefficient Sig Lower bound Upper bound

Constant 3.504 0.000 2.990 4.019 19.731 0.000 17.041 22.420
Temperature  −0.046 0.000  −0.063  −0.029 0.177 0.000 0.126 0.228
Relative Humidity  −0.007 0.028  −0.013 -0.001  −0.183 0.000  −0.219  −0.147
Spring 1.716 0.000 1.048 2.384
Autumn  −0.148 0.019  −0.272  −0.025
Winter  −0.354 0.000  −0.543  −0.166
LAG 1 0.034 0.000 0.027 0.041 0.279 0.000 0.267 0.292
LAG 2 0.006 0.087 –0.001 0.013
Omnibus test/R2 Significant at 1% level 0.85
Autocorrelation  −0.06 < r < 0.30  −0.03 < r < 0.1
Constant variance Slightly non-constant Fairly constant
Normality Slightly non-normal Slightly-normal
Multicollinearity Absent (VIF < 5) Absent (VIF ≤ 2)
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have been done to associate temperature with ambi-
ent particulate air pollution in Kathmandu valley, 
there has been absence of quantification of effects 
due to temperature rise on ambient particulate air 
pollution. The results obtained in the present analysis 
fulfil this research gap.

Rainfall

Rainfall is found to be statistically associated with 
PM2.5 level with increase in 1 cm rainfall decreases 
0.32 PM2.5 expressed in Box-Cox transformed value 
which indicates that rainfall decreases air pollu-
tion concentration in the ambient air. Similar to the 
present study, other studies have also shown reduc-
tion in air pollution levels due to rainfall occurrence 
(Kim et  al., 2014; Giri et  al., 2008; NHRC,  2016). 

However, except for PM2.5, rainfall is found statisti-
cal insignificant even at 15% level for the rest of the 
air pollutants considered. This may be due to some 
extent of multicollinearity effect among the mete-
orological parameters and seasonal dummies. For 
instance, monsoon season with high rainfall is char-
acterized by warm temperatures and high relative 
humidity compared to winter season. Otherwise, 
if monthly averages of particulate air pollution are 
assessed, then it is found that the pollution levels are 
least during monsoon time including Kathmandu val-
ley which is a strong evidence that rainfall washes 
away dust particles from air. Nevertheless, since 
other major parameters like temperature and relative 
humidity are found statistically significant in models 
with particulate air pollution levels, rainfall effect 
was not found statistically significant for PM10, PM1, 
and O3.
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Fig. 1   Monthly statistics of PM2.5, O3 and meteorological parameters; temperature in °C, rainfall in mm; RH in %, wind in m/s; 
PM2.5 and O3 in µg/m3

Fig. 2   Change in pollution 
level per 1 °C increase in 
temperature
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Relative humidity

Similar to the temperature effect on air pollution 
levels, relative humidity is also found to be sta-
tistically associated with air pollution levels in all 
the four considered models. Examining the direc-
tion and magnitude of effects, it is found that the 
increase in relative humidity decreases ambient 
air pollution levels with 1% increase in relative 
humidity which is found to be associated with 1.9% 
(95% CI: 1.3–2.5%) and 0.7% (95% CI:0.1–1.3%) 
decrease in PM10 and PM1 levels, respectively. Sim-
ilarly, 1% increase in relative humidity is also found 
associated with 0.026 (95% CI: 0.016–0.036) and 
0.183 (95% CI: 0.147–0.219) decrease in Box-Cox 
transformed unit of PM2.5 and ozone, respectively 
(Tables  3 and 4; Fig.  3). The reduction in ozone 
level associated with increase in relative humidity 
has also been found in other studies also (Jia & Xu, 
2014; Kavassalis & Murphy, 2017).

Wind

Wind is another important weather parameter that 
affects air pollution level significantly as shown by 
many studies (NHRC, 2016). Wind disperses air con-
taminants away from their source, and therefore, gen-
erally, higher wind is found associated with lower air 
pollution concentration. The present study has also 
found negative association between PM10 and PM2.5 
with wind speed with 7.3% (95% CI: 1.3–15.9%) and 
0.148 (95% CI: 0.038–0.257) Box-Cox transformed 
value of PM10 and PM2.5 levels per 1  m/s increase 
in wind speed, respectively (Tables 3 and 4; Fig. 4). 
Wind is found statistically insignificant for the predic-
tion of PM1 and O3 levels.

Seasonal effects

Along with atmospheric parameters, seasonality can 
be major contributing factor on variation in pollution 

Fig. 3   Change in pollution 
level per 1% increase in 
relative humidity
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levels. With several seasonal features characterized 
by joint effects of meteorological parameters, air pol-
lution levels tend to differ significantly for different 
seasons. Descriptive analysis considering seasonal 
averages and indexes also showed substantially differ-
ent values for all the meteorological and air pollution 
parameters considered in the present analysis. Explo-
ration of seasonal effects through modeling showed 
that winter season characterized by cool temperature, 
lower relative humidity, and wind flows increased 
PM10 and PM2.5 by 16.6% and 0.278 Box-Cox trans-
formed value, respectively, compared to summer. 
This implied that winter season with cold air traps air 
pollution relative much more than in warm air. More-
over, air is denser and moves slowly in winter which 
tends to hold air pollution relatively more inducing 
rise in air pollution. Additionally, the seasonal effect 
of spring characterized by dry and relatively cool con-
ditions showed that PM10, PM2.5, and O3 increased by 
59.7%, 0.594, and 1.716 Box-Cox transformed val-
ues compared to summer, respectively. The seasonal 
effect of spring revealed even higher effect compared 
to winter in increasing the air pollution levels in 
Kathmandu valley. The seasonal effect of autumn also 
showed higher air pollution increasing effects com-
pared to summer for PM10 and PM2.5. However, for 
PM1, the effect seems to be different which could be 
due to different season specific joint effect of autumn. 
For ozone, the effect due to autumn and winter sea-
sons is found statistically insignificant.

Lag effects

Models depending upon time series data are often 
affected by lagged variables due to which auto-regressive  
terms may be required to explain variation in the 
response variable while modeling major predictors. 
In the present model building process, this has been 
explored and is found that the first and second lagged 
values of the responses are found statistically signifi-
cant in explaining variation of the air pollution levels. 
This meant that daily time series data of air pollution 
levels also depend on its own prior values up to 2 days. 
Particulate air pollution parameters (PM10 and PM2.5) 
including O3 are found to be affected at Lag1 and are 
statistically significant with positive association at 1% 
level. For PM1, additionally, Lag2 values are also found 
statistically significant. Exploration of other lags up 

to 1  week was statistically insignificant and therefore 
ignored.

Model adequacy tests

The goodness of fit, normality, heteroscedastic-
ity, multi-collinearity, and autocorrelation checks 
were performed under model adequacy test require-
ments of acceptance of the fitted models. Models 
performed good as regards to goodness of fit test 
with 79–85% of the variance in the response vari-
ables explained in curvilinear models or Omnibus 
Test resulting highly significant for Gamma GLM. A 
study in China showed 70% of daily variation in air 
pollution was attributed to meteorological conditions 
(He et  al.,  2017). Regarding normality and hetero-
scedasticity, residuals are found slightly non-normal 
and variances are fairly constant. In order to obtain 
normal residuals, other curvilinear/nonlinear mod-
els were also explored but residuals were still found 
non-normal or slightly non-normal. Consequently, 
the fitted models are accepted and indicate that fur-
ther researches could be required to achieve relatively 
more accurate modeling results. Considering autocor-
relation, the models are found not much affected by 
high autocorrelations (−1 < r < 0.3) considering high 
sample size for data modeling. VIFs are found to 
be less than 5 for the fitted models which ascertains 
that there is absence of substantial multicollinearity 
issue though some degree of multicollinearity is still 
present.

Conclusion

Though the major sources that govern the overall 
average of air pollution in a local environment are 
emissions from anthropogenic sources like vehicular, 
industrial, domestic, solid waste, and others, natu-
ral characteristics like local topography and atmos-
pheric conditions (also caused by human activities) 
also determine air pollution levels and its tempo-
ral variations. The present analysis focused on the 
atmospheric conditions determined by meteorological 
parameters like temperature, rainfall, relative humid-
ity, and wind. A reasonably large sample size of 
daily data for around 3 years has been used for analy-
sis. Different types of regression models have been 
explored for their appropriateness for observed data. 
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Major meteorological parameters including seasonal-
ity and lag effects have been accounted for modeling 
to arrive at more pragmatic estimates. Regression 
diagnostics including goodness of fit, heteroscedastic-
ity, autocorrelation, and multicollinearity have been 
addressed for model adequacy tests which is essential 
for validity of modeling. Moreover, altogether, seven 
air pollution monitoring stations have been used to 
represent Kathmandu valley which included all the 
three districts of Kathmandu valley (Kathmandu, Lal-
itpur, and Bhaktapur) with coverage of traffic areas, 
residential areas, and low traffic/background areas. 
And eight meteorological stations spread across all 
the three districts of Kathmandu valley have been 
used for analysis. The study also has some unavoid-
able limitations. It has been conducted based upon 
available air pollution and meteorological moni-
toring data with some missing monitoring data for 
specific days/stations. Even in the presence of some 
missing data, their effects in the overall statistics and 
modeling estimates are assumed minimal primarily 
because of the large amount of monitoring database 
(around 3  years) used for analysis. Also, analysis is 
based upon only available air pollution parameters 
(particulates and ozone). Monitoring data of param-
eters like CO, SO2, and NOx are presently unavailable 
for analysis. Additionally, ozone measurements are 
available only for two stations within the valley and 
for PM1 for one year only.

Exploring the dependency of temporal air pol-
lution variation through statistical models includ-
ing curvilinear and nonlinear models, namely 
exponential, Box-Cox transformed, and gamma 
GLM revealed statistically significant associations 
between air pollution levels and the meteorological 
parameters with address of time series affected con-
founding variables such as seasonality and autore-
gressive dependence (lagged effect) with high pro-
portions of variance in air pollution levels explained 
(79 to 85%). With the lack of adequate number of 
studies that quantified the effects in Kathmandu 
valley based upon local data, the present analysis 
would be useful in assessing quantification of mete-
orological effects on air pollution level and warrants 
necessity of further such studies in future as well. 
Results showed around 5% reduction in particulate 
air pollution (PM10 and PM1) per 1  °C increase in 
average temperature and significant increase in sur-
face O3 air pollution (0.177 Box-Cox transformed 

value) per 1  °C increase in average temperature. 
The results clearly indicate that air pollution levels 
in Kathmandu valley are very much temperature 
sensitive. Similarly, around 0.7% and 2% decrease 
in PM1 and PM10 per 1% increase in relative humid-
ity and 7.3% decrease in PM10 per 1 m/s increase in 
wind speed are also detected. Other effects are also 
quantified in terms of Box-Cox transformed values 
for statistically significant effects due to rainfall, 
relative humidity, and wind.

In conclusion, meteorological conditions are sig-
nificant contributing factors in determining air pol-
lution levels as demonstrated by statistical modeling 
of local data in Kathmandu valley. On the long 
run, atmospheric conditions can play vital roles in 
air pollution situation shifts mainly due to climate 
change characterized by changes in meteorological 
parameter values. The results of the study will be 
helpful to assess the effects of climate change on air 
pollution levels in many years to come.
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