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Abstract Nanomaterials (NMs) are currently being
used in agricultural soils as part of a new bioreme-
diation (BR) process. In this study, we reviewed the
biosynthesis of NMs, as well as their chemical com-
position and prospective strategies for helpful and
sustainable agricultural soil bioremediation (BR).
Different types of NMs, such as nanoparticles, nano-
composites, nanocrystals, nano-powders, and nano-
tubes, are used in agricultural soil reclamation, and
they reflect the toxicity of NMs to microorganisms.
Plants (Sargassum muticum, Dodonaea viscose, Aloe
Vera, Rosemarinus officinalis, Azadirachta indica,
Green tea, and so on) and microorganisms (Escheri-
chia coli, Shewanella oneidensis, Pleurotus sp., Kleb-
siella oxytoca, Aspergillus clavatus, and so on) are
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the primary sources for the biosynthesis of NMs. By
using the BR process, microorganisms, such as bac-
teria and plants, can immobilize metals and change
both inorganic and organic contaminants in the soil.
Combining NMs with bioremediation techniques for
agricultural soil remediation will be a valuable long-
term solution.
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Introduction

Bioremediation (BR) is a method that converts pollut-
ants from soil, water, and different types of sources by
using microorganisms (Huda et al., 2021). Microorgan-
isms, such as bacteria, fungi, algae, protozoans, and
others, are frequently used to degrade organic matter in
a polluted environment (Mandal et al., 2021; Rizwan
et al., 2014). Microorganisms are used with oxygen gas,
fertilizer, and other factors during in BR process that
helps their rapid growth as they remove organic pollut-
ants (Pandey, 2018). These microbes, which are used
specifically in genetic engineering and other molecular
biological techniques, can be applied to break down pol-
lutants and consume toxic chemical agents (Balciunas
et al., 2013; Enamala et al., 2019; Rizwan et al., 2014).
The main advantages of the BR method are highly effi-
cient for example easily selects specific metals, easily
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minimizes chemical and biological sludge, as well as
has no requirements for supplementary nutrition for
recovery of heavy metals (Rizwan et al., 2014). Some-
times, the BR process may happen naturally as defined
in an innate diminution or inherent BR (Kungwani
et al., 2022). Different types of technologies such as
bio-stimulation, hemofiltration, land farming, com-
posting, phytoremediation, bioreactor, and bioventing
are very common processes of BR (Huda et al., 2021;
Thomassin-Lacroix et al., 2002). The in situ BR method
removes the harmful and poisonous chemicals in the
area (Karlapudi et al., 2018). The ex situ BR method
needs to treat the polluted substances or poisonous
materials by digging in the soil (Rizwan et al., 2014).

Nano-bioremediation (NBR) is a method for disposing
of detrimental pollutants into secure molecules by treat-
ing the different types of microorganisms in connection
with NMs that are smaller than100 nm (Mallikarjunaiah
et al., 2020). Several NMs—Zn, Cu, Au, and Ag— are
synthesized with a lot of microorganisms and plants
that are accessible in the literature and useful in break-
ing down harmful contaminants (Gupta et al., 2020).
Scientists have extensively investigated the different
combinations of synthesized NMs. This combined pro-
cess involves a wide range of potential applications with
lower costs and the least impact on our environment when
mediating contaminants in wastewater, groundwater, and
sediments contaminated with heavy metals as either inor-
ganic or organic compounds in the soil (Vazquez-Nufiez
et al., 2020). NMs have a special ability to remove toxic
elements and develop the microbial action of the defined
toxic item (Pandey, 2018). Agricultural soil remedia-
tion seems like a useful approach for dealing with pollu-
tion control by using biosynthetic NMs. The goal of this
review is to provide a general overview of the biosyn-
thesis of NMs from plants and microorganisms and the
chemical compositions of NMs. This review article is a
summary of the latest enhancements in the techniques of
agricultural soil remediation for the various contaminated
areas of our environment. The potential impact of using
NMs on environmental pollution, especially in agricul-
tural soil, is also presented and discussed.

NMs and nanotechnology
NMs can be applied in almost every field of science—

agriculture, food, medicine, engineering, space,
cosmetics, defense, automobiles, textiles, and the
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environment (Singh et al., 2020). With great achieve-
ments in the field of NMs and nanotechnology, their
importance in supplying advanced and efficient keys
to ecological contexts is becoming gradually more
significant (Chauhan et al., 2020). NMs have gained
much attention from researchers throughout the world
in the different sectors of the sciences that are very
closely related to the environment, specifically BR
(Chauhan et al., 2020). The surface activity of NMs
can be customized to develop their selectivity for
sample removal (Chauhan et al., 2020; Zamborini
et al.,, 2012; Huang et al., 2009). Different types of
NMs with their chemical presentations, structures,
and examples are described in Table 1.

Nanoparticles, such as nano scale-zero-valent iron
(nZVI), are metals that act as a reducing agent that
transfers their electrons from iron and degrades a wide
range of contaminants (Visentin et al., 2021). Nano-
composites are composed of different types of flexible
and non-flexible NMs. Nanocrystals are composed of
crystalline fragments of at least 1000 nm. For exam-
ple, zinc sulfide is a nanocrystal that contains two
different crystalline components: wurtzite and zinc-
blende (Torres-Martinez et al., 2001). Nanopowder
forms a massive number of atoms that bond to one another
with a range from 1 to 100 nm. A nanosponge is a kind
of nanomaterial that is a highly cross-linked carbon-
containing polymer. These are tiny sponges porous in
structure (Baglieri et al., 2013). Nanotube has, as so
named, a tube structure, and a carbon nanotube (CNT)
is a special carbon atom grapheme.

NMs consist of different types of chemical and
physical materials, and their costs are high (Sebastian
et al., 2014). The usage of harmful chemicals and the
production of the poisonous secondary products have
opened the way for the creation of biogenic NMs.
Many researchers have described the different types
of NMs, including iron (Fe), silver, zinc, copper, and
gold, by using different types of microorganisms,
such as bacteria, fungi, algae, yeasts, actinomycetes,
and plant extracts (Das et al., 2018; Hugq et al., 2022;
Moholkar et al., 2020).

Using different biological factors in the biosyn-
thesis of NMs is a growing research topic in green
nanotechnology (Ganguly et al., 2018). Nowadays,
many scientists have paid attention to the rise of
nanotechnology as a plainer and more robust instru-
ment. Nanotechnology has been applied to removing
toxic pollutants that exist in small amounts in soil,



Environ Monit Assess (2022) 194:730

Page 3 0of 20 730

Table 1 List of NMs with chemical composition with structure

NMs Chemical presentation Example Structure References
Nanoparticles Nano scale-zero-valent iron Fe, Ti, Mn, Ag, Kim et al., 2012
(nZVI), here iron is metal Au.
and acts as a reducing agent, B ‘\
ZV1 transferred the electron ) (1)
. (NH;) X
from iron. They are capable e
to degrade a wide range of -~ \t (Y
contaminants. e Vols (\Ag ~— i
Ve o™
g (NH
= |
— 1
|
Nanocomposite Various multiple NMS were  Polyethylene - N Lui et al., 2018
arrested inside amass oxide, — P
materials. They are composed Polyethyl- e e
of a flexible and non-flexible  eneimine. '
NMS, two non-flexible or two
flexible NMS. o
HOO(
NH-PEG
NH-PEG
GO-PEG/Fe,0,
\: >/

Nanocrystal

Nanocrystal is composed of
a crystalline fragment with
leastwise 1000 nanometers.
Zinc sulfide is a Nanocrystal
that contains two different
crystalline components. 1.
Waurtzite 2. Zincblende.

ZnS (zinc sulfide),
Al

Torres et al., 2001

Nano powders

It is a powder material that
formed a massive number of
atoms that bind one another
with a range from 1 nm to
100 nm.

Iron oxide Fe203,
Fesgy.

Kos et al., 2014
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Table 1 (Continued)

NMs Chemical presentation Example

Structure References

Nano sponge  One kind of nanomaterial isa Cyclodextrin,
highly cross-linked carbon-
containing polymer. They
are tiny sponges porous in
structure.

pactixer.

Temozolamide,

oH Baglieri et al., 2013

—
0 HO HO .
O
a [
HO, o

ol OH 0

Nanotubes It is a Nano scale/ microscopic Single-walled
tube that looks like a tube CNT, Multi-
structure. Carbon nanotube walled CNT.
(CNT) is a special carbon

atom+ grapheme.

O OH Mzeglllzez et al.,

air, and water (Das et al., 2015; O’Carroll et al.,
2013; Dhillon et al., 2012). Nanotechnology also
acts as a catalyst that reduces the number of objects
used in the manufacturing procedure and reduces the
production of detrimental wastes (Chauhan et al.,
2020). Nanotechnology has given innovative scope
to ecological cleanups, and it is an efficient substi-
tute for commercial remediation as it facilitates both
chemical reductions and rapid catalysis to reduce
the contaminants of concern (Yaqoob et al., 2020).
Nanotechnology has been used for dealing with the
BR of uranium contamination, solid wastes, hydro-
carbons, wastewater remediation, heavy metal con-
tamination, soil pollution, and groundwater pollu-
tion (Alazaiza et al., 2021; Ojuederie & Babalola,
2017; Nematollahzadeh et al., 2015).

@ Springer

Principles and concepts of NBR

NBR can reduce the total expenditures on cleaning
up major pollution with decreased clean up time
(Enamala et al., 2019). The fundamental theory of
NBR is termed as the deterioration of organic pol-
lutants via nano-catalysts as a medium that permits
them to enter deep inside the pollutants and deal
with them carefully without influencing the nearby
assistance of numerous microbes (Moholkar et al.,
2020). These microbes appear in all places in the
world and are struggling to live with the people on
the earth. On the other hand, these microbes have
different types of benefits like altering heavy met-
als into nonpoisonous forms, such as carbon dioxide
and water, with the help of the mineralization of the
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organic pollutants. Even these can lead to various
metabolic intermediates that can be used as metab-
olites for their development and growth (Enamala
et al., 2019; Thakur et al., 2018). Besides, microbes
protect their cell walls from the poisonous materials
by producing degradable enzymes (Vardhan et al.,
2019). When pollutants are consumed by microbes,
they increase their unique surrounding membrane
which helps them resist the entry of foreign mate-
rials into their cells (Murinova & Dercova, 2014).
For a successful remediation method, researchers
should consider the improvements of microorgan-
isms mechanisms, such as development, growth, and
movements in polluted sites (Enamala et al., 2019).
The main idea about the NBR is that it describes the
size of the NMs because their very small particles
permit them to enter the polluted areas with different
microbes, such as fungi, bacteria, and others.

Many scientists have included this study as part of
their research because NMs can generate better out-
comes when compared with the micro materials found
in polluted areas (Enamala et al., 2019). The cleanup
method is considerably delayed when compared to the
usual BR technology. Some of the nano-based materi-
als used for dealing with such polluted areas are nano-
composites, nanocrystals, nano-powders, nanotubes,
and others. These NMs can be treated to immobilize
the cells of microbes that then break down or be used
in the recovery of precise chemicals depending upon
the researcher’s interest (Enamala et al., 2019).

The science of NBR and biosynthesis of NMs

NBR is the main adaptable method for a strong envi-
ronmental cleanup. The removal of environmental
pollutants (for example, organic and inorganic con-
taminants and heavy metals) from polluted areas using
NMs produced by microorganisms (for example, bac-
teria, and fungi) or plants with the help of nanotechnol-
ogy is termed NBR (Chauhan et al., 2020; Ramezani
et al., 2021; Vazquez-Nuiez et al., 2020). NMs seem
like an excellent substitute for existing techniques
because of their price value, high competence, and
friendliness to the environment. Iron (Fe) is regarded to
be the first nanomaterial (NM) to be utilized for envi-
ronmental cleanup (Chauhan et al., 2020). Several opti-
mistic iron-based methods are accessible for the clean-
ing of polluted soil or for groundwater remediation

(Chauhan et al., 2020). Zinc (Zn) as NMs have been
widely used and investigated by scientists around the
world because of its outstanding capability to break
down organic dyes (Banerjee et al., 2021). As a semi-
conductor photocatalyst, Zn as an NM can contribute
to the breaking down of a large variety of compounds
from different types of dyes such as phenols and phar-
maceutical medicines (Chauhan et al., 2020). NMs like
as silver (Ag) and gold (Au) have an enormous appli-
cation in a variety of areas, with the most significant
application being the breakdown of organic dyes (Lu
& Astruc, 2020). Copper (Cu) NM has also exhibited
excellent results in breaking down organic dyes (Kim
et al., 2018; Pandey, 2018; Shahwan et al., 2011).

The biosynthesis of NMs from plants and micro-
organisms and the remediation of different con-
taminants by NMs are shown in Table 2. NM such
as nano iron is synthesized from plants (Sargassum
muticum, Dodonaea viscose, Aloe vera, Azadirachta
indica, Cartaya papaya, Green tea, etc.) and micro-
organisms (Escherichia coli, Shewanella oneiden-
sis, Pleurotus sp., Klebsiella oxytoca, Aspergillus
clavatus, etc.). Rubus glaucus, Ricinus communis,
Nerium oleander, Calotropis gigantean, Nerium ole-
ander, etc. are the plant sources for the biosynthesis
of nano copper and the microorganism sources are
Streptomyces sp., Fusarium oxysporum, Penicilium
citrinum, Hypocrea lixii, etc.) (Table 2). Nanosilver
is synthesized from Artemisia nilagirica, Nerium
oleander, Sinapis arvensis, and other plant sources
described in Table 2. Streptomyces naganishii,
Brevibacterium casei, Trichoderma reesei, etc. are
the plant sources for the biosynthesis of nanosilver.
Nano zinc and gold are also synthesized from dif-
ferent plants and microorganisms (see details in
Table 2). Yeast and fungi can also be utilized for
the biosynthesis of NMs (Alghuthaymi et al., 2015).
Whenever there is a need to produce huge quanti-
ties of NMs, fungi can be utilized as a result of their
characteristic feature of having huge amounts of
proteins (Pandey, 2018). In the biogenic manufac-
turing of metal NMs by a fungus, several decreasing
enzymes with their catalytic results are made that
lessen salts to their equivalent metallic solid NMs
(Singh et al., 2020). This catalytic outcome is the
main weakness of the microbial synthesis of NMs
and requires making corrections for the wider appli-
cation of this technique.
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Table 2 Biosynthesis of NMs from plants and microorganisms with the remediation of different contaminants

NMs used NMs source from NMs source from Pollutant removed References
plant microorganisms
Iron (Fe) Sargassum E. coli Atrazine, Alachlor Mahdavi et al. (2013), Arcon et al.
muticum (2012), Bezbaruah et al. (2009)
Dodonaea viscose Shewanella Trichloroethylene Phumying et al. (2013a, b), Narayanan
oneidensis and Sakthivel (2011), Smuleac et al.
(2011)
Aloe vera Pleurotus sp. Total petroleum hydrocarbons  Murgueitio et al. (2018), Pandey
(2018), Kumar et al. (2011)
Azadirachta Klebsiella oxytoca Chlorinated ethanes, Dissolved Chaung et al. (2014), Binupriya et al.
indica sulfides (2010), Song et al. (2005)
Rosemarinus Aspergillus clavatus ~ As(1I), Cr(VI) Pandey (2018), Saravanan and Nanda
officinalis (2010), Pradeep (2009)
Sorghum bran Chaetomium Brominated methanes, Pandey (2018), Lim et al. (2007)
globosum Perchlorate
Eucalyptus 2,4-dichlorophenol, Pandey (2018), Guo et al. (2017), Choi
tereticornis Polychlorinated biphenyls et al. (2008)
(PCBs)
Cartaya papaya Pentachlorophenol, Dibenzo-  Kim et al. (2008), Kim et al. (2012)
p-dioxins, and furans
Green tea Arsenic(V), Copper(Il), Pb(II), Boparai et al. (2013), Hooshyar et al.
Hg(I), Cr(VD) Cd(II), Ni(II),  (2013), Kumar et al. (2013), Li et al.
Uranium, Cd2+, Ni+2, (2013), Fan et al. (2012), Ambashta
Co+2 and Sillanpai (2010), Mahdavian and
Mirrahimi (2010), Pradeep (2009)
Copper (Cu) Rubus glaucus Penicillium Chlorobenzene Hasanin et al. (2021), Abboud et al.
aurantiogriseum (2014), Lee et al. (2011)
Ricinus communis Shewanella Pyrene Yaqub et al. (2020), Kim et al. (2018),
oneidensis Chang et al. (2009)
Tabernaemontana Penicillium Cr(VD Pandey (2018), Cutting et al. (2010)
divaricate waksmanii
Punica granatum  Hypocrea lixii Cationic and anionic Dyes Murthy et al. (2018), Pandey (2018),

Green tea
Ocimumten
uiflorum

Ficus religiosa

Nerium oleander
Carica papaya
Gloriosa superba

Calotropis
gigantean

Pseudomonas sp.,
Serratia sp.
Penicilium citrinum

Streptomyces sp.

Sternum hirsutum
Pseudomonas stutzeri

Fusarium oxysporum

Dichloroethane

Cu(II), Pb(II)

Nitrate

Several metal transition
elements

Dichloromethane

Methylene blue

Methyl orange

Shahwan et al. (2011)

Kim et al. (2018), Wang et al. (2014),
Wei et al. (2012)

Pandey (2018), Mahdavian and
Mirrahimi (2010)

Pandey (2018), Sankar et al. (2014)
Enamala et al. (2019), Pandey (2018)

Pandey (2018), Sankar et al. (2014),
Huang et al. (2012)

Shende et al. (2015), Sinha and
Ahmaruzzaman (2015)

Sharma et al. (2015)
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Table 2 (continued)

NMsused NMs source from NMs source from Pollutant removed References
plant microorganisms
Silver (Ag)  Sinapis arvensis  Staphylococcus Organic dyes Moholkar et al. (2020), Pandey (2018)
aureus
Lantana camara  Trichoderma reesei Textile effluent Corso et al. (2009), Nanda et al. (2009)
Trigonella Brevibacterium casei  Coomassie brilliant blue Pandey (2018), Arunachalam et al.
Sfoenumgraecum G-250 (2012)
Artemisia Streptomyces sp. Methylene blue Rasheed et al. (2017), Teng et al. (2015)
nilagirica Morones et al. (2005)
Butea Streptomyces Congo red Kumar et al. (2012)
monosperma naganishii
Nerium oleander ~ Neurospora crassa p-nitrophenol Gangula et al. (2011)
Zinc (Zn) Ixora coccinea Lactobacillus Formaldehyde Lee et al. (2008)
Aloe vera Streptomyces sp. Resorcinol Raliya and Tarafdar (2014), Phumying
et al. (2013a, b), Pardeshi et al. (2009)
Trifolium pretense Candida albicans CddI) Dobrucka and Dlugaszewska (2016)
Limonia Congo red and Pandey (2018)
acidissima Benzopurpurine 4B
Plectranthusam Methylene blue, Malachite Pandey (2018) Khezami et al. (2016),
boinicus green Srivastava et al. (2013)
Nyctanthesarbor- Organic dyes, Direct red 23 Pandey (2018), Sanna et al. (2016),
tristis Kumar et al. (2014)
Parthenium Phenol, Brown CGG dye Yuvak kumar et al. (2015), Kruefu et al.
hysterophorus (2012)
Pongamia pinnata Fuchsine, Rhodamine B Pandey (2018), Zhou et al. (2009)
Gold (Au)  Anacardium Streptomyces Methylene blue Pandey (2018), Gupta et al. (2010),
occidentale viridogens Gupta et al. (2010)

Zingiber officinale Penicillium
brevicompactum
Abelmoschus
esculentus

p-Nitrophenol

Klebsiella pneumonia Tertiary dye effluent (Methyl

orange, Acid red, Acid
orange)

Kanchi et al. (2018), Mishra et al.
(2011), Huang et al. (2009)

Pandey (2018), Sathishkumar et al.
(2013)

Engineered polymeric NMs for soil remediation

Some pollutants are found in the environment, for
example, polynuclear aromatic hydrocarbons (PAHs)
that are fixed to the soil. Therefore, it is very dif-
ficult to remove these pollutants from the soil (Patel
et al., 2020; Loick et al., 2009). Recently, research-
ers have synthesized a few particles identified as
amphiphilic polyurethane (APU) for the remediation
of the soil polluted with PAHs (Mazarji et al., 2021;
Rahman et al., 2022). The APU consists of polyure-
thane acrylate ionomers (PAIs) or polyethylene gly-
col. The colloidal dimension of APU is 17—-97 nm
by dynamic light scattering(Rizwan et al., 2014).
APU can increase PAH’s desorption, stability, and

independence in the aqueous stage (Johari et al.,
2010). APU elements must be engineered to attain
ideal features with a hydrophobic center region
(Javaid et al., 2020). These elements also offer a high
attraction for phenanthrene and hydrophilic surfaces,
which then improves the elements’ mobility in the
soil (Javaid et al., 2020). The affinity of APU ele-
ments may be controlled for pollutants by altering the
dimension of the hydrophobic segment, for example,
phenanthrene (Rizwan et al., 2014). The mobility of
colloidal APU suspensions is controlled in the soil by
the charge density. The capability to control particles
features offers the potential to produce diverse NPS
optimized for various pollutants and soil conditions
(Rizwan et al., 2014).
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An engineered iron NM solution is nonpoisonous,
highly reactive, and very efficient, and it can quickly
take away the soil pollutants (Reddy et al., 2016).
This engineered iron NM is efficiently utilized for the
removal of chlorinated hydrocarbons and different
heavy metals present in the soil. First, the iron NM is
inserted into the soil. Second, it reacts with the pol-
lutants, and then it is absorbed into them as shown
in Fig. 1. This method can also be applied to remedi-
ate the industrial pollutants from the agricultural soil
(Enamala et al., 2019).

Challenges with NMs

While NMs have shown hopeful outcomes in removing
polluted areas, there are some troubles related to their
decreasing reactivity after a defined time, their conduc-
tion, and their outcomes on bacteria, fungi, and other
microorganisms (Pandey, 2018). Iron (Fe) NMs have a
reduction in their reactivity stage (after a defined time)
and an obstructive outcome in the soil from blocking
the holes in the soil thus confining the route of liquids.
It has also been shown that a stabilizer (for example,
lactate) may be treated to develop the dynamism of
Fe NMs (Karimi & Mohseni Fard, 2017). A variety
of guidelines under distinct situations have been car-
ried out on the outcome of NMs on microorganisms.

Fig. 1 Outline the mecha-
nism of soil remediation
by NMs

Bacteria,
Plant,
Fungi, Algae

Sources of NMs

NMs are

inserted into
the soil
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Among them, some of the guidelines have shown
inhibitory results on microbes similar to Escherichia
coli and Staphylococcus aureus (Pandey, 2018). Other
studies have demonstrated the exciting outcome of
NMs as electron contributors on microbes, for exam-
ple, methanogens and bacteria (Chauhan et al., 2020).
Soil microbes are enormously significant to the
normal series of nutrients in the environment, and
they can break down the organic pollutants or dimin-
ish and arrest heavy metals (China et al., 2020). In
this way, a severe reduction of the microbial inhabit-
ants may result in the decline of the soil’s resistance to
pollution (Pandey, 2018). The poisonous outcome of
nano Fe can interrupt the cells’ membranes by mak-
ing the reactive oxygen compounds that are respon-
sible for the death of the microbial cells (Wang et al.,
2019). Nano Fe compounds can obstruct the assimila-
tion of nutrients via the cell membranes in the micro-
organism, which delays their development and growth
(Hong et al., 2021). Compounds of Nano Fe have not
proven to have any outcome on the development and
growth of colonies of fungi. Studies have measured
how the poisonous outcome of NMs can be reduced
by covering them with some organic polymers (Pan-
dey, 2018). Studies have also proved that microbes
produce specific polysaccharides and enzymes that
defend the poisonous action of NMs (Torres et al.,
2019). In addition to their positive outcome on the

NMs absorbed
these pollutants

e

NMs produced a
strong oxidants

|

~

Oxidants capable of
reacting with
contaminants

|

NMs react
with the
pollutants

Contaminants
become harmless

Successful
remediation by NMs

==
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exclusion of the pollutants, NMs might act together
with both biotic and abiotic substances in positive and
negative pathways. There are some characteristics
of microorganisms, such as a high growth rate, less
expenditure demand, simple culture techniques, and
fewer environmental exposures, which help produce
the biosynthesis of NMs (Alghuthaymi et al., 2015).
Additionally, the utilization of NMs in an environ-
ment that has soils interacting with various organ-
isms and NMs can influence the NBR of the polluted
soils (Gomes et al., 2021). Some of the NMs utilized
in this area contain carbon-related and metal-related
NMSs (Zhai et al., 2015; White et al., 2009).

BR and its significant role

BR is an advanced technique that proposes an envi-
ronmentally amicable and economically viable sub-
stitute to eliminate pollutants from the environment
(Rahman et al., 2022; Chauhan et al., 2020). The
three major processes of BR are the utilization of
plants, microbes, and enzymes (Rahman et al., 2022;
Ojuederie & Babalola, 2017). The organic com-
pounds are degraded from a contaminated environ-
ment by microbes such as bacteria, fungi, and yeast
(Vieyra et al., 2015). Bacteria and fungi are utilized
in the areas of breaking down different contaminants
as shown in Table 3. The method of BR is signifi-
cant in conserving and maintaining contaminated
environments such as agricultural soil. Environmen-
tal biotechnology involves the application of genetic
engineering to determine the competence and value
of the utilization of microorganisms for reducing the
environmental burden of toxic substances (Enamala
et al., 2019). There are several microorganisms in
an environment cultivating at different growth rates,
and their plentiful diversity of functions has been
observed (Stewart, 2012).

Bacteria Bacteria are utilized in different applica-
tions in the environment through a variety of tech-
niques. Among them, the BR technique is being used
for a variety of purposes (Kadiyala et al., 2018). It
was reported that the bacteria are used in breaking
down the heavy metals and other pollutants via the
route of BR (Khan et al., 2021). For example, bacte-
ria identified as Deinococcusradioduranscan rem-
edy heavy metals found in agricultural soil and is a

non-pathogenic solvent bacterium (Appukuttan et al.,
2006). Some of the genes recognized in Deinococcus
radiodurans for breaking down metals, such as the
merA reductase gene that encodes for the mercuric
ion reductase, are extremely poisonous to humans (De
et al., 2014). Some of the bacteria (such as Bacillus
algicola, Sphingobium sp., Rhodococcus sp., Bosea
sp., Phenylobacterium sp., Candida viswanathii,
Bacillus subtilis, etc.) are used to degrade various
pollutants (aromatic hydrocarbons, polynuclear aro-
matic hydrocarbons) in agricultural soils as shown in
Table 3.

Fungi Fungi also play a vital role in the areas of
nanotechnology because their main task is the removal
of poisonous pollutants (Huang et al., 2018). Some
fungi produce extracellular synthesis (metabolites
or enzymes) during their growth and development
as a result of the BR. It was demonstrated that the
catalytic outcomes of the enzymes being released by
fungi, such as Fusarium oxysporum, Trichoderma vir-
ide, Aspergillus niger, Coriolus Versicolor, Candida
glabrata, Aspergillus oryzae, and Fusarium semitec-
tum, are applied to remove the exclusion contaminants
and poisonous effluents nearby in the environment
(Vazquez-Nuifiez et al., 2020) as shown in Table 3.
Not only bacteria and fungi but also some species of
algae (Chlorella sp.) and yeast (Lipomyceskononen-
koae) may play an important role in breaking down
pollutants.

Combined application of NMs and NBR
in agricultural soil

The practice of combining NMs and NBR technol-
ogy can remove pollutants from the environment as
shown in Table 4. Different types of NMs have been
used for the remediation of pollutants, for example,
bimetallic nanoparticles (BNPs), enzymes, titanium
dioxide (TiO2), nZVI, nanoscale zeolites, carbon
nanotubes, and three metal oxides(nZVI, TiO2, and
CNTs), which are applied in agricultural soil reme-
diation (Table 4).

Véazquez-Nifiez et al. (2020) reported that responses
of living organisms depend on the environmental con-
ditions, types of pollutants, and NMs utilizations. Dif-
ferent types of NMs are being utilized to increase the
microbial degradation of contaminants. Kim et al.
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Table 3 List of bacteria and fungi used in BR techniques

Name of the bacteria

Compounds degraded

Sources

References

Deinococcusr adiodurans,

Sphingobium sp., Rhodococcus sp.
Bosea sp., and Phenylobacterium sp.

Bacillus algicola
Rhodococcussoli; Rhodococcus sp.
Isoptericolachiayiensis
Pseudoalteromonasagarivorans;

Micro bacterium sp.

Pseudomonas sp.

Pseudomonas aeruginosa

Candida viswanathii

Bacillus subtilis

Fungi

Agaricus bisporus

Coprinellus radians

Gloeophyllum striatum
Rhizophagus intraradices
Pleurotus pulmonarius
Phanerochaete chrysosporium
Pleurotus ostreatus

Acaulospora colombiana,
Claroideoglomus etunicatum,
Rhizophagusintraradices,
Rhizophagusclarus,
Rhizophagus irregularis

Arbuscular mycorrhizal fungi (AMF)

Calendula officinalis

Aspergillus sydowii

Aspergillus sp., Trichoderma sp.

Degradation of radioactive pollutants; metal
remediation; bioprecipitation of uranium

Degradation petroleum hydrocarbons

Degradation of hydrocarbons

Degradation of hydrocarbons

Degradation of hydrocarbons

Degradation of hydrocarbons

Aromatic hydrocarbons

Aromatic hydrocarbons; Petroleum

hydrocarbons; Crude oil, pristine and

dioxin compounds; Naphthalene

Aliphatic hydrocarbons

Phenanthrene; Coupling azo dye;
Benzopyrene

Phenols; Aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) of
penanthrene and pyrene; Heavy metal

Polynuclear aromatic hydrocarbons
(PAHs); Diverse xenobiotics like
dyes, hydrocarbons, and phenolic
compounds

Chlorinated organic pollutant

Total petroleum hydrocarbons (TPH)
Polychlorinated biphenyl

Polycyclic hydrocarbons

Hydrocarbon’s degradation

Hydrocarbons’ degradation; Total petroleum

hydrocarbons (TPH)

Total hydrocarbons; Petroleum hydrocarbon

Cadmium

Polyaromatic hydrocarbon

Lead, iron, cadmium, chromium, zinc,
nickel, mercury, and arsenic,

Polluted soils; mixed
waste environments;
dilute nuclear waste

Saline soils

Polluted soils

Contaminated soil

Contaminated soils

Polluted soils

Polluted soils

Polluted soils; Saline
soils

Contaminated
seawater

Polluted soils

Contaminated soils

Polluted soils

Contaminated soils

Polluted soils
Agricultural soils
Contaminated soil
Soils
Contaminated soils

Agricultural soils

Soil

Soil

Hypersaline
conditions

Marine environment,

wastewater, and on
land

Appukuttan et al. (2006),
Brim et al. (2000)

Rodriguez-Uribe et al.
(2021)

Lee et al. (2018), Gutierrez
etal. (2014)

Jayasena and Perera (2021),
Lietal. (2013)

Jayasena and Perera (2021),
Lee et al. (2018)

Jayasena and Perera (2021),
Lee et al. (2018)

Qin et al. (2017), Sheng
et al. (2009)

Hentati et al. (2021),
Mabhjoubi et al. (2021),
Rodriguez-Uribe et al.
(2021), Obayori et al.
(2009)

Hentati et al. (2021)

Ali et al. (2021a, b),
Enamala et al. (2019)

Kotoky and Pandey (2021),
Enamala et al. (2019)

Saravanan et al. (2021)

Ghosh and Mukherji (2021)

Jambon et al. (2019)
Zuzolo et al. (2021)
Sebastian et al. (2021)
Imam et al. (2022)
Mayans et al. (2021)
Zuzolo et al. (2021)

Martinez-Hernéandez et al.
(2021), Solis-Ramos et al.
(2021)

Enamala et al. (2019)

Peidro-Guzman et al.
(2021)

Enamala et al. (2019)
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Table 4 (continued)

I

References

Removal efficiency

Short explanation of the

success

Contaminant degraded

Organisms or biological

systems used

NMs

Springer

Fosso-Kankeu et al.

The combination of CNT with 22%
the enzyme organophosphate

hydrolase remediates

Organophosphates and heavy

metals

Enzyme organophosphate

Unzipped carbon tube (CNT)

(2014), Mechrez
et al. (2014)

hydrolase-MWNT paper

Organophosphates

and heavy metals from
contaminated soil

Baglieri et al. (2013)

92%

Two organo-clays (Dellite Triclopyr (3,5,6-Trichloro-2-  The combination of Nano

Nano sponge (Cyclodextrin-

pyridinyloxyacetic acid) sponge with two organo-

67G and Dellite 43 B)

based, highly cross-linked

polymers)

clays remediates triclopyr

(2012) observed that nano-bio treatment utilizing nZVI
and diphenyl ether in a mixture using bacteria Sphingo-
monas sp. can remove polybrominated diphenyl ethers
(PBDEs). Sphingomonas sp. PH-07 could produce in
nZVI concentrations up to a high concentration of 5
gl™! and contribute to the bio-deprivation of PBDEs
(Kim et al., 2012). Similarly, Jing et al. (2018) found
that the mixture of nZVI NM with any second metal
or microorganism is used for the remediation of deeply
contaminated places. The mixture also eliminates
polychlorinated biphenyls (PCBs) from soil polluted
by modifier oil. It was proved that nZVI significantly
improved the soil washing efficacy by decreasing the
interfacial tension between the oil and soil stages and
removed 90% of PCBs (Bhattacharya et al., 2016). The
mixture nZ VI is utilized as pretreatment in the bioreme-
diation of nitrate anions, PCBs, pesticides, heavy met-
als, radionuclides, and chlorinated volatile organic com-
pounds (cVOCs) (Bhattacharya et al., 2016; de Lima
et al., 2012). Pereira et al. (2014) reported that a com-
bination utilizing carbon nanotubes (CNT) and Arthro-
bacter sp. break down PCBs. They also found that the
batch container with CNT was the highest breakdown
percentage compared to other carbon NMS.

Hou et al. (2016) demonstrated the biodegradation of
chlorophenol immobilized in magnetic NPS in a 100-
mL batch container through Rhodococcus rhodochrous.
The cells were immobilized by using k-carrageenan
and Fe;O, NPS and were capable of breaking down
d-2-chlorophenol, 4-chlorophenol, 2, 3-dichlorophenol
(Hou et al., 2016). Le et al. (2019) found that the combi-
nation of bimetallic iron dependent on NMs with tobacco
plants is utilized to remove hexabromocyclododecane
(HBCD). The unzipped carbon tube (CNT) combined
with the enzyme organophosphate hydrolase removed the
organophosphates and heavy metals from contaminated
soil (Mechrez et al., 2014). Several previous studies have
been attempted to increase the synergistic outcome of
NM and BR practices and to elaborate on their biological
and chemical interaction either in water or soil (Vazquez-
Nufiez et al., 2020).

Conclusions and prospects

The outcomes of nanoparticles on microorganisms in
adjustable soil situations are critical to the remedia-
tion methods for the enhancement of the breakdown
of soil pollutants. Nano bioremediation (NBR) relies
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primarily on the utilization of nanomaterials (NMs) to
decrease the pollutants to equal levels that are favora-
ble to biodegradation and then stimulate the biodeg-
radation of the pollutants to spread the risk-based lev-
els. The NMs are being used in various applications
of NMs in building solids and in medicating several
environmental contaminants. Consequently, the reme-
diation of pollutants by the usage of current technology
was not found to be efficient and effective in cleaning
up the environment. It is helpful to develop the contam-
inant elimination competence and the combination of
bioremediation (BR) technologies with NMs to elimi-
nate contaminates. The NMs were applied to increase
the exclusion of pollutants and narrate their interaction
with abiotic and biotic elements during the remedia-
tion. So, NMs can be utilized for BR, which not only
has a less toxic consequence on microorganisms but
will also develop the microbial activity of the differ-
ent pollutants in the agricultural soils, which offers an
excellent opportunity for upcoming researchers.
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