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DO, sodium, sulfate, temperature, Alkalinity, TDS, 
hardness, TSS, and turbidity are the most influential 
variables for spatial variation extracted through step-
wise DA. Monsoon season shows a higher pollution 
level due to the contribution from both point and non-
point sources. Due to high-density urban areas and 
large-scale industries, the middle course is more pol-
luted. The Canadian Council of Ministers of the Envi-
ronment (CCME) water quality index (WQI) accesses 
the water quality in temporal and spatial scales. The 
resultant water quality pattern is matched with the 
derived result from multivariate analysis. Poor water 
quality is regular at all sample sites in all seasons.
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Introduction

Water is a lifeline for the development of civiliza-
tion. Untreated water from point and non-point 
sources contaminant the water. Some natural and 
anthropogenic processes like weathering, agricul-
ture runoff, minerals, effluents from municipali-
ties, and industries are responsible for this pollu-
tion (Grzywna & Bronowicka-Mielniczuk, 2020; 
Hajigholizadeh & Melesse, 2017; Zhang et  al., 
2020; Zhou et al., 2007). Thus, a river is one of the 
most vulnerable components of the environment, 
which can easily be destroyed by the unconscious 

Abstract  The lower course of the Damodar River 
in West Bengal is one of the most polluted stretches 
in the Ganga River basin. There is a lack of research 
along the whole course of the Damodar, and param-
eter level analysis receives little attention. Eleven 
monitoring sites were chosen based on the poten-
tial sources of pollution for 6  years (2014–2019). 
Multivariate statistical techniques (factor analysis 
(FA), cluster analysis (CA), and discriminate analy-
sis (DA)) evaluate the spatial and temporal variation 
of Damodar River water quality by considering 24 
parameters. Factor analysis extracts the most influ-
ential seasonal parameters, and stepwise DA extracts 
ammonia, DO, potassium, temperature, total coliform, 
TFS, and turbidity, which are the most responsible 
parameters for seasonal variation of the water qual-
ity. CA classify sampling stations into three groups 
helping to identify the spatial variation of water qual-
ity. Ammonia, BOD, calcium, chloride, conductivity, 
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activities of human beings that further create a 
threat to human lives. A general overview of the 
West Bengal Pollution Control Board’s published 
annual report (WBPCB) shows a clear picture of the 
seasonal and sample to sample variation of water 
quality. This variation of pollution potential sources 
of pollution gives a detailed account of rivers that 
help to maintain the water quality and proper man-
agement of the polluted stretches (Bhat et al., 2018; 
Grzywna & Bronowicka-Mielniczuk, 2020; Li 
et  al., 2009; Platikanov et  al., 2019; Salim et  al., 
2019; Singh et al., 2004; Varol, 2020; Varol & Şen, 
2009; Zhong et al., 2018).

Multivariate statistical analysis is widely used 
for spatial and temporal analysis (Simeonov et  al., 
2003; Singh et  al., 2004; Varol & Şen, 2009; Vega 
et  al., 1998; Xiaolong et  al., 2010) of water quality. 
Water quality index (WQI) is a mathematical method 
that determines water quality by combining multiple 
variables and transforming them into a single value 
(Akkoyunlu & Akiner, 2012; Lkr & Neizo, 2020; 
Sharma & Kansal, 2011; Zeinalzadeh & Rezaei, 
2017). Multivariate statistical techniques and WQI 
complete each other by identifying pollutants, spe-
cific changing patterns of pollution levels, and overall 
water quality.

Rapid deterioration of river water quality has 
been a significant environmental concern in recent 
years. The Damodar River in West Bengal, like 
many other Indian rivers, passes through industrial 
and agriculturally developed areas. Damodar River 
is the water source of this area, and not only this, it 
is one of the most important tributaries of the lower 
Ganga (Hoogly). This river stretch is one of the pol-
luted river (category I) in West Bengal, India (CPCB, 
2017). The earlier researches were site-specific, ana-
lyzing the results of anthropogenic sources and pol-
lutants on habitat. This study demonstrates the alter-
ation of water quality on a temporal and spatial scale. 
Accessing a large quantity of data with multiple 
variables presents particular challenges. Multivari-
ate techniques like factor analysis, cluster analysis, 
and discriminate analysis are required to represent 
data understandably (Bengraı ̈ne & Marhaba, 2003; 
Chatterjee et al., 2010; Helmreich, 2015; Kotti et al., 
2005; Reghunath et al., 2002). So, a comprehensive 
study has been done on the Damodar River using 
multivariate statistics to identify the responsible 

variables for water pollution, seasonal and spatial 
variation of water quality, source identification, and 
water quality estimation by WQI.

Materials and methods

Study area

Damodar River is a sub-basin of the Ganga basin, 
extended in Jharkhand and West Bengal (WB). It is one 
of the major rivers of the south Gangetic plain in West 
Bengal (Fig. 1). Damodar flows a distance of 260.48 km 
through the Purba Bardhaman and Paschim Bardhaman 
districts of West Bengal. Paschim Bardhaman is predom-
inantly an industrial district and also an urbanized area. It 
is located in the west of West Bengal and between 22°27′ 
and 23°49′ North and between 86°48′ and 87°55′ East. 
The average slope of the basin is 2.34°. This river basin is 
constituted by sandstone, shales (Gondwana formation), 
laterite (tertiary period), and alluvial geological forma-
tions (Mondal et al., 2018).

Agricultural, residential, industrial, and mining areas 
are the dominant land-use categories in the Damodar 
River basin. Durgapur, Asansol municipal corporation, 
and municipalities like Kulti, Burdwan, Jamuria, Rani-
ganj, and many small census towns are situated along 
this river. Asansol-Kulti township extended to the upper 
reach of the Damodar River (DCO, 2011) at a length 
of 36 km. The four sample stations located along this 
stretch of the river are S1 (Barakar), S2 (Dishergarh), 
S3 (Asansol), and S4 (IISCO). Durgapur Munici-
pal Corporation encompassed a 16.5-km stretch of 
the river, with S9 (Durgapur) and S10 (Mujhermana) 
sampling stations. There are four sample stations, S5 
(Narainpur), S6 (Raniganj), S7 (Andal US), and S8 
(Andal DS), in the middle. S11 (Burdwan) station is 
located in the lower reach of the Damodar.

Site S1 receives outlets from Kulti industrial and 
residential areas. Site S2 receives water from a tribu-
tary near the state Jharkhand. Sites S3 and S4 stations 
are located near congested urbanized and large-scale 
industrial clusters. Site S5 receives a drainage outlet 
from the Anansol residential area. Sites S6, S7, and 
S8 stations are located in residential areas and receive 
sewages. Sites S9 and S10 stations are located in a 
highly congested area of industries and residential 
clusters. Station at site S10 receives treated, untreated 
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effluents from industries and municipalities in the 
Durgapur region and drains into Tamla Nala (drain), 
finally joining the Damodar River (Mukhopadhyay 
& Mukherjee, 2013). S11 site is located in the lower 
reach of the Damodar River in the Burdwan munici-
pality region. Industrial clusters, urbanized residential 
areas, and the outlets from these centers are shown 
in Fig. 2. Maximum industries have fallen in the red 
category list (the most polluted). These districts are 
also referred to as the rice bowl of West Bengal. It 
is, therefore, agriculturally one of the most produc-
tive regions. Maps are generated in the ArcGIS 
environment.

Monitoring sites

This study is based on the data collected by WBPCB 
(West Bengal Pollution Control Board) under the Pol-
lution Control Board of India. A total of 11 sampling 
sites (Fig. 1) are selected for the sampling purpose by 
WBPCB. The selection of sites is based on the poten-
tial sources of pollution (Guidelines for water qual-
ity monitoring). All sites are concentrated around 
industrial sites or municipal areas. Central Pollution 
Control Board describes the methods and sampling 
procedure (Guide Manual: Water and Wastewater 
analysis). The data have been taken monthly from 

Fig. 1   Location of study area and sampling sites
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the year 2014 to 2019 for all 11 stations. Out of the 
analyzed 27 parameters, 24 are used to determine 
the changes in water quality. The other three param-
eters (Boron, Phenolphthalein alkalinity, and total 
Kjeldahl nitrogen) are below detection level or NIL 
for maximum times. The measured parameters are 
Ammonia-N (Ammonia), biological oxygen demand 
(BOD), Calcium, Chloride, chemical oxygen demand 
(COD), conductivity (Cond), dissolved oxygen (DO), 
fecal coliform (F.Coliform), Fluoride, Magnesium, 
Nitrate–N (Nitrate), pH, Phosphate, Potassium, 
Sodium, Sulfate, temperature °C (Temp.), total alka-
linity (Alkalinity), total coliform (T.Coliform), total 
dissolved solids (TDS), total fixed solid (TFS), total 
hardness (Hardness), total suspended solids (TSS), 
and turbidity.

Water quality parameters from eleven sampling 
locations are analyzed, totaling twenty-four (24) 
parameters and categorized into three seasons to find 

out the temporal variation of the pollution load from 
2014 to 2019. Factor analysis was used to identify the 
most influential water quality parameters out of the 
24 parameters in the three seasons. Spatial variations 
of pollution load are analyzed through cluster analy-
sis. Among the 24 parameters, few are crucial for sea-
sonal and spatial variation and discriminant analysis 
has conducted to distinguish those variables. WQI 
has accessed overall water quality based on seasonal 
and spatial variation. The detailed research design are 
shown in Fig. 3.

Rainfall pattern

Rainfall data of the Damodar River basin are 
extracted from the interpolated raster map (Pai 
et  al., 2014) collected from the Indian Meteoro-
logical Department (IMD). Monthly rainfall data 
have been extracted and summarized seasonally 

Fig. 2   Outlets form industries and residential areas into Damodar River
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from 2014 to 2019 (Table  S1). It is one of the 
controlling factors that determine the pollution 
load by carrying elements through surface run-
off. Data in Table S1 shows mean rainfall and SD 
in mm. A year is divided into three seasons, pre-
monsoon (March to May), monsoon (June to Sep-
tember), and post-monsoon (October to February) 
for the analysis purpose. Discharge declines from 
the monsoon to the pre-monsoon and lowest pre-
vail during the month between October to February 
(Bhattacharyya, 2011).

Statistical techniques

Factor analysis

Factor analysis is one of the most common and use-
ful methods for multidimensional data used in many 
water quality analyses (González et al., 2014; Kükrer 
& Mutlu, 2019; Mutlu, 2019; Ouyang et  al., 2006; 
Singh et  al., 2004). It transforms the original vari-
ables into few latent variables without compromising 
the original characters of the data. Each factor is a set 

Fig. 3   Research design
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of latent factors that carry as much variance and bear 
some unique characters. The same number of factors 
is generated as the number of input variables. Eigen-
value more than 1 is considered as the method to 
choose the number of components of factor analysis. 
It also produces uniqueness for each variable that tells 
us that other variables cannot explain that variable. A 
“varimax” axis rotation makes the output factor load-
ings easier to read in factor analysis. The factor load-
ings can be classified into strong (> 0.75), moderate 
(0.5–0.75), and low (< 0.50) (Liu et al., 2003).

Cluster analysis

Cluster analysis is a multivariate technique that per-
forms the grouping of sampling stations depending 
on the similarity of the pollution load. The clusters 
show high homogeneity within-cluster and high het-
erogeneity between clusters (Hair et  al., 2010). It 
has widely been used in many studies (Alberto et al., 
2001; Chang, 2005; Hajigholizadeh & Melesse, 2017; 
Simeonov et al., 2003; Singh et al., 2004; Vega et al., 
1998).

We have used an agglomerative hierarchical cluster 
where each observation is considered a cluster until 
a large cluster is formed through the set of observa-
tions (Maechler et  al., 2005). Data are standardized 
before clustering. “Euclidean” distance is used to cal-
culate the distance among stations, and the stations 
are clustered using ward’s minimum variance cluster-
ing method. Hopkins statistics (Lawson & Jurs, 1990) 
determine the data suitability for cluster analysis.

Discriminant analysis

Factor analysis is performed to extract the low dimen-
sional factors representing the high variance of the 
multivariate dataset. In the discriminate analysis 
(DA), the dataset is divided into the best possible 
groups. It is also called the supervised pattern recog-
nition model, which is based on multiple explanatory 
variables to predict categorical response variables. 
DA assumes that all classes are linearly separable 
by hyperplanes depending on the various explana-
tory variables’ criteria. The number of hyperplanes 
relies on the number of groups. This study is based on 
the three seasons, so two hyperplanes will generate 
to classify the data. This hyperplane passes through 
the midpoint of the cluster mean. It is also calculated 

from the individual sample covariance matrix. The 
discriminant function has the form presented in 
Eq. (1) (Alberto et al., 2001).

where i is the number of groups (it is three in tempo-
ral analysis), ki is the constant inherent to each group, 
DA assigned weight coefficient (wj) for selected 
parameters (pj), and n is the number of analytical 
parameters.

This DA performs in standard and stepwise mode 
to select variables that significantly contribute to 
maximizing distance between the mean of each 
group. DA analysis has been performed for tempo-
ral and spatial analysis where seasons and clusters 
are the response variables and observed water qual-
ity parameters are explanatory variables. The model 
performance is shown through the confusion matrix. 
SPSS software is used for the discriminant statistical 
analysis and R software is used for other statistical 
analysises and representation.

Water quality index

Canadian Council of Ministers of the Environment 
(CCME) develop a water quality index (WQI) to 
determine the water quality depend on the differ-
ent variables. The essential features of CCME WQI 
are flexibility in choosing water quality parameters 
according to the requirements and availability. This 
index is based on the three elements (CCME, 2017), 
which are scope (F1), frequency (F2), and amplitude 
(F3). The water quality index is expressed as

CCME WQI = 100 − 

�

√

F
1

2+F
2

2+F
3

2

1.732

�

 ; here, the 

1.732 value normalizes the result at a range of 0–100.
Where F1 is the percentage of the failed param-

eters concerning the total number of parameters that 
fail to meet the water quality standard, F2 is the per-
centage of failed test for the total number of tests, 
and F3 is an asymptotic function used to normalized 
the sum of excursions to yield a range between 0 and 
100, but before calculating F3, excursion and sum of 
excursion (nse) need to be calculated.
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= ki +
∑
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Scopy (F1) =
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Number of failed parameters

Total number of paramters

)

× 100
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Excursion is calculated by dividing the failed val-
ues by the objective when concentration is greater 
than the permissible limit and vice versa when con-
centration is less than the required minimum permis-
sible limit.

A minimum of four parameters and four sampling 
frequencies are required for this WQI. Due to the 
flexibility of choosing the variables and the permissi-
ble limits, this WQI is used for CPCB assigned water 
category A (drinking water source without conven-
tional treatment but after disinfection). The permis-
sible limit of IS 2296:1992 Indian standard has been 
used for this analysis. BOD, chloride, DO, fluoride, 
nitrate, pH, sulfate, total coliform, TDS, and hardness 
determine the water quality. This WQI is classified 
as poor (0–44), marginal (45–64), fair (65–79), good 
(80–94), and excellent (95–100).

Result and discussions

Correlation analysis

Pearson correlation analysis has been performed 
(Table  1) to understand the significant correlation 
among 24 parameters. COD has a significant positive 
correlation with ammonia, calcium, cond., phosphate, 
potassium, sodium, sulfate, TDS, TFS, and TSS. So, 
the sources of these elements are similar. DO and pH 
negatively correlated with COD. COD is highly asso-
ciated with ammonia and TFS. COD is the source of 
effluent discharge from the residential, industrial, and 

Frequency (F2) =
(

Number of failed test

Total number of tests

)

× 100

Amplitude (F3) =
(

nse

0.01nse + 0.01

)

F3 (a) Excursioni =

(

FailedTestValuei

Objectivej

)

− 1

F3 (b )Excursioni =

(

Objectivej

FailedTestValuei

)

− 1

F3 (1) nse =

�

∑n

i=1
excursioni

# of tests

�

agricultural fields (Bellos & Sawidis, 2005). So, an 
increase in nutrients leads to a decrease in the level 
of DO. DO has a highly significant positive correla-
tion with the pH of the water and negatively corre-
lated with temperature, turbidity, TFS, and TSS. An 
increase in temperature increases the biological pro-
cess in water that consumes oxygen from water and 
decreases the DO level in the water (Brandt et  al., 
2017). TDS and TFS are highly correlated with min-
erals like ammonia, chloride, sodium, potassium, sul-
fate, and Alkalinity. The alkalinity of water comprises 
the amount of calcium, magnesium, sodium, and 
potassium that further controls the level of TDS (con-
tains Ca2+, Mg2+, K+, Na+, SO4

2−, Cl−, etc. (Çadraku, 
2021)) and TFS in the water (Brandt et  al., 2017). 
It is highly affected by land washing (Bengraı̈ne & 
Marhaba, 2003) in the wet season (monsoon) and 
drainage from urban areas (Alberto et  al., 2001) as 
well as from irrigation discharges (Liu et  al., 2019). 
Ions like sodium, potassium, and magnesium are a 
highly positive relation with hardness. Water mineral-
ization is controlled by these ions (Varol, 2020). Both 
natural and anthropogenic sources are responsible for 
the variation of these ions.

Spatial variation

Ammonia, BOD, and COD concentrations are 
higher in site S5 (Narainpur) than upper four stations 
(Table  2). Site 5 is located near the tributary that 
receives sewage from a vast residential area. Domes-
tic effluents increase ammonia concentration (Brandt 
et al., 2017; Kotti et al., 2005) in water. Oxidation of 
ammonia contributes to the increase in COD levels 
(Gradilla-Hernández et  al., 2020). The concentra-
tion gradually decreases from site S6 due to the self-
purification process (Varol, 2020). Site S10 receives 
maximum sewages from large clusters of industries 
and congested residential areas. So, the concentration 
of pollutants is relatively high on this site. Minerals 
like calcium, magnesium, sodium, potassium, and 
TDS, alkalinity increase from site S1 to site S6, and 
then it decreases and further increases in site S10. 
Hardness is controlled by the amount of calcium and 
sodium concentration in water. Thus, it follows the 
same pattern as calcium and magnesium. Nitrate, 
phosphate, and potassium; alkalinity; chloride; con-
ductivity; TDS; TFS; and hardness are significantly 
high from sites S6 to S8 due to the concentration of 
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agriculture field and residential area in this zone. 
TSS, turbidity, and coliform (both fecal and total) are 
significantly higher in sites S1 and S2 than site S3 
due to the vast agriculture field and residential area.

Cluster analysis has been used to detect the variation 
of pollution content along the river bed from source to 
mouth. Hopkins statistics (Lawson & Jurs, 1990) H value 
is 0.236; thus, the null hypothesis is rejected, and the data-
set is suitable for cluster analysis. The result is represented 

in Dendrogram (Fig. 4). The best cluster number is cho-
sen based on the 30 indices (Charrad et al., 2014). Here, 
the three clusters are the best number of clusters. Site S1, 
S2, S3, and S4 in the upper reach form the first cluster; 
sites S5 to S9 and S11 constitute the second cluster; and 
site S10 form a separate cluster. Site S10 (Mujher Mana) 
receives the effluents from the Tamla drain. Sixty percent 
of Durgapur town’s habitat slopes toward the Tamla drain 
(Mukhopadhyay & Mukherjee, 2013).

Fig. 4   Cluster dendrogram showing the similarity in pollution concentration among the sampling sites
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Table 3   Factor loadings for 
premonsoon (a), monsoon 
(b), and postmonsoon (c) 
season

Rotated component matrix

Component

a
1 2 3 4 5 6 7

Ammonia .233 .894 −020 −081 .071 −008 .070
BOD .115 −014 .028 .144 −040 −068 .906
Calcium .144 .054 .678 −002 .270 .266 .280
Chloride .786 .034 .182 .245 .234 .074 .058
COD .279 .621 .004 .120 −376 −110 .211
Cond .886 .168 .184 −012 .120 .016 .037
DO −237 −402 −130 .021 .209 .501 .272
F.Coliform .091 −021 .024 .957 .039 .022 .104
Fluoride .587 .129 −295 .098 .415 .357 .100
Magnesium .261 −003 .828 .050 −116 −179 −188
Nitrate .099 .638 .112 .032 .496 .051 −116
pH −049 .005 .026 −104 −151 .876 −111
Phosphate .096 .839 .081 −084 .051 .112 −115
Potassium .700 .091 .223 −100 .313 −052 .109
Sodium .838 .136 .149 .052 .110 −003 .097
Sulfate .736 .046 .407 .031 .030 .085 −028
Temp .230 .120 .070 .173 .070 .549 −026
Alkalinity .174 −048 .103 .164 .764 −055 −005
T.Coliform .079 −033 .033 .953 .109 .040 .054
TDS .854 .336 .044 .047 −119 .010 −002
TFS .869 .311 .048 .050 −097 .009 −033
Hardness .275 .025 .938 .034 .077 .038 .035
TSS .310 .838 −083 .040 −139 .000 .020
Turbidity .501 .226 .057 .102 −279 −016 −026
b

1 2 3 4 5 6
Ammonia .292 −074 .137 .742 .112 −007
BOD .277 −089 −067 .225 .514 −158
Calcium .148 .806 .114 .058 −012 .319
Chloride .365 .223 .053 .060 .095 .636
COD .491 −064 −096 −035 .236 −177
Cond .845 .245 −046 .062 −055 .083
DO −109 −276 −387 −112 −514 .014
F.Coliform −180 −041 .895 .040 .053 .000
Fluoride −031 −140 −090 .076 −212 .531
Magnesium .206 .844 −153 .016 −095 −130
Nitrate −046 .049 .137 .781 −054 .351
pH .089 .074 −366 .023 −642 −031
Phosphate .034 .141 −130 .618 −066 −037
Potassium .763 .118 −045 .042 −036 .209
Sodium .824 .115 −067 .062 −050 .076
Sulfate .595 .109 −184 .054 .306 .104
Temp −067 .197 −093 .400 −377 −035

Environ Monit Assess (2022) 194: 308 308   Page 12 of 23



1 3
Vol.: (0123456789)

Table 4   Overall 
significance test of Wilk’s 
lambda for temporal and 
spatial discriminant analysis

Wilk’’ Lambda

Test of function(s) Wilks’ Lambda Chi-square df Sig

Temporal DA Standard Mode 1 through 2 .404 705.790 48 .000
2 .803 170.654 23 .000

Stepwise Mode 1 through 2 .440 645.547 14 .000
2 .842 135.084 6 .000

Standard Mode 1 through 2 .281 989.245 48 .000
Spatial DA 2 .796 177.262 23 .000

Stepwise Mode 1 through 2 .291 966.988 28 .000
2 .819 156.393 13 .000

Table 3   (continued) Rotated component matrix

Component

Alkalinity .117 .214 .060 −013 .075 .821
T.Coliform −169 −032 .906 .005 .034 .012
TDS .878 .099 −027 .001 −142 .038
TFS .867 .155 −071 .055 −103 .065
Hardness .234 .914 −011 .051 −078 .116
TSS −030 −093 .053 .553 .311 −019
Turbidity −274 −093 −172 −011 .712 −013
c

1 2 3 4 5 6 7
Ammonia .303 .782 −060 .135 .060 .027 .015
BOD .202 .027 −034 −041 −039 .115 .895
Calcium .054 .144 .786 .275 −015 −086 .171
Chloride .553 .002 .353 .434 −001 .258 −018
COD .420 .436 −056 −306 .146 .075 .309
Cond .846 .251 .127 .142 .002 −101 .165
DO −250 −168 .188 .405 −117 −525 .381
F.Coliform −090 .160 −040 −021 .889 .012 .011
Fluoride .315 .244 −078 .576 .078 −130 −053
Magnesium .286 −072 .751 −185 .050 .056 −198
Nitrate .019 .827 .165 .174 .115 −027 −059
pH −336 .006 −077 .495 −076 −224 .055
Phosphate .152 .805 .023 −091 .082 .009 −010
Potassium .704 .048 .138 −135 −161 .086 −125
Sodium .838 .020 .103 .153 −018 .153 .089
Sulfate .740 .082 .132 −011 −105 .011 −039
Temp −035 .037 .058 .180 .100 .827 .075
Alkalinity .137 −012 .232 .783 .088 .180 −020
T.Coliform −044 .045 .081 .090 .890 .019 −048
TDS .779 .272 .094 .014 .074 −102 .222
TFS .652 .595 .029 −027 .057 −048 .184
Hardness .215 .051 .956 .077 .023 −024 −014
TSS .022 .825 .004 −010 −028 .118 .031
Turbidity .044 .041 −083 −348 −162 .523 .132
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Table 5   DA coefficients for 
temporal (a) and spatial (b) 
variation in water quality

Classification function coefficients

Standard mode Stepwise mode

Premonsoon Monsoon Postmonsoon Premonsoon Monsoon Postmonsoon

a
Ammonia .135 −.376 .219 −.037 −.208 .189
BOD .011 −.106 .078
Calcium −.115 .344 −.206
Chloride −.124 −.140 .187
COD −.016 −.070 .066
Cond .462 −.162 −.149
DO .305 −.713 .386 .308 −.737 .403
F.Coliform −.027 .175 −.124 −.271 .226 −.018
Fluoride −.086 .089 −.020
Magnesium −.119 .267 −.142
Nitrate .169 −.038 −.071
pH .061 −.034 −.009
Phosphate −.233 .099 .062
Potassium −.297 .328 −.084 −.271 .226 −.018
Sodium −.128 −.157 .203
Sulfate .018 .239 −.202
Temp .810 1.045 −1.324 .766 .993 −1.256
Alkalinity −.086 .043 .017
T.Coliform −.160 .072 .039 −.207 .201 −.036
TDS −.499 .432 −.045
TFS .640 −.517 .028 .358 −.285 .012
Hardness .198 −.597 .358
TSS −.269 .253 −.040
Turbidity −.165 .246 −.097 −.287 .344 −.102
(Constant) −1.767 −1.880 −1.497 −1.685 −1.799 −1.452
Fisher’s linear discriminant functions
b Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3
Ammonia −.253 −.251 2.526 −.301 −.238 2.635
BOD −.224 .052 .584 −.179 .027 .554
Calcium −.378 .215 .224 −.353 .130 .634
Chloride −.066 −.166 1.262 −.056 −.175 1.274
COD .088 −.049 −.057
Cond −.793 .340 1.140 −.799 .357 1.066
DO .071 .123 −1.021 .056 .125 −.972
F.Coliform .188 −.196 .423
Fluoride −.026 −.003 .123
Magnesium −.089 .129 −.420
Nitrate −.165 .056 .325
pH −.076 .038 .075
Phosphate −.006 .015 −.066
Potassium −.105 .109 −.235
Sodium −.385 −.232 2.940 −.409 −.194 2.804
Sulfate .083 .058 −.681 .081 .071 −.748
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Seasonal variation

COD, fluoride, potassium, sulfate, TSS, and turbid-
ity show a significant increase in the monsoon sea-
son than the other seasons. F.coliform and T.coliform 
amounts get almost double in the monsoon seasons. 
These parameters have increased as a result of surface 
runoff from non-point sources. On the other hand, the 
conductivity level decreases in the monsoon season. 
The overall mineral composition of the river water 
improves during the monsoon season. A significant 
decrease is found in the hardness level in monsoon 
than in the other seasons. But still, the water remains 
in the same hardness level (slightly hard) in all three 
seasons (Brandt et  al., 2017). Chloride, magnesium, 
phosphate, alkalinity, and TDS do not experience any 
significant seasonal variation.

Seasonal factor analysis has been performed to iden-
tify the most critical seasonal parameters (Mohanty 
& Nayak, 2017; Ouyang et  al., 2006; Pejman et  al., 
2009). Bartlett’s test and Kaise-Meyer-Olkin (KMO) 
statistics were conducted to test the data suitability for 
performing FA. The p value of Bartlett’s test is sig-
nificant (p < 0.000) and KMO criterion (> 0.73) for 
all the seasons. Those components are chosen which 
have eigenvalue more than 1. Seven components are 
selected for pre-monsoon and post-monsoon season, 
explaining 75.99% and 72.02% variance, respectively, 
and six are chosen for the monsoon season, explaining 
63.55%. These components explain above 60% of the 
variance sufficient for the environmental dataset (Hair 
et al., 2010). Factor loading of more than 0.75 is con-
sidered a significant parameter for seasonal variation. 

A factor loading less than 0.75 shows a very high 
uniqueness value (failed to explain the variables by 
factor analysis).

In pre-monsoon season, component 1 (Table 3(a)) 
indicates the high loading on chloride, conductivity, 
sodium, TDS, and TFS suggests pollution related 
to ionic and salt concentration. Natural and anthro-
pogenic sources are responsible for these elements. 
Ammonia, phosphate, and TSS show high loading in 
component 2 connected to the runoff from agricul-
tural fields and sewage effluents (Aliyu et  al., 2020; 
Brandt et al., 2017; Pejman et al., 2009). Magnesium 
and hardness have a strong correlation, with compo-
nent 3, which indicates the mineral composition of 
the water. Component 4 reveals the bacteriological 
characteristics of the water. Domestic, agricultural 
fields, and animal farms are responsible sources for 
the coliform bacteria in water. Alkalinity has a strong 
correlation with component 5, which represents the 
salt concentration of water. Component 6 is corre-
lated with pH. BOD with very high loading associ-
ated with component 7 denotes the organic pollution 
in the water caused by effluents from residential areas 
and industries.

Component 1 of monsoon seasons (Table  3(b)) 
dominates conductivity, sodium, TDS, and TFS con-
trolled by erosion and high surface runoff in monsoon 
seasons. Component 2 is characterized by the mineral 
composition of water (Singh et al., 2004; Vega et al., 
1998). The presence of dolomite and anhydrite in 
the study area (Bengraı̈ne & Marhaba, 2003; Salifu 
et  al., 2012) are the responsible factors for the high 
contribution of minerals in component 2. Calcium has 

Table 5   (continued) Classification function coefficients

Standard mode Stepwise mode

Premonsoon Monsoon Postmonsoon Premonsoon Monsoon Postmonsoon

Temp −.146 .207 −.658 −.155 .197 −.563
Alkalinity .270 −.048 −.794 .207 −.020 −.711
T.Coliform −.187 .152 −.160
TDS −.127 −.147 1.390 −.013 −.232 1.443
TFS .127 −.103 .104
Hardness .069 .020 −.395 −.041 .202 −1.050
TSS −.094 −.034 .582 −.091 −.053 .685
Turbidity −.116 −.052 .775 −.093 −.062 .744
(Constant) −1.515 −.724 −11.157 −1.489 −.709 −11.027
Fisher’s linear discriminant functions
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natural sources from rocks that control the hardness 
of the water. Along with the natural sources, anthro-
pogenic activities also increases the level of hard-
ness in water. Pathological character is presented by 
component 3. Component 6 is highly correlated with 
alkalinity. The alkalinity of water comprises the sum 
of all salts (Brandt et al., 2017).

Post-monsoon season (Table  3(c)) dominates by 
conductivity, sodium, and TDS in component 1, 
directly related to the salt characteristics of water. 
Ammonia, nitrate, phosphate, and TSS overlook 

in component 2. The source of ammonia is sew-
age coming from industrial and agricultural sites 
(Brandt et al., 2017). The source of ammonia is also 
from the decomposition of plant and animal matters. 
An increasing amount of nitrate in water is for sew-
age pollution (Kotti et  al., 2005), agriculture runoff 
(Bu et  al., 2010; Kotti et  al., 2005), and oxidation 
of ammonia (Brandt et  al., 2017). So, an increase in 
ammonia may increase the amount of nitrate in water. 
Phosphate comes from multiple sources, including 
industries, cropland where phosphate-based inorganic 

Table 6   Confusion matrix for temporal (a) and spatial (b) variation of water quality

a

Classification results
Seasons Predicted group membership Total Accuracy

Premonsoon Monsoon Postmonsoon
Standard Mode DA Count Premonsoon 122 26 51 199 74.4%

Monsoon 38 211 15 264
Postmonsoon 24 49 257 330

% Premonsoon 61.3 13.1 25.6 100.0
Monsoon 14.4 79.9 5.7 100.0
Postmonsoon 7.3 14.8 77.9 100.0

Stepwise Mode DA Count Premonsoon 116 27 56 199 71.5%
Monsoon 43 196 25 264
Postmonsoon 28 47 255 330

% Premonsoon 58.3 13.6 28.1 100.0
Monsoon 16.3 74.2 9.5 100.0
Postmonsoon 8.5 14.2 77.3 100.0

b
Classification results

Clusters Predicted group membership Total Accuracy
Cluster 1 Cluster 2 Cluster 3

Standard Mode DA Count Cluster 1 205 84 0 289 77.8%
Cluster 2 74 357 1 432
Cluster 3 4 13 55 72

% Cluster 1 70.9 29.1 .0 100.0
Cluster 2 17.1 82.6 .2 100.0
Cluster 3 5.6 18.1 76.4 100.0

Stepwise Mode DA Count Cluster 1 192 97 0 289 76.9%
Cluster 2 68 363 1 432
Cluster 3 3 14 55 72

% Cluster 1 66.4 33.6 .0 100.0
Cluster 2 15.7 84.0 .2 100.0
Cluster 3 4.2 19.4 76.4 100.0
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fertilizers are used, and phosphate-based detergents 
used in households (González et al., 2014). Phosphate-
based fertilizers are most common, and it has massive 
use in all seasons except monsoon season. In mon-
soon season, least amount of fertilizers and pesticides 
are used. Paddy cultivation uses maximum fertilizer 
(about 31.8%) among all agricultural product of which 
irrigated cultivation use 22.2% fertilizer (FAO, 2005) 
in India. So phosphate is not an essential parameter in 
the monsoon season. Components 3 and 4 dominate 
the mineral composition of the watershed and is con-
trolled by natural and organic compounds of wastewa-
ter (Potasznik & Szymczyk, 2015). Component 5 indi-
cates the pathological pollution in the Damodar River. 
Components 6 and 7 have a high correlation with tem-
perature and BOD, respectively.

Pathological pollution dominates in all seasons. 
Very high (> 0.9) impact of BOD is found in the 
pre-monsoon season, related to organic pollution. 
Municipal waste discharge (Saksena et  al., 2008; 
Vega et al., 1998) is the potential source of organic 
pollution. BOD is not a vital parameter in the mon-
soon season. So, an increase in the volume of water 
reduces the oxidation process of organic pollutants.

Discriminant analysis

Discriminant analysis (DA) is used to evaluate the tem-
poral variation of water quality by dividing the dataset 
into three seasons pre-monsoon, monsoon, and post-
monsoon. Standard and stepwise methods are used in 
the discriminate analysis. The standard discriminate 

Fig. 5   Box Plot for water quality parameters on temporal DA
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method is used to discriminate the seasons. The step-
wise discriminate method is used to extract the vari-
ables responsible for the temporal discrimination 
depends on Wilk’s lambda criteria (at a significance of 
p < 0.05). Overall significance tests of Wilk’s lambda 
are presented in Table 4. P value represents the signifi-
cant temporal classification in standard and stepwise 
mode. The first function of DA explains 80.1% of the 
variance and the second function explains 19.9% of 
the variance. The stepwise method suggests ammonia, 
DO, potassium, temperature, total coliform, TFS, and 
turbidity as responsible parameters for seasonal varia-
tion of Damodar River water quality (Table 5(a)). The 
first DA function in the stepwise method explains 83% 
variability, and the second function explains 17% of the 
variability. It separates groups more accurately than the 
standard DA. The accuracy of the model is presented 

in the confusion matrix. Standard DA and stepwise DA 
predict temporal classes with 74.4% and 71.5% accu-
racy, respectively (Table 6(a)).

The extracted parameters from stepwise DA are 
plotted in box and whisker plot (Fig.  5). Monsoon 
season has the lowest presence of ammonia, and in 
the post-monsoon season, it is in the highest amount. 
Ammonia is associated with agriculture runoff and 
sewage effluents. The lowest amount of rainfall pre-
vails in the post-monsoon (11.46 ± 5.09  mm). In 
the monsoon season, the dilution effect comes into 
play to reduce the amount of ammonia in the water 
(Varol, 2020). The average rainfall in monsoon 
seasons is 117.44  mm, with a standard deviation 
of 18.23 mm. The highest DO level is found in the 
post-monsoon season and the lowest in the monsoon 
season. DO level is associated with the temperature 

Fig. 6   Box Plot for water quality parameters on Spatial DA
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in water. In the monsoon season, a more consistent 
temperature is found. An increase in temperature 
enhances the biological activities in water that con-
sumes more DO in water. A decrease in temperature 
improves the DO condition in the post-monsoon 
season (Hajigholizadeh & Melesse, 2017). Munici-
pal and industrial sewage discharges and agricultural 
runoff are the familiar sources of potassium in river 
water (Skowron et  al., 2018). Thus, in monsoon 
seasons, potassium increases due to the non-point 
source (agricultural area). Still, potassium remains 
the same in pre- and post-monsoon periods due to 
the constant supply of pollutants from point sources. 
TFS denotes the fixed amount of non-volatile solids 
in water that does not increase vastly like turbidity 
in monsoon season. In the monsoon season, carry-
ing a large number of solids through surface runoff 
increases turbidity. Coliform bacteria population 
increases with the increase in surface runoff. So, in 
the monsoon season, the coliform bacteria popula-
tion is highest, and in the post-monsoon season, it is 
the lowest. Bacterial population increases with run-
off from non-point sources along with point sources.

DA analysis is also performed on the spatial vari-
ation in the cluster dataset. A significant p value of 
standard and stepwise DA indicates the good clas-
sification of cluster datasets (Table  4). The first DA 
function explains 87.80% variance, and the second 
function explains 12.2% of the variance. It repre-
sents an efficient classification of clusters. In stepwise 
DA, first and the second functions explain 89.1% and 
10.9%, respectively. The confusion matrix shows the 
accuracy above 77.8% and 76.9% for standard DA 
and stepwise DA, respectively (Table 6(b)). Stepwise 
DA selects ammonia, BOD, calcium, chloride, cond., 
DO, sodium, sulfate, tem., alkalinity, TDS, hardness, 
TSS, and turbidity as responsible for cluster variation 
(Table 5(b)). The variation of these parameters is rep-
resented through the box and whisker plot (Fig.  6). 
Ammonia, BOD, calcium, chloride, conductivity, 
sodium, sulfate, alkalinity, TDS, hardness, and TSS 
show the same pattern that increases the pollution 
level from cluster 1 to cluster 3. DO level is almost 
the same in-between cluster 1 and cluster 2. In clus-
ter 3, the variation of DO is found from the other 
two clusters. The lowest DO level is found in cluster 

Fig. 7   WQI for sampling sites and seasons
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3, highly affected by organic pollution. Temperature 
level also increases from cluster 1 to cluster 3. An 
increase in the pollution load increases the tempera-
ture of the water as it is controlled by conductivity 
and other pollutants (Brandt et  al., 2017). TSS and 
turbidity are very high in cluster 3 than in cluster 1 
and cluster 2. In the upper course, the water quality is 
much better than in the lower course of the Damodar 
River.

Water quality index

WQI is based on the ten water quality variables. 
Water quality is determined both seasonally and spa-
tially (Fig. 7). Poor water quality is found in all sites 
and seasons. The first four sites are almost the same 
value WQI. Site S10 shows the most polluted station 
in the Damodar River. The lowest water quality is 
also found in the monsoon season. However, all sta-
tions fall into the poor water category indicates the 
water quality is almost threatened.

Conclusions

Multivariate statistical techniques find that there is a 
high spatial variation of pollution levels for all sites. 
Point and non-point sources are primarily responsible 
for seasonal variation in pollution. Ionic concentra-
tion does not have significant seasonal variation, but 
it varies spatially. This river is highly encroached by 
pathological pollution. This pathological population 
gets almost double in monsoon season. FA success-
fully extracted the seasonally important parameters. 
Seasonal variations are found mainly to the parame-
ters related with the anthropogenic sources. Stepwise 
DA efficiently extract the parameters which are sensi-
tive to the seasonal and spatial change. The WQI for 
each station says that the river water is not suitable 
for use. The water quality is the worst in those areas 
dominated by congested urbanization and associated 
with clusters of large-scale industries. Thus, site 10 is 
the most polluted among all the sites. In the monsoon 
season, the water quality deteriorates more.

The present study can provide several sugges-
tions to maintain the Damodar River water quality: 
(1) Water quality can be improved by controlling 
the direct discharges into the river. (2) Fertilizer use 
should be controlled because the non-point sources 

(like agriculture fields etc.) have high control on the 
water quality in this river. (3) Along with regular 
monitoring direct actions are also required to revive 
the water quality.

Acknowledgements  The authors are sincerely grateful to the 
department of Geography of the Vidyasagar University, West 
Bengal Pollution Control Board for giving such a dataset and 
’Fund for Improvement of S&T Infrastructure of the Department 
of Science and Technology (DST-FIST)’ for providing the nec-
essary supports and opportunity to prepare this research work.

Author contribution  Souvanik Maity: conceptualization, 
resources, methodology, data structuring, statistical analysis, 
software analysis, writing original draft, and visualization. 
Ramkrishna Maiti: conceptualization, resources, review draft, 
supervision, and validation. Tarakeshwar Senapati: conceptual-
ization, review draft, supervision, and validation.

Funding  The authors declares no funding was received from 
any agency for conducting this research.

Data availability  Rainfall data have been collected from 
India Meteorological Department (IMD) of Pune under the 
Ministry of Science, Govt. of India. Water quality data have 
been collected from West Bengal Pollution Control Board 
(WBPCB) under the Central Pollution Control Board (CPCB) 
of Govt. of India. Industrial information has been taken from 
the district industrial profile of Paschim Bardhaman under 
MSME (Ministry of micro, small and medium enterprise) 
under Govt. Of India, West Bengal Industrial Development 
Corporation, and Asansol Durgapur Development Author-
ity under Govt. of West Bengal. SRTM DEM data have been 
downloaded from USGS (US Geological Survey) Earth 
Explorer to generate river basin and channels.

Declarations 

Ethics approval  This piece of work is an original work, and it 
has not been published or submitted elsewhere for publication.

Consent to participate  This paper is guided by Dr. Ramkrishna 
Maiti, and Dr. Tarakeshwar Senapati. This paper is written with 
the consent of two other authors.

Consent for publication  The paper is sending to publish with 
the consent of all authors.

Conflict of interest  The authors declare no conflict of interest.

References

Akkoyunlu, A., & Akiner, M. E. (2012). Pollution evaluation 
in streams using water quality indices: A case study from 
Turkey’s Sapanca Lake Basin. Ecological Indicators, 18, 
501–511. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2011.​12.​018

Environ Monit Assess (2022) 194: 308 308   Page 20 of 23

https://doi.org/10.1016/j.ecolind.2011.12.018


1 3
Vol.: (0123456789)

Alberto, W. D., del Pilar, D. M., Valeria, A. M., Fabiana, P. S., 
Cecilia, H. A., & de Los Ángeles, B. M. (2001). Pattern 
recognition techniques for the evaluation of spatial and 
temporal variations in water quality. A case study: Suqui’a 
river basin (Co’ Rdoba–Argentina). Water Research, 
35(12), 2881–2894.

Aliyu, A. G., Jamil, N. R. B., Adam, M. B. B., & Zulkeflee, 
Z. (2020). Spatial and seasonal changes in monitoring 
water quality of Savanna River system. Arabian Jour-
nal of Geosciences, 13(2), 55. https://​doi.​org/​10.​1007/​
s12517-​019-​5026-4

Bellos, D., & Sawidis, T. (2005). Chemical pollution monitor-
ing of the River Pinios ( Thessalia — Greece ). Journal of 
Environmental Management, 76, 282–292. https://​doi.​org/​
10.​1016/j.​jenvm​an.​2005.​01.​027

Bengraı̈ne, K., & Marhaba, T. F. (2003). Using principal com-
ponent analysis to monitor spatial and temporal changes in 
water quality. Journal of Hazardous Materials, 100(1–3), 
179–195. https://​doi.​org/​10.​1016/​S0304-​3894(03)​00104-3

Bhat, B. N., Parveen, S., & Hassan, T. (2018). Advances in 
environmental technology seasonal assessment of physico-
chemical parameters and evaluation of water quality of river 
Yamuna , India. Advances in Environmental Technology, 1, 
41–49. https://​doi.​org/​10.​22104/​aet.​2018.​2415.​1121

Bhattacharyya, K. (2011). The Lower Damodar River. 
Understanding the human role in changing fluvial envi-
ronment. springer Dordrecht Heidelberg. https://​doi.​org/​
10.​1007/​978-​94-​007-​0467-1

Brandt, M. J., Johnson, K. M., & J., E. A., & Ratnayaka, D. 
D. (2017). Twort’s water supply. Elsevier. https://​doi.​
org/​10.​1016/​c2012-0-​06331-4

Bu, H., Tan, X., Li, S., & Zhang, Q. (2010). Temporal and 
spatial variations of water quality in the Jinshui River 
of the South Qinling Mts., China. Ecotoxicology and 
Environmental Safety, 73(5), 907–913. https://​doi.​org/​
10.​1016/j.​ecoenv.​2009.​11.​007

Çadraku, H. S. (2021). Groundwater quality assessment for 
irrigation: Case study in the blinaja river basin, Kosovo. 
Civil Engineering Journal (Iran), 7(9), 1515–1528. 
https://​doi.​org/​10.​28991/​cej-​2021-​03091​740

CCME. (2017). CCME Water Quality Index user’s manual 
2017 Update. In Canadian Water Quality Guidelines for 
the Protection of Aquatic Life. https://​ccme.​ca/​en/​res/​
wqima​nualen.​pdf. Accessed 23 May 2021.

Chang, H. (2005). Spatial and temporal variations of water 
quality in the han river and its tributaries, Seoul, Korea, 
1993–2002. Water, Air, & Soil Pollution, 161(1–4), 
267–284. https://​doi.​org/​10.​1007/​s11270-​005-​4286-7

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. 
(2014). NbClust: An R package for determining the rel-
evant number of clusters in a data set. Journal of Sta-
tistical Software, 61(6), 1−36. https://​www.​jstat​soft.​org/​
v061/​i06. Accessed 5 June 2021.

Chatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). 
Water quality assessment near an industrial site of 
Damodar River, India. Environmental Monitoring and 
Assessment, 161(1–4), 177–189. https://​doi.​org/​10.​
1007/​s10661-​008-​0736-1

CPCB. (2017). Restoration of Polluted River Stretches: Con-
cept and Plan. 56.

DCO. (2011). District Census Handbook Barddhaman.

FAO. (2005). Fertilizer use by crop in India.
González, S. O., Almeida, C. A., Calderón, M., Mallea, M. 

A., & González, P. (2014). Assessment of the water 
self-purification capacity on a river affected by organic 
pollution: Application of chemometrics in spatial and 
temporal variations. Environmental Science and Pollu-
tion Research, 21(18), 10583–10593. https://​doi.​org/​10.​
1007/​s11356-​014-​3098-y

Gradilla-Hernández, M. S., de Anda, J., Garcia-Gonzalez, A., 
Meza-Rodríguez, D., Yebra Montes, C., & Perfecto-Avalos, 
Y. (2020). Multivariate water quality analysis of Lake Caji-
titlán. Mexico. Environmental Monitoring and Assessment, 
192(1), 5. https://​doi.​org/​10.​1007/​s10661-​019-​7972-4

Grzywna, A., & Bronowicka-Mielniczuk, U. (2020). Spatial 
and temporal variability of water quality in the Bystrzyca 
River Basin, Poland. Water, 12(1), 190. https://​doi.​org/​10.​
3390/​w1201​0190

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. 
(2010). Multivariate Data Analysis. In Pearson. Pearson 
Education.

Hajigholizadeh, M., & Melesse, A. M. (2017). Assortment and 
spatiotemporal analysis of surface water quality using 
cluster and discriminant analyses. Catena, 151, 247–258. 
https://​doi.​org/​10.​1016/j.​catena.​2016.​12.​018

Helmreich, J. E. (2015). Statistics: An introduction using R 
(2nd Edition). Journal of Statistical Software, 67(Book 
Review 5), 1–353. https://​doi.​org/​10.​18637/​jss.​v067.​b05

Kotti, M. E., Vlessidis, A. G., Thanasoulias, N. C., & 
Evmiridis, N. P. (2005). Assessment of river water quality 
in Northwestern Greece. Water Resources Management, 
19(1), 77–94. https://​doi.​org/​10.​1007/​s11269-​005-​0294-z

Kükrer, S., & Mutlu, E. (2019). Assessment of surface water 
quality using water quality index and multivariate statis-
tical analyses in Saraydüzü Dam Lake, Turkey. Environ-
mental Monitoring and Assessment, 191(2). https://​doi.​
org/​10.​1007/​s10661-​019-​7197-6

Lawson, R. G., & Jurs, P. C. (1990). New index for clustering 
tendency and its application to chemical problems. Jour-
nal of Chemical Information and Computer Sciences, 
30(1), 36–41. https://​doi.​org/​10.​1021/​ci000​65a010

Li, S., Gu, S., Tan, X., & Zhang, Q. (2009). Water quality in 
the upper Han River basin, China: The impacts of land 
use/land cover in riparian buffer zone. Journal of Haz-
ardous Materials, 165(1–3), 317–324. https://​doi.​org/​10.​
1016/j.​jhazm​at.​2008.​09.​123

Liu, C., Lin, K., & Kuo, Y. (2003). Application of factor analy-
sis in the assessment of groundwater quality in a blackfoot 
disease area in Taiwan. Science of the Total Environment, 
313(1–3), 77–89. https://​doi.​org/​10.​1016/​S0048-​9697(02)​
00683-6

Liu, X., Zhang, G., Sun, G., Wu, Y., & Chen, Y. (2019). 
Assessment of Lake Water quality and eutrophication 
risk in an agricultural irrigation area: A case study of the 
Chagan Lake in Northeast China. Water. https://​doi.​org/​
10.​3390/​w1111​2380

Lkr, A., & Neizo, M. R. S. (2020). Assessment of water qual-
ity status of Doyang River, Nagaland, India, using Water 
Quality Index. Applied Water Science, 10(1), 1–13. 
https://​doi.​org/​10.​1007/​s13201-​019-​1133-3

Maechler, M., Rousseeuw, P., Struyf, A., & Hubert, M. (2005). 
Cluster analysis basics and extensions. In Unpublished.

Environ Monit Assess (2022) 194: 308 Page 21 of 23 308

https://doi.org/10.1007/s12517-019-5026-4
https://doi.org/10.1007/s12517-019-5026-4
https://doi.org/10.1016/j.jenvman.2005.01.027
https://doi.org/10.1016/j.jenvman.2005.01.027
https://doi.org/10.1016/S0304-3894(03)00104-3
https://doi.org/10.22104/aet.2018.2415.1121
https://doi.org/10.1007/978-94-007-0467-1
https://doi.org/10.1007/978-94-007-0467-1
https://doi.org/10.1016/c2012-0-06331-4
https://doi.org/10.1016/c2012-0-06331-4
https://doi.org/10.1016/j.ecoenv.2009.11.007
https://doi.org/10.1016/j.ecoenv.2009.11.007
https://doi.org/10.28991/cej-2021-03091740
https://ccme.ca/en/res/wqimanualen.pdf
https://ccme.ca/en/res/wqimanualen.pdf
https://doi.org/10.1007/s11270-005-4286-7
https://www.jstatsoft.org/v061/i06
https://www.jstatsoft.org/v061/i06
https://doi.org/10.1007/s10661-008-0736-1
https://doi.org/10.1007/s10661-008-0736-1
https://doi.org/10.1007/s11356-014-3098-y
https://doi.org/10.1007/s11356-014-3098-y
https://doi.org/10.1007/s10661-019-7972-4
https://doi.org/10.3390/w12010190
https://doi.org/10.3390/w12010190
https://doi.org/10.1016/j.catena.2016.12.018
https://doi.org/10.18637/jss.v067.b05
https://doi.org/10.1007/s11269-005-0294-z
https://doi.org/10.1007/s10661-019-7197-6
https://doi.org/10.1007/s10661-019-7197-6
https://doi.org/10.1021/ci00065a010
https://doi.org/10.1016/j.jhazmat.2008.09.123
https://doi.org/10.1016/j.jhazmat.2008.09.123
https://doi.org/10.1016/S0048-9697(02)00683-6
https://doi.org/10.1016/S0048-9697(02)00683-6
https://doi.org/10.3390/w11112380
https://doi.org/10.3390/w11112380
https://doi.org/10.1007/s13201-019-1133-3


	

1 3
Vol:. (1234567890)

Mohanty, C. R., & Nayak, S. K. (2017). Assessment of sea-
sonal variations in water quality of Brahmani river using 
PCA. Advances in Environmental Research, 6(1), 53–65. 
https://​doi.​org/​10.​12989/​aer.​2017.6.​1.​053

Mondal, G. C., Singh, A. K., & Singh, T. B. (2018). Damodar 
River Basin : Storehouse of Indian Coal. 259–272.

Mukhopadhyay, S., & Mukherjee, R. (2013). Physico–chemical 
and microbiological quality assessment of groundwater in 
adjoining area of Tamla Nala, Durgapur, District : Burdwan 
(W. B.). International Journal of Environmental Sciences, 
4(3), 360–366. https://​doi.​org/​10.​6088/​ijes.​20130​40300​012

Mutlu, E. (2019). Evaluation of spatio-temporal variations in 
water quality of Zerveli stream (northern Turkey) based 
on water quality index and multivariate statistical analy-
ses. Environmental Monitoring and Assessment, 191(6), 
335. https://​doi.​org/​10.​1007/​s10661-​019-​7473-5

Ouyang, Y., Nkedi-Kizza, P., Wu, Q. T., Shinde, D., & Huang, 
C. H. (2006). Assessment of seasonal variations in surface 
water quality. Water Research, 40(20), 3800–3810. https://​
doi.​org/​10.​1016/j.​watres.​2006.​08.​030

Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, 
N. S., & Mukhopadyay, B. (2014). Development of a 
new high spatial resolution (0.25° × 0.25°) Long Period 
(1901–2010) daily gridded rainfall data set over India and 
its comparison with existing data sets over the region. 
MAUSAM, 1(January), 1–18.

Pejman, A. H., Bidhendi, G. R. N., Karbassi, A. R., Mehrdadi, 
N., & Bidhendi, M. E. (2009). Evaluation of spatial and 
seasonal variations in surface water quality using multi-
variate statistical techniques. International Journal of 
Environmental Science & Technology, 6(3), 467–476. 
https://​doi.​org/​10.​1007/​BF033​26086

Platikanov, S., Baquero, D., González, S., Martín-Alonso, J., 
Paraira, M., Cortina, J. L., & Tauler, R. (2019). Chemomet-
ric analysis for river water quality assessment at the intake of 
drinking water treatment plants. Science of the Total Envi-
ronment, 667, 552–562. https://​doi.​org/​10.​1016/j.​scito​tenv.​
2019.​02.​423

Potasznik, A., & Szymczyk, S. (2015). Magnesium and cal-
cium concentrations in the surface water and bottom 
deposits of a river-lake. Journal of Elementology, 20(3), 
677–692. https://​doi.​org/​10.​5601/​jelem.​2015.​20.1.​788

Reghunath, R., Sreedhara Murthy, T. R., & Raghavan, B. R. 
(2002). The utility of multivariate statistical techniques in 
hydrogeochemical studies: An example from Karnataka, 
India. Water Research, 36(10), 2437–2442. https://​doi.​
org/​10.​1016/​s0043-​1354(01)​00490-0

Saksena, D. N., Garg, R. K., & Rao, R. J. (2008). Water quality 
and pollution status of Chambal river in National Chambal 
Sanctuary, Madhya Pradesh. Journal of Environmental Biol-
ogy, 29(5), 701–710. https://​doi.​org/​10.​21172/​ijiet.​112.​07

Salifu, A., Petrusevski, B., Ghebremichael, K., Buamah, R., 
& Amy, G. (2012). Multivariate statistical analysis for 
fluoride occurrence in groundwater in the Northern region 
of Ghana. Journal of Contaminant Hydrology, 140–141, 
34–44. https://​doi.​org/​10.​1016/j.​jconh​yd.​2012.​08.​002

Salim, I., Sajjad, R. U., Paule-Mercado, M. C., Memon, S. A., 
Lee, B.-Y., Sukhbaatar, C., & Lee, C. (2019). Comparison 
of two receptor models PCA-MLR and PMF for source 
identification and apportionment of pollution carried 
by runoff from catchment and sub-watershed areas with 

mixed land cover in South Korea. Science of the Total 
Environment, 663, 764–775. https://​doi.​org/​10.​1016/j.​
scito​tenv.​2019.​01.​377

Sharma, D., & Kansal, A. (2011). Water quality analysis of River 
Yamuna using water quality index in the national capital ter-
ritory, India (2000–2009). Applied Water Science. https://​doi.​
org/​10.​1007/​s13201-​011-​0011-4

Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., 
Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, 
T. (2003). Assessment of the surface water quality in 
Northern Greece. Water Research, 37(17), 4119–4124. 
https://​doi.​org/​10.​1016/​S0043-​1354(03)​00398-1

Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Mul-
tivariate statistical techniques for the evaluation of spatial 
and temporal variations in water quality of Gomti River 
(India)—a case study. Water Research, 38(18), 3980–
3992. https://​doi.​org/​10.​1016/j.​watres.​2004.​06.​011

Skowron, P., Skowrońska, M., Bronowicka-Mielniczuk, U., 
Filipek, T., Igras, J., Kowalczyk-Juśko, A., & Krzepiłko, 
A. (2018). Anthropogenic sources of potassium in surface 
water: The case study of the Bystrzyca river catchment, 
Poland. Agriculture, Ecosystems and Environment, 265(July), 
454–460. https://​doi.​org/​10.​1016/j.​agee.​2018.​07.​006

Varol, M. (2020). Use of water quality index and multivariate 
statistical methods for the evaluation of water quality of a 
stream affected by multiple stressors: A case study. Envi-
ronmental Pollution, 266, 115417. https://​doi.​org/​10.​1016/j.​
envpol.​2020.​115417

Varol, M., & Şen, B. (2009). Assessment of surface water qual-
ity using multivariate statistical techniques: A case study of 
Behrimaz Stream, Turkey. Environmental Monitoring and 
Assessment, 159(1–4), 543–553. https://​doi.​org/​10.​1007/​
s10661-​008-​0650-6

Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment 
of seasonal and polluting effects on the quality of river water 
by exploratory data analysis. Water Research, 32(12), 3581–
3592. https://​doi.​org/​10.​1016/​S0043-​1354(98)​00138-9

Xiaolong, W., Jingyi, H., Ligang, X., & Qi, Z. (2010). Spatial 
and seasonal variations of the contamination within water 
body of the Grand Canal, China. Environmental Pollution, 
158(5), 1513–1520. https://​doi.​org/​10.​1016/j.​envpol.​2009.​
12.​018

Zeinalzadeh, K., & Rezaei, E. (2017). Determining spatial and 
temporal changes of surface water quality using princi-
pal component analysis. Journal of Hydrology: Regional 
Studies, 13, 1–10. https://​doi.​org/​10.​1016/j.​ejrh.​2017.​07.​
002

Zhang, H., Li, H., Yu, H., & Cheng, S. (2020). Water qual-
ity assessment and pollution source apportionment using 
multi-statistic and APCS-MLR modeling techniques in 
Min River Basin, China. Environmental Science and Pol-
lution Research, 27(33), 41987–42000. https://​doi.​org/​10.​
1007/​s11356-​020-​10219-y

Zhong, M., Zhang, H., Sun, X., Wang, Z., Tian, W., & Huang, 
H. (2018). Analyzing the significant environmental factors 
on the spatial and temporal distribution of water quality 
utilizing multivariate statistical techniques: A case study 
in the Balihe Lake, China. Environmental Science and 
Pollution Research, 25(29), 29418–29432. https://​doi.​org/​
10.​1007/​s11356-​018-​2943-9

Environ Monit Assess (2022) 194: 308 308   Page 22 of 23

https://doi.org/10.12989/aer.2017.6.1.053
https://doi.org/10.6088/ijes.2013040300012
https://doi.org/10.1007/s10661-019-7473-5
https://doi.org/10.1016/j.watres.2006.08.030
https://doi.org/10.1016/j.watres.2006.08.030
https://doi.org/10.1007/BF03326086
https://doi.org/10.1016/j.scitotenv.2019.02.423
https://doi.org/10.1016/j.scitotenv.2019.02.423
https://doi.org/10.5601/jelem.2015.20.1.788
https://doi.org/10.1016/s0043-1354(01)00490-0
https://doi.org/10.1016/s0043-1354(01)00490-0
https://doi.org/10.21172/ijiet.112.07
https://doi.org/10.1016/j.jconhyd.2012.08.002
https://doi.org/10.1016/j.scitotenv.2019.01.377
https://doi.org/10.1016/j.scitotenv.2019.01.377
https://doi.org/10.1007/s13201-011-0011-4
https://doi.org/10.1007/s13201-011-0011-4
https://doi.org/10.1016/S0043-1354(03)00398-1
https://doi.org/10.1016/j.watres.2004.06.011
https://doi.org/10.1016/j.agee.2018.07.006
https://doi.org/10.1016/j.envpol.2020.115417
https://doi.org/10.1016/j.envpol.2020.115417
https://doi.org/10.1007/s10661-008-0650-6
https://doi.org/10.1007/s10661-008-0650-6
https://doi.org/10.1016/S0043-1354(98)00138-9
https://doi.org/10.1016/j.envpol.2009.12.018
https://doi.org/10.1016/j.envpol.2009.12.018
https://doi.org/10.1016/j.ejrh.2017.07.002
https://doi.org/10.1016/j.ejrh.2017.07.002
https://doi.org/10.1007/s11356-020-10219-y
https://doi.org/10.1007/s11356-020-10219-y
https://doi.org/10.1007/s11356-018-2943-9
https://doi.org/10.1007/s11356-018-2943-9


1 3
Vol.: (0123456789)

Zhou, F., Huang, G. H., Guo, H., Zhang, W., & Hao, Z. (2007). 
Spatio-temporal patterns and source apportionment of 
coastal water pollution in eastern Hong Kong. Water 
Research, 41(15), 3429–3439. https://​doi.​org/​10.​1016/j.​
watres.​2007.​04.​022

Publisher’s Note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

Environ Monit Assess (2022) 194: 308 Page 23 of 23 308

https://doi.org/10.1016/j.watres.2007.04.022
https://doi.org/10.1016/j.watres.2007.04.022

	Evaluation of spatio-temporal variation of water quality and source identification of conducive parameters in Damodar River, India
	Abstract 
	Introduction
	Materials and methods
	Study area
	Monitoring sites
	Rainfall pattern
	Statistical techniques
	Factor analysis
	Cluster analysis
	Discriminant analysis

	Water quality index

	Result and discussions
	Correlation analysis
	Spatial variation
	Seasonal variation
	Discriminant analysis
	Water quality index

	Conclusions
	Acknowledgements 
	References




