
Vol.: (0123456789)
1 3

https://doi.org/10.1007/s10661-022-10043-6

Temporal‑spatial pattern and driving factors of cultivated 
land use transition at country level in Shaanxi province, 
China

Zhe Chen · Xiaojing Li · Xianli Xia

Received: 22 July 2021 / Accepted: 5 April 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

a trend from expansion and decentralization to con-
traction and centralization in geographical space, 
with an obvious spatial spillover effect. Third, the 
results of nuclear density estimation showed that the 
difference in the CLUF between counties displayed a 
trend of first shrinking and then expanding. Fourth, 
the cultivated land use transition was promoted by the 
combination of the natural environment, economic 
growth, and urbanization development, and factors 
of the driving mechanism of the cultivated land use 
transition are complicated. Finally, policy recommen-
dations to promote the rationalization and cultivated 
land use transition were put forward, such as strength-
ening infrastructure construction, formulating differ-
entiated policies, and giving play to the role of neigh-
boring demonstrations.

Keywords  Cultivated land use · Transition · Spatial 
distribution · Driving mechanism · Land use

Introduction

The land is the space carrier of human social and 
economic activities, the most fundamental material 
basis for production, and an essential part of global 
sustainable development (Perring et  al., 2013). The 
importance and scarcity of land resources highlight 
the significance of following the objective laws of 
land use and the primary goals of optimizing land 
use structure and improving land use efficiency 
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(Duro et  al., 2020; Liu et  al., 2020a, b). Land use 
transition refers to the temporal and spatial changes 
in regional land use patterns in a specific period 
driven by social and economic changes and innova-
tions, with noticeable changes in both quantity and 
structure and hidden changes in quality and property 
rights. It is the process of changing land types from 
one form to another until achieving the coordinated 
development of land use, social economy, and eco-
logical environment (Long et  al., 2019). Land use 
transition research refers to the study of the pro-
cess and trend of land use transition with scientific 
research methods to reveal and characterize the evo-
lutionary law of land use transition and adjust the 
objective contradictions between different land use 
forms. This research is expected to alleviating the 
tension in the “man-earth relationship” and realiz-
ing innovative land resource management (Liu et al., 
2020a, b). Therefore, research on the spatial evolu-
tion process and driving factors of regional land use 
transition in the context of urbanization and indus-
trialization is of practical significance for realizing 
regional sustainable development.

Cultivated land and woodland are the most produc-
tive land types. The former is the core element of land 
resource because it bears the responsibilities of food 
production and material supply, which is an important 
guarantee of national food security and ecological 
security. Therefore, cultivated land use transition has 
always been the focus of land use transition research. 
However, the land use transition research began with 
woodland transition research. Mather and Needle 
(1998) investigated the trend of forest area in differ-
ent countries and put forward forest transition theory 
(Mather & Needle, 1998). Then, scholars began to 
explore the causes, connotations and concepts, transi-
tion models, and influencing factors of land use tran-
sition, which greatly enriched the content of land use 
transition research (Brian & Daniel,  2004; Zeilhofer  
et  al., 2014). Meanwhile, scholars have gradually 
expanded their research perspectives and have con-
ducted in-depth research from the perspective of 
transition concepts, methods, and influencing factors. 
For example, Ge et al. (2018) constructed a theoreti-
cal model of cultivated land use transition using per 
capita cultivated land area indicators, which explored 
the coupling relationship and the internal mecha-
nism between cultivated land use transition and food 
production in China (Ge et  al., 2018). Song and Li 

(2019) constructed a comprehensive explanatory 
framework for the available cultivated land use tran-
sition and studied the internal relationship between 
induced production substitution and the evolution of 
cultivated land use type structure, input structure, and 
planting structure with quantitative methods (Song 
& Li, 2019). Xiang et al. (2016) measured the status 
of cultivated land use transition from spatial form 
and functional form, analyzed the spatial character-
istics of cultivated land use transition adopting the 
spatial autocorrelation model, and delved into the 
influencing factors of spatial differentiation of culti-
vated land use transition from the aspects of popula-
tion, economy, and industrial structure applying the 
radial basis function neural network model (Wang & 
Zhang, 2021). Most of the existing researches focused 
on the process, mode, and mechanism of cultivated 
land use transition from the perspectives of cultivated 
land quantity and spatial function. However, in recent 
years, driven by social and economic changes and 
innovation, cultivated land use transition has gone far 
beyond the scope of its quantity and structure, and it 
is a continuous evolution of cultivated land use pat-
terns (Long et al., 2019). Therefore, the study on cul-
tivated land use transition from the change process of 
CLUF is of significance.

In recent years, the accelerating urbaniza-
tion in China has caused an extreme shortage of 
urban construction land. Meanwhile, the migra-
tion of the youth from the rural areas to developed 
urban areas has also resulted in the abandonment 
of large areas of rural arable land and the deteri-
oration of the utilization quality, which seriously 
hinders the arable land use efficiency (Wang et al., 
2020a, b, c). Simultaneously, the shortage of urban 
construction land has intensified the contradic-
tion between land supply and demand. The urban 
encroachment on cultivated land in the outskirts 
of cities has intensified the damage to cultivated 
land resources (Tang et al., 2020). All issues men-
tioned have given the urgency of the balance of 
cultivated land quantity, prevention of the degra-
dation of cultivated land quality, improvement of 
the cultivated land use efficiency, and the promo-
tion of the national cultivated land use transition 
(Deng, 2020). Therefore, the primary purpose of 
this research is to construct a scientific and rea-
sonable conceptual framework for cultivated land 
use transition, to explore the temporal and spatial 
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differentiation pattern of cultivated land use tran-
sition and its driving mechanism, and to provide 
a reference for the efficient use of cultivated land 
and regional sustainable development.

Study area

Located in the northwest region of China, Shaanxi 
province is mainly composed of 107 counties under 
the jurisdiction of 10 prefecture-level cities, cover-
ing an administrative area of 205,600 square kilo-
meters (Fig.  1). The terrain of Shaanxi province 
is high in the north and south regions and low in 
the middle regions, mainly composed of northern 
Shaanxi loess plateau, central Guan Zhong plain, 
and southern Shaanxi mountainous area. By the 
end of 2018, the total land area of Shaanxi prov-
ince was 20,562,400 hectares, of which the area 
of cultivated land was only 3,976,800 hectares, 
accounting for 19.34%. With the rapid develop-
ment of urbanization, the urban construction land 
in Shaanxi province is in increasing demand, and 
consequent encroachment on arable land resources 
has resulted in a slump in the quantity and quality 
of cultivated land. The land use type and cultivated 
land use mode in this region are experiencing rapid 
transformation.

Methodology and data

Measurement of CLUF index

The Cultivated Land Use Form (CLUF) is the core 
content of land use transformation that is the prod-
uct of land use change evolution to a particular stage 
and period (Ma et  al., 2020). Some scholars have 
pointed out two forms of the CLUF: dominant form 
and recessive form. The former is presented by land 
use quantity, structure, and spatial pattern, while the 
latter is presented by quality, property right, man-
agement mode, input, output, and function (Chen 
et al., 2014; Long & Qu, 2018). In recent years, the 
implementation of China’s urbanization and rural 
revitalization strategy has promoted the remarkable 
transition of rural cultivated land (Fig. 2), which was 
reflected in two aspects: Land Use Dominant Form 
(CLDF), and Land Use Recessive Form (CLRF). The 
CLDF mainly covers the quantity, structure, and spa-
tial pattern of cultivated land use, while the CLRF is 
reflected by quality, property right, mode of opera-
tion, inherent input, and output capacity (Ge et  al., 
2018).

In this study, the CLUF was presented by the 
CLDF and CLRF (Table 1). For the CLDF, the per-
capita cultivated land area (PCLA) and per-capita 
grain sown area (PGSA) were firstly selected to rep-
resent the quantity of cultivated land use. The most 

Fig. 1   Location and elevation conditions of the counties in Shaanxi province
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basic function of cultivated land is to ensure an 
adequate supply of food production. Therefore, the 
change in grain sown area per capita has an essen-
tial impact on the quantity pattern of cultivated land 
use. Secondly, the structure and spatial pattern of 
cultivated land use were investigated based on land-
scape patterns. The spatial distribution structure 
of cultivated land use was measured through the 

landscape area of cultivated land patches (PLAND), 
and the degree of cultivated land use concentration 
was measured with the application of the farmland 
patch agglomeration index (FPAI). For the CLRF, 
it is difficult to measure and quantify the property 
rights, operating subjects, and operating modes of 
cultivated land through data due to the limitations of 
data and research availability and utilization. Finally, 

Fig. 2   Conceptual framework of Cultivated Land Use Form

Table 1   Measurement index system of Cultivated Land Use Form

Target layer Rule layer Index layer Index abbreviation Unit Weight

CLUF CLDF Per-capita cultivated land area PCLA hm2/person 0.4021
Per-capita grain sown area PGSA hm2/person 0.2032
Landscape area of cultivated land patches PLAND % 0.2373
Farmland patch agglomeration index FPAI % 0.1574

CLRF Per unit area yield of grain PUAY​ kg/hm2 0.0688
Machinery input per unit cultivated area MIPU kWh/hm2 0.2410
Per-capita agricultural output value PAOV Yuan/person 0.1849
Number of people per unit cultivated land NPPU person/hm2 0.5053
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four indexes of per unit area yield of grain (PUAY), 
machinery input per unit cultivated land (MIPU), the 
per-capita agricultural output value (PVOV), and the 
number of people per unit cultivated land (NPPU) 
were selected as proxy indexes for the measure-
ment of recessive morphology of cultivated land use. 
Among them, the PUAY reflects the quality level of 
cultivated land utilization. The higher the PUAY, the 
better the quality of cultivated land; the MIPU mainly 
reflects the input intensity of cultivated land utiliza-
tion; the PVOV mainly reflects the output function 
of cultivated land use; the NPPU mainly reflects the 
function of cultivated land use.

The CLUF was measured with the applications of 
the entropy weight method and linear combination 
method in the analyses above. The entropy method 
is the main method to calculate the weight of each 
indicator of the comprehensive evaluation index sys-
tem, which can effectively avoid the subjective bias 
caused by artificially assigned indicator weights and 
eliminates information overlap and overlap between 
composite indicators (Zhao et  al., 2018). The lin-
ear combination method mainly uses the calculated 
weight and index value of the entropy method to 
synthesize a single index. The organic combination 
of the two methods has become the most common 
method to obtain the corresponding evaluation index 
(Yang et al., 2018). The specific calculation steps are 
as follows:

Firstly, the range method is adopted to standardize 
each indicator to eliminate the difference in indica-
tor dimensions. Since the measurement indicators of 
CLUF are positive, the formula is presented as below:

where, i represents each county; j represents meas-
urement indicators of CLUF; max and min represent 
the maximum and minimum values of the measure-
ment indicators, respectively; yij is the original value 
after standardization.

(1)yij =
[
xij −min

(
xij
)]
∕
[
max

(
xij
)
−min(xij)

]

Secondly, all indicators are quantified with the 
same measurement to calculate the proportion of each 
county’s j th indicator Pij in each year. The formula is 
as follows:

Thirdly, the weight of each index in the measure-
ment index system of CLUF is calculated; the for-
mula is as follows:

Fourthly, the value of CLUF is calculated with the 
weight measured by formula Eq. (3). The formula is 
shown as below:

where, w1 and w2 are the weights of CLDF and CLRF, 
respectively.

Exploratory spatial data analysis methods

Exploratory spatial data analysis (ESDA), an essen-
tial technology of spatial statistical analysis, is mainly 
used to explain spatial dependence, spatial correla-
tion, and spatial autocorrelation phenomena related 
to spatial location and to explore the general rules of 
the spatial distribution of objects through the descrip-
tion and visualization of spatial distribution pattern 
(Dou et  al., 2016). Spatial autocorrelation includes 
both global and local autocorrelation. Global auto-
correlation is used to test the general trend of spatial 
correlation of attribute values of adjacent or similar 
regional units throughout the study area, which is 
mainly measured by Global Moran’s index with a 
value range from − 1 to 1. Global Moran’s index is 
less than 0, indicating a negative spatial correlation in 
the regional CLUF; Global Moran’s index is greater 

(2)Pij = yij∕

m∑
i=1

yij

(3)

Wj =

[
1 −

(
m∑
i=1

Pij lnPij

)
∕ lnm

]
∕

n∑
i=1

[
1 −

(
m∑
i=1

Pij lnPij

)
∕ lnm

]

(4)CLUFj = w1 ∗ CLDF + w2 ∗ CLRF

Table 2   Changes of 
standard deviation ellipse 
parameters of CLUF

Year Barycentric coordinates Gravity shift �x �y Azimuth angle

Longitude Latitude Direction Distance Rate

2000 108◦50′04′′ 34◦53′29′′ – – – 140.142 294.467 19.49
2005 108◦50′29′′ 34◦53′62′′ Northeast 957 191 140.724 299.289 18.83
2010 108◦50′17′′ 34◦53′45′′ Southwest 363 72.6 139.880 295.606 19.23
2015 108◦49′51′′ 34◦52′54′′ Southwest 1972 394.4 140.631 294.565 19.48
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than 0, showing a positive spatial correlation in the 
regional CLUF; and the global Moran’s index is equal 
to 0, indicating no spatial correlation in the regional 
CLUF. The formula is as follows:

where S2 is the variance of CLUF; Yi and Yj are the 
observed values of CLUF in each county; Y  is the 
average value of CLUF; n is the observed number 
(n = 107); Wij is the spatial weight matrix. If there is 
a common boundary between region i and region j , 
then Wij = 1 ; if not, then Wij = 0.

Global Moran’s index can examine the spatial 
agglomeration status of CLUF throughout the region 
but cannot reflect the degree of correlation between 
CLUF and adjacent regions in a single region (Hu 
et  al., 2019). In contrast, local Moran’s index can 
express the degree of obedience of each local unit 
to the general global trend and the spatial heteroge-
neity (Hughey et al., 2018). The LISA cluster map is 
adopted to reflect the local spatial autocorrelation sta-
tus, which is obtained through local Moran’s index. 
The formula is displayed as below:

where Xi and Xj are the observed values of the CLUF 
in each county; X is the average value of the CLUF; 
n is the observed number (n = 107); Wij is the spatial 
adjacency weight matrix. The local Moran’s index 
greater than 0 indicates that the high (low) value 
of a certain area is surrounded by the high (low) 
value of the adjacent area, a typical “High-High” 
agglomeration or “Low-Low” agglomeration; the 
local Moran’s index less than 0 demonstrates that 
the high (low) value of a certain area is surrounded 
by the low (high) value of the adjacent area, a typi-
cal “High-Low” agglomeration or “Low–High” 
agglomeration.

(5)Global Moran
�

s I =

n∑
i=1

n∑
j=1

Wij

(
Yi − Y

)(
Y

j
− Y

)
∕S2

n∑
i=1

n∑
j=1

Wij

(6)

Local Moran
�

s I = n
(
Xi − X

) n∑
j=1

Wij

(
Xj − X

)
∕

n∑
i=1

(
Xi − X

)2

Standard deviational (SDE) analysis

Standard deviational ellipse (SDE) analysis, a spa-
tial pattern statistical analysis method, is mainly used 
to reveal the spatial distribution characteristics and 
trends of research objects with wide application in 
geography, economics, and environmental analysis 
(Richter et  al., 2021). SDE analysis mainly focuses 
on the analyses and calculation of the distribution 
center of gravity, the azimuth angle, the standard 
deviation of the semi-major axis, the semi-minor axis, 
and other attribute parameters to identify and judge 
the evolution process of geographic elements in the 
spatial distribution (Yang et al., 2020). Therefore, the 
SDE method was adopted here to identify the spatial 
distribution and evolution direction of the CLUF in 
Shaanxi province and to determine the spatial posi-
tion change and movement trend of the center of 
gravity of the CLUF. The formula is as follows:

where xave and yave are the average centers of xi and 
yi ; x′ and y′ are the relative coordinates of each point 
from the center of the area.

where Wi is the regional CLUF, and tan � is the corner 
of the distribution pattern of gravity center.

where �x and �y are respectively the standard devia-
tions along the X-axis and Y-axis.

Kernel density estimation

Kernel density estimation is an analytical method 
to analyze the spatial distribution characteristics of 

(7)x� = xi − xave ; y
� = yi − yave

(8)
tan � =

�
n∑
i=1

W2
i
x
�2
i
−

n∑
i=1

W2
i
y
�2
i

�
+

��
n∑
i=1

W2
i
x
�

i
y
�

i
−

n∑
i=1

W2
i
y
�2
i

�
+ 4

�
n∑
i=1

W2
i
x
�

i
y
�

i

�

2
n∑
i=1

W2
i
x2
i
y2
i

(9)

�x =

√√√√ n∑
i=1

(
Wix

�

i
cos � −Wiy

�

i
sin �

)2
∕

n∑
i=1

W2
i

�y =

√√√√ n∑
i=1

(
Wix

�

i
sin � −Wiy

�

i
cos �

)2
∕

n∑
i=1

W2
i
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research objects’ evaluation value, directly reflect-
ing the degree of spatial dispersion and agglomera-
tion of research objects (Wang et  al., 2020a, b, c). 
Kernel density estimation uses a continuous density 
curve to describe the distribution position, shape, 
and extensibility of the research objects, which 
can reflect the CLUF level, regional difference, 
polarization degree, and the difference between 
the research object with the highest CLUF and 
other objects. Among them, the height and width 
of the wave crest reflect the difference between the 
objects, and the number of wave crest indicates the 
degree of polarization. The longer the tailing of dis-
tribution ductility, the more significant the differ-
ence between objects (Y. Hu et al., 2018). The ker-
nel density estimation formula is as follows:

where N is the number of observations (N = 107); Xi 
represents independent and identically distributed 
observations; x is the mean value of observations; h is 
the bandwidth. Generally, the kernel density estima-
tion is more sensitive to bandwidth, and the smaller 
the bandwidth, the higher the accuracy of the kernel 
density estimation results; and K(⋅) is the kernel den-
sity function, which usually satisfies:

The kernel density estimates can be divided into 
triangular kernel density, quadrangular kernel den-
sity, and Gaussian kernel density. Here, Gaussian 
kernel density function is adopted to analyze the 
dynamic evolution of CLUF.

Multiple linear regression and spatial regression 
analysis

The formation mechanism of cultivated land use 
transition is relatively complicated, so are the factors 
that affect CLUF (Liang & Li, 2020). The multiple 
linear regression model is widely used to investigate 
the quantitative relationship between two or more 
variables, and it is also a standard model for study-
ing driving factors. The formula is as follows:

(10)f (x) =
1

Nh

N∑
i=1

K(
Xi − x

h
)

(11)

⎧⎪⎨⎪⎩

lim
x→∞

K(x) ∙ x = 0

K(x) ≥ 0, ∫ +∞

−∞
K(𝜒)dx = 1

supK(x) ≺ +∞, ∫ +∞

−∞
K2(x)dx ≺ +∞

where Yi is the dependent variable; Xij is the independ-
ent variable; k is the number of observations; � is the 
parameter to be estimated; �i is the random error term.

The analytical from the OLS model framework 
has long been the primary method to investigate the 
multi-factor model. However, the existence of spatial 
dependence assumption was ignored, resulting in the 
bias of estimation results and inaccurate estimation 
values (Arnold & Wied, 2010). Spatial economet-
rics is a vital tool to solve the quantitative problem 
of spatial correlation. Anselin and Elhorst introduced 
spatial correlation into the traditional data model and 
gradually improved the spatial econometric model. 
Since then, the spatial autoregressive (SLM) model 
and spatial error (SEM) model have gained increas-
ing application in spatial econometric models. The 
SLM model mainly examines the spatial influence 
and spillover effects of surrounding spatial units on 
the target unit. The specific formula is as follows:

where Y  is the dependent variable matrix; X is the nth 
order exogenous independent variable; W is the nth 
order spatial adjacency matrix; � is the random error 
term; � is the spatial regression coefficient, reflecting 
the degree of interpretation of the dependent variable 
by the adjacent spatial unit.

When the error term is spatially related, the SEM 
model can measure the spatial dependence effect 
existing in the error term and the impact of the error 
impact of the dependent variable in the neighboring 
area on the observed value of the region. The specific 
formula is as follows:

where � is the random error term vector; � is the spatial 
correlation strength coefficient between the spatial regres-
sion residuals; W is the nth spatial adjacency matrix.

Data source

The data used in this study contain the data for con-
structing the CLUF Index system and data for the driv-
ing factors of the CLUF Index. For building CLUF 
Index system data, mainly use, the land use data were 

(12)Yi = �0 +

k∑
j=1

�jXij + �i

(13)Y = �WY + �X + �

(14)Y = �X + � , � = �W� + �

Environ Monit Assess (2022) 194: 365 Page 7 of 21 365



1 3
Vol:. (1234567890)

collected from Resources and Environmental Science 
Data Center of China Academy of Sciences resources 
(http://​www.​resdc.​cn/) in 2000, 2005, 2010, and 2015, 
to provide high spatial resolution remote sensing 
monitoring data, production data in each phase of the 
Landsat TM/ETM remote sensing image as the pri-
mary data source, generated by artificial visual inter-
pretation. The land use types include cultivated land, 
woodland, grassland, water area, residential land, and 
unused land and 25 secondary land types. County land 
area, population, the acreage sown to grain, grain yield, 
and agricultural output data were mainly obtained from 
the Shaanxi provincial statistical yearbook, county sta-
tistical yearbook of China, and prefecture-level statis-
tical yearbook and bulletin of Shaanxi province. For 
PLAND and FPAI data, that contains in cultivated land 
to use ArcGis10.2 software type combined with Frag-
stats software based on direct measurement. DEM data 
was provided by Geospatial Data Cloud Site, Chinese 
Academy of Sciences (http://​www.​gsclo​ud.​cn). DEM 
data is mainly based on the ASTER GDEM2 data 
with a spatial resolution of 30 m. This data is produced 
based on the detailed observations of NASA’s new 
generation of earth observation satellite Terra. The 
annual mean precipitation data and annual mean tem-
perature data were obtained from the annual mean tem-
perature spatial interpolation data set and annual mean 
precipitation spatial interpolation data set of Resources 
and Environmental Science Data Center of Chinese 
Academy of Sciences (http://​www.​resdc.​cn/). The data 
of GDP at the county level, per capita income of farm-
ers, the output value of secondary and tertiary indus-
tries, investment in fixed assets, and urban population 
were mainly obtained from the Statistical Yearbook of 
Shaanxi province, Statistical Yearbook of China, Sta-
tistical Yearbook and Bulletin of Counties of Shaanxi 
province, and Government Work Report of Counties 
of Shaanxi province. Besides, administrative zoning 
data are available from the National Basic Geographic 
Information System (http://​www.​ngcc.​cn/). The linear 
interpolation method was used to interpolate the miss-
ing values for some years.

Results

Analysis of spatial pattern evolution of CLUF

The CLUF, CLDF, and CLRF of 108 county-level 
administrative units in Shaanxi province from 2000 to 

2015 were calculated with formula (4), and the culti-
vated land use the shape index for classification was 
analyzed with 5-level natural breakpoint method via 
the software ArcGIS 10.2.

Firstly, from the spatial distribution of CLUF 
(Fig.  3), it can be seen that the CLUF of the county 
showed apparent spatial differentiation in the study 
period, high in the middle, and low in the north and 
south, which was consistent with the terrain of Shaanxi 
province. In the central area of Shaanxi province sits 
the Guan Zhong plain with flat terrain fertile soil, abun-
dant heat, and sufficient rainfall, where sufficient water 
irrigation can be achieved, making it the primary grain 
production area of Shaanxi province. In the southern 
part of Shaanxi province lies the Qinling Mountain. 
The terrain is mainly hilly and mountainous. This area 
with considerable annual average precipitation and high 
sensitivity of soil erosion is prone to mountain torrents, 
landslides, debris flows, and other natural disasters. The 
soil here is relatively poor, resulting in poor quality and 
low utilization of cultivated land. The northern part of 
Shaanxi province is a typical loess plateau. Due to the 
severe soil erosion caused by hills and gullies, the irra-
tional use of land, and the continuous deterioration of 
the natural environment, the potential productivity of 
cultivated land resources failed to be unleashed, and 
the value of CLUF is low (Liu et  al., 2020a, b). Sec-
ondly, from the perspective of CLUF value, the aver-
age value increased from 0.3019 in 2003 to 0.3646 in 
2015, showing that the CLUF of the county is on the 
rise as a whole, and so is the degree of rationalization of 
cultivated land use. Thirdly, from the aspect of absolute 
value difference of CLUF, the highest value of CLUF in 
2000 was 0.4937, the lowest value was 0.1066, and the 
absolute difference value was 0.3871. In 2015, the high-
est value of CLUF was 0.7291, the lowest value was 
0.1074, and the absolute difference value was 0.6217. 
The expansion of the absolute difference value indi-
cated that the overall difference of CLUF value within 
the county is gradually expanding.

The spatial distribution of CLDF is displayed in 
Fig. 4. Firstly, the spatial distribution of the CLDF is 
similar to that of the CLUF, showing a typical overall 
distribution pattern of high in the middle and low in 
the north and south. Secondly, the average values of 
CLDF in 2000, 2005, 2010, and 2015 were 0.2683, 
0.2541, 0.2615, and 0.2503, respectively, indicating 
a decreasing trend of the CLDF in all counties from 
2000 to 2015.
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The spatial distribution of the CLRF is shown in 
Fig. 5. Firstly, the spatial distribution of CLRF is sim-
ilar to those of CLUF and the CLDF, a typical distri-
bution of high in the middle and low in the north and 
south. Secondly, the average value of the CLRF in 
Shaanxi province in 2000 was 0.0335, while the aver-
age value of each county in 2015 was 0.1144, higher 
than that of CLRF in 2000. The average number of 
counties was 30, and it rose to 36 in 2015. Thirdly, 
in terms of local distribution perspective, the CLRF 
in some counties in the northern and central areas 
of Shaanxi province increased year by year from 

2000 to 2015, while the CLRF in southern regions 
showed no significant change, even showing a trend 
of deterioration.

Spatial correlation analysis of CLUF

To shed light on the spatial correlation of CLUF, the 
global Moran’s index of CLUF was calculated by 
GeoDa software based on spatial adjacency weight 
matrix, and the Z-value test was carried out. As 
shown in Fig. 6, the global Moran’s index for CLUF 

Fig. 3   Spatial distribution of Cultivated Land Use Form

Fig. 4   The spatial distribution of the cultivated land use dominant form index
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was positive for each county from 2000 to 2015, 
which are 0.554, 0.446, 0.536, and 0.455, respec-
tively, and all pass the 1% significance level test, 
indicating that the CLUF of counties has an obvious 

global spatial positive correlation, and the CLUF of 
a county is affected by the CLUF of adjacent regions. 
In addition, the spatial agglomeration of CLUF is 
similar among regions.

Fig. 5   The spatial distribution of the cultivated land use recessive form index

Fig. 6   The spatial correlation of the Cultivated Land Use Form index
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Given the limitations of Global Moran’s index in 
showing the spatial agglomeration characteristics of 
a specific area, the existence of local agglomeration 
phenomenon in CLUF was explored by the combi-
nation of Moran scatter diagram and local Moran 
index, and the selected LISA cluster diagram (Fig. 6) 
of CLUF in 2000, 2005, 2010, and 2015. The local 
spatial distribution of CLUF can be divided into four 
types: The first type is the “High-High” agglomera-
tion type, which means that the CLUF of the county 
and the neighboring counties are high. The overall 
performance is a high-level spatially balanced and 
associated agglomeration state of “high center and 
high surroundings.” The number of counties with 
high agglomeration was stable at 20 from 2000 to 
2010 and increased to 21 in 2015. The second type 
is the “Low–High” agglomeration type, which means 
that the CLUF of the county is low, but the CLUF 
of its neighboring counties is high. The overall per-
formance is a spatial imbalance of “low center and 
high surroundings”–associated agglomeration. The 
number of counties with low and high agglomera-
tion increased from 0 to 3 in 2000 to 2010 and then 
decreased to 1 in 2015. The third type is “Low-Low” 
agglomeration, which means that the CLUF of the 
county and the neighboring counties are low. The 
overall performance is a low-level spatial equilibrium 
agglomeration state of “low center and low surround-
ings.” The number of low agglomeration counties 
decreased from 17 to 14 from 2000 to 2005 and then 
increased to 18 in 2010 and 2015. The fourth type is 
the “High-Low” agglomeration, which means that 
the CLUF of the county is high, but the CLUF in the 
neighboring counties is low. The overall performance 
is a spatial non-equilibrium agglomeration state of 
“high center surroundings.” The number of high-low 
agglomeration counties increased from 1 to 2 from 
2000 to 2010 and then decreased to 0 in 2015.

In general, the local spatial pattern of CLUF in 
Shaanxi province during the study period showed 
apparent coexistence of high-high and low-low 
agglomeration, which indicated that the CLUF of 
counties had a noticeable spatial proximity peer 
effect. When the CLUF of neighboring counties pre-
sented a high level, the county was more likely to be 
the county administrative unit with high level CLUF, 
and vice versa. This effect is consistent with the 
Matthew effect. At the same time, from the perspec-
tive of the overall agglomeration trend, the CLUF 

of counties presented the centralized distribution of 
high-high and low-low agglomeration, discrete dis-
tribution of low–high agglomeration, and high-low 
agglomeration, which indicates that the CLUF of 
counties showed spatial proximity spillover effect in 
geographical location.

Standard deviational ellipse analysis of CLUF

To accurately reveal the spatial evolution trend of the 
CLUF, the elliptical distribution and the center of 
gravity shift trend of the CLUF in 2000, 2005, 2010, 
and 2015 (Fig.  7) were plotted using the SDE spa-
tial statistical analysis tool of ArcGIS 10.2 software. 
The center of gravity of the CLUF moved between 
108◦49� − 108◦50�E and 34◦52� − 34◦53�N from 
2000 to 2015. The center of gravity of the CLUF 
moved to the northeast from 2000 to 2005 and moved 
back to the southwest from 2005 to 2015. However, 
during the study period, the center of gravity of the 
CLUF was all located in the central part of Shaanxi 
province, indicating that the CLUF at the county level 
was relatively stable in spatial distribution during 
the study period, and the overall spatial distribution 
of the central part was strong in the north and south 
parts.

According to Table 2, the gravity center of CLUF 
had a small range of movement from a minimum 
movement of 363  m to a maximum movement of 
1972  m from 2000 to 2015. The gravity center’s 
maximum moving rate is 394.4 m/year, and the mini-
mum is 72.6 m/year. The moving rate first decreases 
and then increases, indicating that the variation 
degree of CLUF first decreases and then increases. 
In terms of the change in azimuth angle, the angle 
first decreased from 19.49◦ in 2000 to 18.83◦ in 2005 
and then continued to increase to 19.48◦ in 2015. In 
the X-axis direction, the standard deviation increased 
from 140.142  km in 2000 to 140.724  km in 2005, 
then decreased to 139.880  km in 2010, and finally 
increased to 140.631 km in 2015, indicating that the 
CLUF presents a trend of “dispersion-agglomeration- 
redispersion” in the X-axis direction. In the Y-axis 
direction, the standard deviation increased from 
294.467  km in 2000 to 299.289  km and then 
decreased to 294.565 km in 2015, indicating that the 
CLUF showed a “dispersion-agglomeration” fluctua-
tion trend in the Y-axis direction. According to the 
standard deviation data of the X-axis and Y-axis, the 
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standard deviation of CLUF along the X-axis and 
Y-axis increased and then decreased, indicating that 
CLUF along X-axis and Y-axis distributed from diver-
gence to concentration.

Kernel density estimation of CLUF

The results were calculated using the kernel den-
sity estimation formula eq. (11). The kernel den-
sity curves of CLUF in 2000, 2005, 2010, and 2015 
(Fig. 8) were drawn by STATA16.0. Furthermore, the 
dynamic evolution of the time series of CLUF was 
characterized.

From the curve of kernel density of CLUF, it can 
be found that (1) in terms of the gravity center posi-
tion of the curve, the gravity center position of the 
curve moved to the left from 2000 to 2005 and then 
to the right from 2005 to 2015, indicating that the 
value of CLUF showed a decline first and then a 
rise in the study period. (2) The peak height of the 

curve’s central peak showed the peaks rose slightly 
from 2000 to 2005 and then slumped from 2005 to 
2010, suggesting that the difference in the cultivated 
CLUF between counties showed a trend of first 
shrinking and then expanding. In 2005, returning 
farmland to the forest in northern Shaanxi had been 
implemented for about five years. The continuous 
return of farmland to forestry and grassland in the 
region had a sharp decline in the absolute amount 
of cultivated land. Currently, counties in the central 
region have been vigorously implemented water-
saving transformation in irrigation districts and agri-
cultural mechanization projects (Dang et al., 2020). 
The two differentiated policies have caused a rap-
idly increasing variation in cultivated land use pat-
terns among counties in the province. (3) In terms 
of the number of curve peaks, the coexistence of the 
central peak and a secondary peak in 2000–2015 
revealed a polarization pattern of CLUF in the 
county during the study period. (4) In terms of the 
left and right tailing of the curve, the right tailing of 

Fig. 7   Standard deviational ellipse analysis of CLUF
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the curve was larger than the left tailing from 2000 
to 2015. In addition, there was a trend of elongation 
and thickening of the tails, indicating that the CLUF 
pattern in high-value counties had increased during 
the study period and that the number of high-value 
counties increased.

From the curve of kernel density of CLDF, it can 
be found that (1) in terms of the position of the grav-
ity center, the gravity center of the curve shifted to 
the left during 2000–2010, and then shifted to the 
right during 2010–2015, indicating that the CLDF 
decreased first and then increased during the study 
period. (2) From the perspective of the height of 
the central peak of the curve, the peak of the central 
peak of the curve showed a “rising-declining-rising” 
trend from 2000 to 2015, indicating that the differ-
ence of the CLDF among counties showed a trend 
of “reducing- increasing- reducing.” (3) From the 
number of curve peaks, the central peak and the sec-
ondary peak coexisted in 2000–2015 suggested that 
the CLDF in the study period had a polarization pat-
tern. (4) From the left and right tail of the curve, the 
right side of the curve shortened from 2000 to 2005, 

increased from 2005 to 2010, and decreased again 
from 2010 to 2015.

From the curve of kernel density of CLRF, it 
can be found that (1) in terms of the gravity center 
position, the gravity center of the curve from 2000 
to 2015 moved to the right, indicating an over-
all upward trend of CLRF in the study period. (2) 
From the peak height of the curve’s main peak, 
the central peak continued to decline from 2000 to 
2015, indicating an overall narrowing of the gap of 
the CLRF among counties in the study period. (3) 
In terms of the number of curve peaks, the central 
peak, and multiple secondary peaks coexisted from 
2000 to2015, and the central peak and secondary 
peaks coexisted from 2010 to2015, indicating that 
the distribution pattern of CLRF in the study period 
first existed polarization, and gradually turned to 
multipolar distribution pattern. (4) From the left and 
right tail of the curve, the curve’s right tail contin-
ued to grow from 2000 to 2015, illustrating the con-
tinued growth of CLRF in high-value area counties 
and the increase in the proportion of counties in the 
high-value area.

Fig. 8   kernel density estimation of CLUF
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Analysis of the driving mechanism of CLUF pattern 
differentiation

The conceptual framework of the driving mechanism 
of CLUF

The land use transition results from the interaction 
and mutual restriction of multiple factors such as 
natural environmental conditions, socio-economic 
systems, land governance engineering technology, 
government laws and regulations, and regional popu-
lation conditions in a specific area (Tian et al., 2020). 
The CLUF is essential for land use transition. As the 
most basic agricultural production condition, cul-
tivated land carries an adequate supply of food and 
the source of essential food for human survival. The 
transformation of cultivated land use is affected by 
the specific social, economic, political, and cultural 
factors in the region and the regional natural envi-
ronment, traffic location, and population changes 
(Su et  al., 2019). The driving factors of CLUF are 
multi-level, including the natural environment, eco-
nomic growth, government policies, and urbanization 
development. The natural environment, economic 
growth, and urbanization development were selected 
as drivers influencing CLUF due to the challenging 
nature of measuring government policy factors in the 

jurisdiction and the fact that socio-economic factors 
and urbanization development factors are the driving 
outcomes of government policies (Fig. 9).

According to the above theoretical analysis 
framework, nine indicators of three categories were 
selected as the essential of cultivated land use tran-
sition (Table  3). The natural environment factors, 
including elevation (DEM), annual mean tempera-
ture (MAT), and annual mean precipitation (MAP), 
are essential factors affecting the distribution and 
utilization efficiency of cultivated land. Since the 
differences in topography and hydrological fac-
tors will lead to uneven distribution of cultivated 
land resources and determine regional agricultural 
production mode, the natural environment fac-
tors are also critical to determine the direction of 
use and realize the benefit of harvest in the use of 
cultivated land. The elements of economic growth 
include per capita GDP(GPC), farmers’ capita net 
income (FCN), and the ratio of secondary and ter-
tiary industries (RST). The cultivated land transi-
tion is usually associated with regional social and 
economic development. On the one hand, social 
and economic growth can weaken the agricultural 
production value of cultivated land, and the prop-
erty income value brought by cultivated land trans-
formation becomes more prominent. On the other 

Fig. 9   Conceptual frame 
diagram of the driving 
mechanism of CLUF
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hand, with social and economic development, the 
potential demand for food supply will be greater, 
which will increase the burden of arable land use. 
Three indicators of urban fixed asset investment 
per land (UFA), urbanization rate (UZR), and pop-
ulation density (PLD) are chosen for urbanization 
development factors. While the urbanization devel-
opment drives the gradual migration of rural labor 
to cities and towns, the non-agriculturalization of 
cultivated land, hollowing out of the rural popu-
lation, and occupation of cultivated land for con-
struction land disordering and other phenomena 
will also emerge. Simultaneously, the abandonment 
and over-utilization of cultivated land alongside the 
abandonment of homesteads will impact the culti-
vated land transition.

Result analysis of driving factors

Spatial econometric regression for the driving mecha-
nism of cultivated land use transition from 2000 to 

2015 requires LM test and a robust LM test to deter-
mine whether a spatial lag model or a spatial error 
model is chosen (Baltagi & Bresson, 2011). Accord-
ing to the results in Table 4, Moran’s index in 2010 
and 2015 did not pass the 10% robustness test in SEM 
test, while the LM test in 2010 and the robust LM 
test in 2010 and 2015 both passed the 10% robust-
ness test. In SLM test, it was found that the LM test 
of spatial lag and spatial error and the robust LM test 
of other years mostly passed the significance test, 
except for the robust LM test of 2015. Therefore, 
the SLM model was selected for spatial econometric 
regression.

According to OLS and SLM model regression 
results at the county level (Table  5), the cultivated 
land use transition at the county level results from the 
natural environment, economic growth, and urbaniza-
tion development. (1) DEM had a positive correla-
tion with the CLUF at the significance level of 10% 
in 2000 and 2010, and a negative correlation with the 
CLUF at the significance level of 5% in 2015, which 

Table 3   Driving factors of cultivated land use transition

Rule layer Index layer Index  
abbreviation

Description

Natural environment Elevation DEM County average elevation
Annual mean precipitation MAP Regional precipitation conditions
Annual mean temperature MAT Regional temperature conditions

Economic growth Per capita GDP GPC Regional economic development level
Farmers capital net income FCN Farmers income level
Ratio of secondary and tertiary industries RST Industrial structure level

Urbanization development Urban fixed asset investment per land UFA Regional investment level
Urbanization rate UZR Regional urbanization level
Population density PLD Population carrying capacity

Table 4   Model selection test of spatial effect

Test 2000 2005 2010 2015

Statistic P-value Statistic P-value Statistic P-value Statistic P-value

SEM test
    Moran’s index 1.529 0.126 1.706 0.088 1.355 0.175 1.058 0.290
    Lagrange Multiplier 17.169 0.000 21.461 0.000 7.163 0.007 1.356 0.244
    Robust Lagrange Multiplier 8.835 0.003 14.052 0.000 2.331 0.127 0.281 0.596

SLM test
    Lagrange Multiplier 15.568 0.000 9.060 0.003 11.029 0.001 3.472 0.062
    Robust Lagrange Multiplier 7.233 0.007 1.650 0.199 6.197 0.013 2.397 0.122
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significantly impacted the spatial pattern of cultivated 
land use. The northern counties of Shaanxi province 
are located in the Loess Plateau area at a high alti-
tude. From 2000 to2010, due to the comprehensive 
treatment and ecological restoration work, most of 
the abandoned land became high-standard construc-
tion farmland through slope farmland management 
and warping dam construction. Therefore, the uti-
lization of cultivated land showed a transition trend 
of increasing quantity and improving quality. During 
2015, with the in-depth development of the farm-
land management project and rapid socio-economic 
development, the altitude has seriously restricted the 
rational development of cultivated land resources by 
the main body of cultivated land utilization, resulting 

in the reduction of the number of cultivated land uti-
lization and the contraction of local space. (2) MAP 
showed a significantly negative correlation with the 
CLUF, but the negative correlation was gradually less 
marked. This probably Shaanxi province is located in 
the northwest inland region, and the average annual 
precipitation decreases from the southeast to the 
northwest inland. Due to the low precipitation, the 
water resources for agricultural production are incred-
ibly scarce, resulting in a transformation pattern of 
the reduced amount of cultivated land and spatial 
shrinkage. MAT is the opposite. MAT from 2000 to 
2010 showed a significant positive correlation with 
the CLUF. The high average annual temperature 
provides light and heat conditions for agricultural 

Table 5   Spatial regression analysis results of driving factors of cultivated land use transition

(a, b,  c)  represents significant correlation at the significance level of 10%, 5%, and 1%, respectively.
Standard errors are in parentheses

2000 2005 2010 2015

OLS SLM OLS SLM OLS SLM OLS SLM

DEM 0.063 0.113a 0.027 0.074 0.052 0.125a  − 0.230c  − 0.172b

(0.062) (0.065) (0.065) (0.050) (0.081) (0.076) (0.071) (0.073)
MAP  − 0.240c  − 0.241c  − 0.205c  − 0.200c  − 0.261c  − 0.267c  − 0.070  − 0.088a

(0.040) (0.044) (0.038) (0.032) (0.055) (0.050) (0.049) (0.047)
MAT 0.579c 0.658c 0.393b 0.468c 0.473b 0.641c  − 0.195  − 0.065

(0.156) (0.164) (0.158) (0.110) (0.215) (0.200) (0.187) (0.187)
GPC 0.028b 0.022b 0.031a 0.031b 0.014 0.025 0.058b 0.063c

(0.014) (0.011) (0.018) (0.012) (0.022) (0.020) (0.023) (0.022)
FCN  − 0.001  − 0.014  − 0.001  − 0.009  − 0.010  − 0.009  − 0.062  − 0.071

(0.020) (0.022) (0.026) (0.028) (0.053) (0.048) (0.049) (0.046)
RST  − 0.116b  − 0.085b  − 0.212c  − 0.179c  − 0.183c  − 0.138b  − 0.309c  − 0.281c

(0.046) (0.037) (0.050) (0.043) (0.059) (0.055) (0.065) (0.063)
UFA  − 0.002  − 0.003  − 0.005  − 0.006 0.016 0.007 0.024c 0.021c

(0.006) (0.006) (0.007) (0.007) (0.010) (0.009) (0.008) (0.008)
UZR  − 0.034  − 0.021 0.030 0.013 0.043 0.009 0.002  − 0.017

(0.039) (0.030) (0.061) (0.046) (0.052) (0.048) (0.049) (0.047)
PLD  − 0.039a  − 0.020 0.012 0.028  − 0.102c  − 0.065b  − 0.126c  − 0.109c

(0.020) (0.019) (0.020) (0.047) (0.029) (0.028) (0.027) (0.027)
Cons  − 0.915  − 1.558a  − 0.098  − 0.814  − 0.018  − 1.391 3.526c 2.666b

(0.907) (0.924) (1.005) (0.785) (1.371) (1.300) (1.308) (1.301)
W-Y – 0.038c – 0.035c – 0.038c – 0.022a

(0.009) (0.010) (0.011) (0.011)
R2 0.603 0.656 0.479 0.522 0.513 0.561 0.549 0.565
LogL – 159.404 – 138.702 – 135.756 – 131.783
AIC  − 283.594  − 294.808  − 248.210  − 253.404  − 240.188  − 247.512  − 239.850  − 239.565
BIC  − 256.865  − 262.734  − 221.482  − 221.330  − 213.460  − 215.438  − 213.122  − 207.492
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production, which in turn accelerated the melting 
process of glaciers in rivers. Large amounts of gla-
cier meltwater can alleviate water shortage and ensure 
the amount of water required for agricultural produc-
tion. Utilization shows a relative increase in quantity. 
At the same time, the transition of cultivated land use 
to quantity and quality improvement has been facili-
tated. (3) Except in 2010, GPC has a significant posi-
tive impact on the CLUF, and the degree of impact 
has deepened over time. The industrial-technological 
progress induced by economic development can pro-
mote the transformation of agricultural production 
methods and the innovation of production technol-
ogy. The output benefit of cultivated land continues to 
increase, which in turn induces the cultivated land use 
transition to the direction of relative quality improve-
ment (Huaranca et  al., 2019). (4) RST has a signifi-
cant negative impact on the CLUF during the study 
period. The increase in RST has led to a decline in 
the proportion of agricultural production in the total 
output value of Shaanxi province. In addition, the 
rapid growth of the secondary and tertiary industries 
will occupy a large number of arable land resources, 
resulting in a reduction in cultivated land utilization 
and a shrinking spatial transition. (5) PLD has a sig-
nificant negative impact on the CLUF. The increase 
of PLD will increase the land carrying capacity and 
the pressure on the ecological environment. The sup-
porting service facilities and population living space 
will also reduce the cultivated land area (Wellmann 
et al., 2020), leading to the reduction type transition 
of cultivated land quantity.

Discussion

Based on the data of 107 counties in Shaanxi prov-
ince in 2000, 2005, 2010, and 2015, the CLUF was 
measured using the entropy weight method and linear 
sum method. The dynamic evolution rules and spatial 
differentiation characteristics of cultivated land use 
transition in the county were described from a two-
dimensional spatiotemporal perspective. At the same 
time, the driving mechanism affecting the differentia-
tion of cultivated land use transition patterns was also 
empirically analyzed, and the following research con-
clusions and implications were obtained.

This study mainly uses spatial statistical analysis 
tools to analyze the land use transition in Shaanxi 

province. The study found that the overall cultivated 
land use situation in Shaanxi province was gradually 
rationalized. In terms of specific spatial forms, the 
county-level cultivated land use form index showed 
a spatial differentiation pattern of high in the mid-
dle and low in the north and south. Shaanxi province 
has a continental monsoon climate, and the north and 
south climate zones are temperate, warm temperate, 
and subtropical. The temperature and precipitation in 
Shaanxi province gradually increased from north to 
south, and the main vegetation types in the region have 
prominent zonal characteristics, including temperate 
grassland, forest-steppe interlaced zone, and broad-
leaved forest (Wang et  al., 2020a, b, c). The central 
part of Shaanxi province is mainly the Guanzhong  
Plain of Shaanxi province, the main grain-producing 
area in the region, where rainfall, light, and heat are 
sufficient (Wu et  al., 2022), so the degree of inten-
sive use of cultivated land here is relatively high. 
Yang and Huang (2019) also confirmed this view, as 
the northern region of Shaanxi province is an energy 
and chemical industry base, with the development 
of resources not only puts pressure on the ecological 
environment but also causes air pollution and sewage 
pollution, which reduces the quality of environmen-
tal management. The implementation of air pollution 
control and a series of ecological projects in the cen-
tral Guanzhong Plain in Shaanxi province will lead to 
a better greening of the region, which will promote 
the efficient use of resources in the region.

In addition, it was found that there was a strong 
positive spatial correlation between the cultivated 
land use pattern indices in Shaanxi province, and the 
local spatial differentiation pattern was dominated by 
high-high and low-low clustering. There was a trend 
of expanding decentralization to contracting concen-
tration in geographic space, and the rationalization 
of cultivated land use among counties was improved. 
Practically speaking, natural geographical condi-
tions have a significant impact on the pattern of cul-
tivated land use, and although northern Shaanxi has 
arid and water-scarce climatic conditions, hilly and 
ravine landscapes, and plateau topography that can 
limit the development of agriculture and the effective 
use of cultivated land (Sun, 2018; Wei et al., 2018). 
In recent years, the government has improved irriga-
tion technology by building reservoirs, dams, water 
cellars, and other water conservation facilities and the 
government has significantly improved the utilization 

Environ Monit Assess (2022) 194: 365 Page 17 of 21 365



1 3
Vol:. (1234567890)

of arable land in northern Shaanxi by building reser-
voirs, dams, water cellars, and other water conserva-
tion facilities, improving irrigation technology, and 
increasing water utilization in recent years (Gao & 
Huang, 2020; Wen & Théau, 2020). In contrast, in 
the southern and central regions of Shaanxi province, 
the rational adjustment of land, arable land protection 
measures, and the improvement of agricultural pro-
duction conditions and management levels have been 
achieved (Kang et  al., 2018). The above measures 
have led to a gradual increase in the intensity of ara-
ble land use in Shaanxi province (Tang et al., 2015; 
Yang & Zhang, 2021).

The study also explored the factors influencing the 
transformation of cultivated land use, and we found 
that the transformation of cultivated land use is the 
result of a combination of the natural environment, 
economic growth, and urbanization factors in the 
county and that population density has a significant 
adverse effect on the transformation of cultivated land 
use. This view has been confirmed by scholars who 
have analyzed the change in arable land use and its 
main determinants in Tanzania, and the results of the 
study pointed out that demographic and socioeco-
nomic factors have been identified to have a more sig-
nificant impact on the change in the amount of arable 
land in Tanzania (Uisso & Tanrıvermiş, 2021). In 
addition, some scholars have pointed out that rapid 
economic development has contributed to an increase 
in the intensity of capital and technological inputs, 
and non-agricultural employment opportunities in cit-
ies have attracted much of the rural labor force (Su 
et al., 2019), leading to a decrease in the intensity of 
labor inputs and a decrease in rural population den-
sity, and the extent of farmers’ use of arable land can 
be significantly weakened (Liang et al., 2021).

In this study, CLUF was constructed from a two-
dimensional perspective of dominant and recessive 
forms to explore the cultivated land use transition in 
Shaanxi province. However, there are still some limi-
tations in the research. First, due to data collection 
limitations, the evaluation index system of CLUF in 
this study cannot cover all the dominant and reces-
sive forms of cultivated land use. Besides, because 
this research is based on one province of Shaanxi, 
this research results may differ from those of other 
provinces. In the following research, this research 
method will be applied to study other provinces in 
China to explore the differences in spatial analysis 

characteristics and driving mechanisms of cultivated 
land use transition in different regions.

Conclusions and policy recommendations

Conclusions

The transformation of cultivated land use is of great 
significance in promoting the transformational devel-
opment of the countryside and the improvement of 
its socio-economic level. In this study, the spatial sta-
tistical analysis tools and spatial regression analysis 
methods were used to analyze the spatial differentia-
tion characteristics of arable land use transformation 
and its influencing factors in counties of Shaanxi 
province under the condition of measuring the culti-
vated land use morphological index, which measured 
the transformation status of cultivated land use from 
both explicit and implicit morphological aspects. 
Based on the analysis and findings, the following con-
clusions were drawn.

(a) In terms of spatial pattern evolution trend, the 
CLUF presents the spatial differentiation pattern of 
high in the central part and low in the north and south 
part, correlated with the Shaanxi province’s terrain 
distribution pattern. (b) In terms of spatial autocor-
relation analysis, there is a solid spatial positive cor-
relation between CLUF. The local spatial differentia-
tion pattern is mainly high-high agglomeration and 
low-low agglomeration. The high-high agglomeration 
areas are primarily located in the central regions of 
Shaanxi province, and the low-low agglomeration 
areas, in the southern regions. (c) In terms of ellipse 
standard deviation analysis, the center of gravity 
of CLUF moved from northeast to southwest in the 
study period; the CLUF shows a trend of expansion 
decentralization to contraction centralization in the 
physical space, with a noticeable spatial spillover 
effect. (d) In terms of kernel density estimation, the 
difference of CLUF during the study period shows a 
trend of first narrowing and then expanding; the dif-
ference of CLDF, first narrowing and then expand-
ing and then narrowing; and the difference of CLRF, 
continuous narrowing. (e) The cultivated land use 
transition results from the interaction of natural envi-
ronment, economic growth, and urbanization devel-
opment factors in the county. The impact direction of 
DEM on CLUF changed from positive to negative; 
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MAP, RST, and PLD continued to be negative; MAT 
continued to be positive.

Policy recommendations

(1)	 The cultivated land use transition provides essen-
tial support for realizing China’s agricultural 
modernization. Following the general law of eco-
nomic development, it is necessary to increase 
the investment in regional science and technol-
ogy levels, promote the application of advanced 
agricultural production technology and produc-
tion tools, and promote cultivated land’s rational 
use. Simultaneously, the construction of agricul-
tural infrastructure and high-standard farmland 
construction projects should be strengthened to 
improve the efficiency and functional benefits 
of cultivated land use, and to guide the rational 
transformation and the development of cultivated 
land use.

(2)	 The differences in geographical location, resource 
endowments, and economic development of dif-
ferent counties should be fully considered. More-
over, the promotion of inter-regional cultivated 
land use calls for diversified cultivated land use 
security systems and mechanisms for counties and 
the implementation of county-based and local-
ized policies. The balanced evolution of cultivated 
land is expected to improve cultivated land quality 
and output efficiency from institutional guaran-
tees, improve the spatial form of cultivated land 
use, and promote the rational transformation and 
development of cultivated land use.

(3)	 The spatial spillover effect of cultivated land use 
change at the county level, as well as the demon-
stration role of counties with high CLUF index, 
needs to be used wisely to promote advanced, cul-
tivated land management concepts and effective 
management practices to surrounding counties. At 
the same time, counties with a low CLUF index 
should both avoid the trend of unwinding and 
learn the experience and practices of other regions 
to stimulate the motivation of self-innovation, to 
improve the efficiency of cultivated land use, per-
fect the function of cultivated land, and to realize 
the standardized transformation and development 
of cultivated land use.
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