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maximum overlap discrete wavelet (MODWT) 
method to obtain precipitation estimates. Six rain-
fall gauge stations located in different biomes within 
the studied region were adopted, and satellite data 
(CMORPH) were used. The interval of data that was 
have used is 1998–2016. The precipitation data were 
evaluated by seasonal (wet and dry) periods. The 
results obtained demonstrated the good capacity of 
the MODWT-ANFIS model to simulate the daily pre-
cipitation. In this case, data entries lagged by 4 days 
and 5 days performed better, with Nash values close 
to 1.0 and mean square errors (MSE) below 0.1.

Keywords  Artificial intelligence · Time-delayed 
inputs · CMORPH · Amazon

Introduction

Precipitation estimates are essential for the manage-
ment of water resources, as well as for creating sus-
tainability strategies for these resources for extremely 
varied applications, such as agriculture, industry, 
water supply, energy production (hydroelectricity) 
and waterway transport, especially in extreme weather 
conditions. However, according to Michot et  al. 
(2019), practical and accurate forecasts may encoun-
ter barriers related to the quality of the data (gaps 
and failures), size of the historical series and avail-
ability of the number of rainfall stations. Thus, the 
use of effective methods for estimating precipitation 

Abstract  Hydrological analyses based on precipi-
tation records in the Amazon are essential due to 
their importance in climate regulation and regional 
and global atmospheric circulation. However, there 
are limitations related to data series with short peri-
ods and many gaps and failures at the daily scale. 
Thus, a hybrid model was developed based on an 
artificial neural network (ANN) and adaptive neuro-
fuzzy inference system (ANFIS) coupled with the 
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is essential. Artificial intelligence (AI) methods 
are potentially useful approaches to simulate pre-
cipitation (Fahimi et al., 2017; Nourani et al., 2014). 
According to Sulaiman et al. (2018), this utility is due 
to the remarkable flexibility of AI methods in model-
ling highly nonlinear systems and stochastic patterns, 
and these methods do not require prior knowledge of 
the behaviour of measurement processes.

According to Shoaib et al. (2016), AI methods, for 
example, artificial neural networks, (ANNs) are able 
to establish a relationship between historical inputs 
(precipitation, streamflow, water levels, etc.) and the 
desired outputs. Such work is carried out through a 
nonlinear function composed of several factors that 
are adjusted to the observed data, allowing its predic-
tion, as adopted by Jiménez and Collischonn (2015), 
Santos et  al. (2016), Nourani et  al. (2017), Shoaib 
et  al. (2018), Honorato et  al. (2018) and Mendonça 
et al. (2021). ANNs are widely used methods in pre-
dicting hydrological variables; however, a single 
ANN model may not be able to deal with the non-
stationary behaviour of time series if the input is not 
pre-processed (Cannas et  al., 2006; Hu et  al., 2018; 
Islam & Sivakumar, 2002). In this sense, wavelet 
transformation (WT) is a pre-processing methodol-
ogy capable of filtering and correcting the informa-
tion contained in the time series of input data (Zeri 
et al., 2018). According to Nourani et al. (2014), this 
correction in the inputs considerably favours the effi-
ciency of ANN models in predicting hydrological 
variables. He et  al. (2015) combined feed forward 
backpropagation WT and ANN to forecast monthly 
rainfall precipitation in the Australian territory, con-
cluding that the combined model performed better in 
forecasting when compared to other models. Partal 
et al. (2015) obtained good results by combining with 
three types of ANNs (feedback propagation, radial 
basis function and generalized regression neural net-
work) for daily precipitation prediction.

It is possible to develop these ANN-based predic-
tion models and combine pre-processing tools using 
a number of variables, such as temperature, radiation 
and humidity, as inputs. However, few stations are 
equipped with resources to measure these variables, 
especially in developing countries, due to economic 
and technical reasons (Altunkaynak & Nigussie, 
2015). Therefore, it is advisable to develop a model 
that can simulate daily precipitation based on previ-
ous records of its historical series. Furthermore, the 

amount of minimal input data, which function as a 
memory in ANN models and act on network learn-
ing, is still a matter of concern and needs to be inves-
tigated, as demonstrated by Shoaib et  al. (2016).  
Hu et  al. (2018) inserted an ANN into LSTM mod-
els to simulate the rainfall-runoff process based on 
flood events from 1971 to 2013 in the Chinese Fen 
River basin, obtaining satisfactory results with the 
use of LSTM. Salman et  al. (2018) built an LSTM 
model with an ANN to predict meteorological vari-
ables at the Hang Nadim airport in Indonesia, dem-
onstrating that several input layers with different time 
delays improve the prediction of observed variables.  
Hammad et al. (2021) developed a new wavelet-coupled  
multiple order time delay (WMTLNN) ANN model 
for rainfall prediction in Indus basins, Pakistan. They 
found that the different inputs with time delays and 
wavelet pre-processing improved the precipitation  
forecast in the evaluated basins.

Thus, daily precipitation was estimated through 
a hybrid model based on a new concept of introduc-
tion of several layers of time delay and pre-processed 
by maximum overlap discrete wavelet (MODWT) 
via neural networks adaptive neuro-fuzzy infer-
ence system (ANFIS). The ANFIS network has been 
combined with other techniques and has stood out 
among neural networks due to its good performance 
in predicting hydrological variables, especially when 
compared with other models (Choubin et  al., 2016; 
Ahmadlou et al., 2019; Pham et al. 2020; Ebrahimi-
Khusfi et  al., 2021). The MODWT-ANFIS model 
was applied to the Amazon basin, which depends 
on precipitation to sustain its economic activities, in 
addition to influencing regional and global atmos-
pheric circulation. Precipitation data observed by the 
National Water Agency (ANA) and Satellite of the 
Morphing Climate Prediction Center (CMORPH) 
were adopted. In this case, the models can be applied 
even in the absence of monitoring by specific precipi-
tation stations.

Material and methods

Study area and database

The Amazon area is approximately 5,015,067.75 km2, 
corresponding to approximately 58.9% of the Brazilian 
territory (IBGE, 2010). The region has an extensive  
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and dense hydrographic network formed by the larg-
est river in the world, the Amazon, with a length of 
6,400 km, of which approximately 3,220 km is within 
Brazil. Including discharges from its various tributar-
ies, the Amazon River is responsible for 60% of Bra-
zil’s water availability and approximately 20% of the 
flow of all freshwater in the world (Davidson et  al., 
2012). According to data from Mapbiomas (2016), 
the Amazon has three characteristic biomes: (i) the 
Amazon biome (AB), which is the most representa-
tive, occupying 83.86% of the region; (ii) the Cerrado 
biome (CB), located to the east (E) and southeast 
(SE), corresponding to 14.32%; and (iii) the Pantanal 
biome (PB), located to the southwest (SW), represent-
ing only 1.82% of the total area (Fig. 1). In addition, 
in these biomes, there are transition areas: the Ama-
zon-Cerrado (EAC) Ecotone is the largest in length, 
approximately 6,240  km, extending from SE to SW 
of the region, and the Amazon-Pantanal (EAP) and 
Amazon Ecotones Pantanal-Cerrado (EAPC) (Fig. 1).

In the context of regional circulation, the forest 
plays an important role as a source of moisture gen-
eration for other regions of Brazil (midwest, southeast 
and south) and for the South American (SA) conti-
nent (Ciemer et al., 2018; Silveira et al., 2017). The 
Amazon deforested area is 15.19% of the total area, 
concentrated on the southern and eastern edges of the 
region, known as the “arc of deforestation” (Fig. 1). 
This deforestation process is mainly caused by the 
replacement of forest cover by livestock, agricultural 
and agro-industrial activities (Lima et al., 2019; Vale 
et al., 2019).

The temporal series of six rainfall stations (Table 1 
and Fig. 1) monitored by the ANA (available at http://​
www.​snirh.​gov.​br) were used. Daily precipitation 
data for the CMORPH product were obtained for each 
location of the rainfall stations. The choice of sta-
tions prioritized series with minimal gaps (average 
of 0.1% of the total observed data), and the period 
observed was 19  years (1998–2016). Precipitation 

Fig. 1   Amazon and rainfall gauge station locations
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from stations stored by ANA is punctual and recorded 
every 24 h. The information produced by CMORPH 
has a spatial resolution of 8 km (at the Equator) and is 
recorded every 30  min. These differences motivated 
the use of two databases, in addition to the possibility 
of replacing data, in the absence of punctual monitor-
ing, which is common in some places in the Amazon.

Maximum overlap discrete wavelet transform

For Daubechies (1992), the central idea of WT is 
the decomposition of the signal at different time 
scales as a set of basic functions (mother wavelet), 
revealing information from the original data, such 
as trends, disintegration points and discontinuities, 
which the raw signal does not expose (Holdefer & 
Severo, 2015; Zeri et  al., 2018). The WT is divided 
into two types: continuous wavelet transform (CWT) 
and discrete wavelet transform (DWT) (Addison 
et  al., 2001; Daubechies, 1992); however, as hydro-
meteorological data are usually recorded at discrete 
time intervals, the DWT is preferentially adopted in 
the hydrological decomposition of time series (Mehr 
et al., 2014; Ramana et al., 2013). Among the exist-
ing TWs, the maximum overlap discrete wavelet 
transform (MODWT) has stood out in the use of time 
series decompositions. This is due to its potential to 
consider boundary conditions (BC) that involve data 
decomposition, thus avoiding errors that may be 
introduced throughout the development of the pro-
posed forecasting model. Bašta (2014), Quilty et  al. 
(2016) and Du et  al. (2017) demonstrated how BCs 
influence the decomposition of time series and how 
they can produce incorrect predictions if not properly 
treated.

The MODWT definition is derived from the 
DWT definition, where (hj,k) is the DWT filter and 
(gj,k) is the scale filter, with k = 1…, representing 
the filter length (L), with j levels of decomposition. 
The MODWT wavelet filter (ĥj,k) and the MODWT 
scale filter (ĝj,k) are defined as h̃j,k =hj,k

/

2j∕2
 and 

g̃j,k =
gj,k

/

2j∕2
 . Thus, the j-level MODWT wavelet 

coefficients are defined as the time series convolution 
(Xt), and the MODWT filters are obtained by Eqs. (1) 
and (2).

where W̃j,t is the wavelet coefficient; Ṽj,t is the 
scale coefficient; modN is the operation module when 
treating the historical series as periodic, with periods 
equal to N; and Kj can be obtained by Eq. (3).

The value of Kj represents the number of wavelet 
coefficients and scales affected by BC for the decom-
position level J and the length level of the wavelet 
filter K. Thus, using this equation, it is possible to 
obtain wavelet and scale coefficients that have been 
“corrected by limits”, that is, values that avoid the 
introduction of additionally uncertainty to the wave-
lets and scale coefficients due to the problem of 
“future data” (Bašta, 2014).

MODWT uses a high pass filter (h̃) to calcu-
late its wavelet coefficients and applies an iterative 

(1)W̃j,t =

kj−1
∑

k=0

h̃j,kXt−kmodN

(2)Ṽj,t =

kj−1
∑

k=0

g̃j,kXt−kmodN

(3)Kj =
(

2
j − 1

)

(K − 1) + 1

Table 1   Data from ANA rainfall stations and average daily rainfall

ID, identification of the rainfall gauge stations; ADP, average daily precipitation

ID Rainfall gauge station Latitude Longitude Gaps (%) ADP ANA ADP 
CMORPH

Period

E1 Rio Branco  − 9.98  − 67.80 0.1 5.4 4.2 1998–2016
E2 Rio Preto da Eva  − 2.70  − 59.70 0.0 6.1 5.8
E3 Calçoene 2.50  − 50.95 0.0 12.4 8.2
E4 Badajós  − 2.51  − 47.77 0.0 6.3 5.5
E5 Pindaré Mirim  − 3.66  − 45.44 0.0 5.2 4.0
E6 Itaporã do Tocantins  − 8.57  − 48.69 0.0 5.1 4.3
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construction of the time series (Xt), which can be 
reconstructed using Eq. (4).

In practice, MODWT decomposition is performed 
on a series of data, for which the type of filter (wave-
let), the level of decomposition and the limit, can be 
periodic or reflective, are selected. If periodic, the 
resulting wavelet and scale coefficients are calculated 
without duplicating the original series, treating (Xt) 
as if it were circular. If it is reflection, a new series 
is reflected twice the length of the original series. In 
the present study, the periodic limit was adopted, and 
three types of wavelet families, Daubechies (db4) of 
levels 6 and 8 (db4-j6 and db4-j8), less asymmetri-
cal (la14) of levels 4 and 6 (la14-j4 and la14-j6) and 
coiflet (c6) of levels 4 and 6 (c6-j4 and c6-j6), were 
selected based on the most common hydrological data 
series (Maheswaran & Khosa, 2012; Santos et  al., 
2019) and by carrying out diversified decompositions.

Artificial neural network

ANNs are computational models that imitate the 
functioning of the human brain, with the aim of ana-
lysing a given system and reproducing it. The learn-
ing of an ANN occurs through an iterative process 
applied to synaptic weights (wkn) and bias (bk), 
called training. According to Haykin (2007), the 
training of an ANN is performed by an algorithm, 
which adjusts a matrix of synaptic weights. Thus, 
the output vector must match a desired target value 
for each input vector. This process is cyclical for the 
training sample set until a previously stipulated stop-
ping criterion is reached. After training, it is expected 
that the ANN will be able to generalize information, 
obtaining coherent outputs with input vectors not 
used in the training set. It is also expected that the 
minimum error found in training will be similar to the 
error in simulation in an entirely different set.

The main architectures of artificial neural net-
works can be divided into single layer feedforward 
networks, multilayer feedforward networks, recurrent 
networks and reticulated networks. The difference 
between them is related to the arrangement of their 
neurons, their way of interconnection and the con-
stitution of their layers, as mentioned above. In this 
study, the ANFIS network was used.

(4)Xt = W̃j,t + Ṽj,t

ANFIS network

ANFIS is a neural network that combines the fuzzy 
inference system (SIF) with an ANN. ANFIS is con-
sidered a fuzzy inference system organized in the 
form of an adaptive network capable of mapping input 
and output data based on the knowledge of an expert. 
The adaptive network is a multilayer network with a 
feedforward architecture arranged by nodes intercon-
nected by unidirectional connections and supervised 
learning (Jang, 1993). A neuro-fuzzy network is usu-
ally made up of three layers. The first layer (fuzzifi-
cation) represents the fuzzy rules, that is, the terms 
that precede the rule. The second layer (intermediate) 
represents the fuzzy rules, and the third layer (defuzz-
ification) represents the output variables, that is, the 
consequent term of the rule. However, there can be 
several types of FIS in an ANFIS network, which can 
vary depending on the reasoning and rules applied.

FIS (Takagi & Sugeno, 1985), adopted in this 
study, represents a system that associates a set of lin-
guistic rules in the antecedent (“if” part) with fuzzy 
propositions and in the consequent (“then” part) 
presented by expressions of type y = f(x) from the 
linguistic variables of the antecedent. With this sys-
tem and from a dataset for training (input and output 
pairs), it is possible to make predictions of a given 
variable using an ANFIS architecture (Fig.  2). This 
architecture is composed of five layers, which each 
have specific purposes (Jang, 1993).

In the first layer, the degree of membership of the 
input entries x and y is calculated, according to the 
type of membership function (MF) chosen in these 
nodes (A1, A2, B1 and B2). In the second layer, neu-
rons perform the t-norm operation as the algebraic 
product (neuron ∏) (Eq. 5), considering the MF ( �) 
and the linguistic terms (Ai, Bi).

In the third layer, the membership functions are 
normalized (Eq. 6) through the weights (w) of the N 
neurons.

In the fourth layer, the outputs of neurons are cal-
culated by the product between the normalized fir-
ing levels and the value of the consequent rules. Its 

(5)wi = �Ai(x)�Bi(y), i = 1, 2…

(6)wi =
wi

w1 + w2

, i = 1, 2…
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parameters correspond to the coefficients of the affine 
expressions and the neuron activation function, which 
form the fourth layer (Eq. 7), where pi , qi and ri are 
the parameters associated with the consequents of the 
rules.

In the fifth layer, the system output is calculated, 
which together with the nodes of the third and fourth 
layers promote the defuzzification or sum total of all 
input signals (Eq. 8).

For the application of ANFIS in precipitation fore-
casting, two NMFs (number of membership func-
tions) were adopted as initial parameters for each 
input variable, and the membership function (MF) 
type was chosen for the best performance of the net-
work, ranging from triangular, trapezoidal, Gaussian 
and sinusoidal.

Time‑lagged neural network

In problems involving the prediction of time series, 
neural networks are used as a good artifice, espe-
cially in the input layer, where the incorporation 
of a memory at the input of the network allows the 
strengthening of the learning of the behaviour of time 
series, which can be intuitively attached to the other 
layers of the network, improving the results. Thus, 
the combination of entries based on antecedent times 

(7)z4,1 = wi fi = [wi

(

pi + qiy + ri
)

]

(8)f =

∑

i wi fi
∑

iwi

is suggested in this work. Four combinations were 
adopted, considering the precipitation of 2, 3, 4 and 
5 days before (t-2, t-3, t-4 and t-5) to forecast the cur-
rent day. In forecasting hydrological variables, the 
optimal time interval of this delay is not well defined. 
However, Shoaib et al. (2018), Kim et al. (2020) and 
Hammad et al. (2021) consider that up to five delays 
is an acceptable number and this value is adopted in 
this study. Furthermore, incorporating other climatic 
variables (air temperature, wind, solar radiation, etc.) 
in precipitation forecasts can generate errors due to 
the uncertainty of the real influences that such vari-
ables can exert on precipitation.

Seasonality assessment

The daily precipitation data from the rainfall gauge 
stations were organized in two ways: (1) rainy period, 
which is formed by 3444 daily precipitations in the 
months of November–April of 1998–2016, divided 
into 2584 values for calibration (01/1998–02/2012) 
and 860 values for validation (02/2012–12/2016); 
(2) dry period, formed by 3496 precipitations from 
May–October 1998–2016, divided into 2624 values 
for calibration (05/1998–06/2012) and 872 and 872 
for validation (06/2012–10/2016). This division aims 
to assess the influence of seasonality on the model’s 
response. In network processing, data were standard-
ized (Eq.  9) and divided for calibration (75%) and 
validation (25%).

(9)Ppad =
Pi − Pmin

Pmax − Pmin

Fig. 2   MODWT and ANN hybrid model with ANFIS network architecture
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where Ppad is the standardized precipitation, Pi is the 
precipitation to be standardized and Pmin and Pmax are 
the smallest and largest values, respectively, observed 
in the precipitation series. Standardization implies 
scaling the samples to the dynamic range of activa-
tion functions of hidden layers, typically represented 
by the logistic function or hyperbolic tangent, to 
avoid saturation of neurons, as adopted by Nourani 
et al. (2017).

Performance criteria

Model performance was assessed using statistical 
parameters, which are used to quantify the agreement 
between observed and estimated data. In this study, 
we used two classic criteria, the mean square error 
(MSE, mm) and the Nash–Sutcliffe coefficient (Nash), 
represented by Eqs. (10) and (11), respectively.

where n is the number of samples, Yobs is the observed 
precipitation, Yest is the estimated precipitation and X is 
the average of the observed precipitation. The best per-
forming models are those with low MSE and Nash val-
ues close to 1 (Chai & Draxler, 2014; Nash & Sutcliffe, 
1970).

The methodology adopted in this study consists of 
the following steps (Fig. 3):

–	 The collection, organization and standardization 
of precipitation data;

(10)MSE =
1

n

n
∑

i=1

(X − Yobs)
2

(11)Nash = 1 −

∑
�

Yobs − Yest
�2

∑

�

Yobs − X
�2

Fig. 3   Methodology flowchart
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–	 The decomposition of the historical series by 
MODWT with wavelet filters;

–	 A model calibration performed through MODWT-
IA training and adjustments of network param-
eters, input type and wavelet filters (75% of the 
historical series); and

–	 The validation of the model through the adoption 
of the optimal parameters obtained in the calibra-
tion (25% of the historical series) with perfor-
mance criteria.

Results and discussion

Using the MODWT, the maximum level of decom-
position was found to be eight (Jmáx = 8), and the 
lengths (L) of the wavelet filters were 4 for db4, 14 
for la14 and 6 for c6. Thus, using a maximum level of 
decomposition equal to 8, a K equal to 4 and Eq. (3), 
Kj is equal to 766 coefficients affected by the limit of 

j (this practice was also adopted, for j = 4 and 6, and 
for L = 6 and 14). Therefore, the first 766 records of 
input data from the stations are removed after decom-
position with wavelet db4-j8. Then, the training of 
the ANFIS network was carried out at each station 
through the method of successive approximations in 
the dry and rainy periods with data from ANA and 
CMORPH. Tests were also carried out to assess the 
optimal parameters. After the simulations at each 
station, with different filters and levels adopted, the 
best parameters were defined in relation to the lagged 
inputs regarding the number of membership func-
tions (NMF), type of membership function (MF) and 
number of epochs. The MFN of 2 for each entry and 
the generalized bell MF (gbellmf) were the ones with 
the lowest errors for training, testing, validation and 
the FIS of the network (0.01570, 0.01656, 0.01601, 
0.01542), with entries delayed by 4  days (Table  2). 
The selected output function was a constant, and the 
training method was a hybrid.

Table 2   MODWT-
ANFIS model calibration 
parameters

NMF Filter MF Epochs Training error Test error Check error FIS error

2 delays
2 2 db4-j6 trimp 30 0.01886 0.01962 0.02031 0.0189
3 3 db4-j8 gbellmf 30 0.01879 0.02161 0.02053 0.0189
4 4 db4-j8 gbellmf 30 0.01840 0.01957 0.01986 0.0181
5 5 c6-j6 gbellmf 30 0.01868 0.03141 0.02137 0.0187
6 6 db4-j8 gaussmf 30 0.01846 0.02705 0.02483 0.0184
7 7 db4-j6 trapmf 30 0.01848 0.02402 0.02112 0.0185
8 8 la14-j6 trapmf 30 0.01861 0.024151 0.020959 0.0186
3 delays
2 2 2 db4-j8 gbellmf 30 0.01881 0.08131 0.08131 0.01881
3 3 3 db4-j8 trimp 30 0.01828 0.02051 0.02449 0.01828
4 4 4 db4-j8 gbellmf 30 0.01705 0.01961 0.02034 0.01720
5 5 5 c6-j6 gbellmf 30 0.01763 0.03991 0.11176 0.01763
6 6 6 c6-j4 gaussmf 30 0.01741 0.05599 0.19521 0.01741
7 7 7 db4-j8 gbellmf 30 0.01790 0.15160 0.25428 0.01790
4 delays
2 2 2 2 db4-j8 gbellmf 30 0.01570 0.01656 0.01601 0.01542
3 3 3 3 db4-j6 gauss2mf 30 0.01780 0.02365 0.02612 0.01780
4 4 4 4 la14-j6 gaussmf 30 0.01733 0.43885 0.12759 0.01743
5 5 5 5 db4-j8 gaussmf 30 0.01648 0.12007 0.19133 0.01648
6 6 6 6 c6-j6 gaussmf 30 0.01847 0.18319 0.17287 0.01847
5 delays
2 2 2 2 2 la14-j4 gaussmf 30 0.028261 0.098502 0.20054 0.028264
3 3 3 3 3 db4-j6 trimp 30 0.027264 0.036274 0.12092 0.027193
4 4 4 4 4 db4-j8 gaussmf 30 0.056044 0.22155 0.081788 0.056044
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Through simulations with the ANFIS network, it 
was found that the increase in the number of mem-
bership functions and input lag resulted in an increase 
in computational time and effort without resulting in 
gain for the network, as the errors (MSE) did not have 
undergone so much change. Therefore, in this case, 
increasing the number of inlets and MFN is not advis-
able for this type of precipitation forecast. This fact 
may be related to the great effort that the ANFIS net-
work performs with each MF and each input variable, 
requiring greater computational effort. In this way, 
the entries with 5 days of delay were made only with 
4 NMF to expedite the training and make the training 
more efficient. Regarding the number of epochs, val-
ues from 2 to 100 epochs were adopted. However, the 
value of 30 epochs presented the lowest MSE because 
from this value, the errors were without a significant 
reduction. For the wavelet filter, db4-j8 was the most 
adjusted for the series with four delays in the ANFIS 
networks (Table  2). Table  3 presents the optimized 
parameters of the ANFIS network.

The Daubechies (db4) wavelet was able to decom-
pose the seasonality element of the time series more 
efficiently, and its results for levels (j) 6 and 8 and 
length (L) 4 presented small errors and Nash values 
close to the ideal. According to Maheswaran and 
Khosa (2012), the good db4 performance is due to the 
broader support in seasonal temporal series and the 
ability to smooth the signal and good location of time 
and frequency. This process is necessary for precipi-
tation series that present temporal intercurrence. The 
less asymmetric wavelet (la14) and the coiflet (c6) 
combined with the ANN also presented good results 
with small errors and high Nash. However, its per-
formance against db4 was not extensively different. 

This shows that increasing the length (L) of the fil-
ter (6 and 14), for this case, did not bring significant 
improvements and that the db4 filter with a length (L) 
of 4 is sufficient for good signal decomposition.

The best filter, according to Zhang et  al. (2015), 
should be the one with the most similar decomposi-
tion to the characteristics of the studied series. How-
ever, when choosing a filter, other parameters are also 
associated with the filter. Thus, according to the tests 
performed, the factors that most influenced the simu-
lations were the level of decomposition and the length 
of the wavelet. The fit of the best model with level 8 
and length 4 has a smoother adjustment and considers 
the boundary conditions. It provided a moderate and 
permissible fit for the decomposition of the precipita-
tion data. The longer length (6 and 14) did not show 
higher quality and could remove a much larger num-
ber of wavelet coefficients adjusted by BC, compro-
mising the amount of input data in the model simula-
tion with ANN.

To avoid errors and circumvent BC, it is necessary 
to choose an adequate wavelet and sufficient input 
data for training and forecasting (Du et  al., 2017; 
Quilty et al., 2016; Ramírez-Hernández et al., 2016). 
In the selection of the precipitation series, this ques-
tion was adopted by testing three wavelet filters and 
three levels of decomposition, removing the values 
that interfere in the coefficients affected by the limit 
of j and by the adjusted division of the number of data 
used in the calibration and validation. Thus, it was 
possible to filter the data series, leave them free of 
uncertainties related to BC and even adjust adequate 
numbers of input data for the training and validation 
of neural networks.

In the validation of the MODWT-ANFIS model, 
tests were performed with 25% of the temporal series, 
corresponding to the seasonal period (rainy and dry) 
from 2012 to 2016. In this case, the model presented 
a Nash value close to 1 and an MSE value less than 
0.1 (Fig. 4).

The effectiveness of the ANFIS model in daily 
precipitation simulations can be explained by the 
ability to incorporate fuzzy rules to assist in simula-
tions, being sensitive to learning datasets and able 
to learn much more during the training period and 
improve simulations in the testing phase (Seera 
et  al., 2012; Roy & Singh, 2020). Choubin et  al. 
(2016), for example, found that the ANFIS model 
combined with other techniques can be sufficiently 

Table 3   ANFIS parameters after training

ANFIS parameter Values

Membership functions (MF) gbellmf
Output function (defuzzification) constante
Number of nodes 55
Number of fuzzy rules 16
Number of linear parameters 16
Number of nonlinear parameters 24
Total parameters 40
Number of training pairs 1308–1736
Number of validation pairs 656–870
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satisfactory in simulating precipitation. The small 
numbers of modelled data entries with small time 
delays proved to be effective, as demonstrated by the 
resulting Nash values close to 1.0. This small num-
ber of entries can be considered a great advantage of 
the model, as it allows overcoming the problem of 
drier periods (Costa et al., 2015; Suhaila et al., 2011), 
which require more information from previous days 
to simulate future days. Furthermore, according to 
Nerantzaki and Papalexiou (2019), the estimation of 
precipitation events is still a challenge in the litera-
ture and requires specific methods for its modelling. 
The model was also able to satisfactorily simulate the 
precipitation of stations E1, E2, E3 and E4 (Fig. 1), 
with high precipitation located in the Amazon biome, 
and the precipitation of stations E5 and E6 (Fig. 1), 
with low precipitation located in the transition region 
and in the Cerrado biome. In other words, the model 
had no problems reproducing the precipitation result-
ing from the Amazon’s climate variability. However, 
other models have shown problems with this repro-
duction (Detzel & Mine, 2011; Liu et  al., 2011; Ng 
et al., 2017; Wilks, 1999).

Conclusion

The MODWT-ANFIS model was calibrated, trained 
and validated, and it satisfactorily simulated the 
daily precipitation in the Amazon, considering sea-
sonality and the region’s biomes. The small number 
of data entries input into the model with small time 
delays proved to be effective and was considered 
a great advantage of the model. This method can 
overcome the problems associated with dry periods, 

which require more information from previous days 
to simulate future days. The pre-processing of data 
performed by MODWT was essential to remove 
noise from the original time series and correct the 
boundary conditions that could harm the model’s 
simulations. This stage in the development of the 
models, together with the time-lagged inputs, con-
figures one of the advantages of hybrid models, 
such as the analysed model.

The results generated may help future work to 
better understand the daily precipitation modelling 
and its behaviour in the Amazon region, which has 
been suffering from fires and deforestation, impact-
ing the region’s hydrological cycle and affecting 
various activities, such as human supply, sanitation, 
agribusiness, water supply, hydroelectric production 
and waterway transport. This hydrological imbal-
ance affects other regions of the country (midwest, 
southeast and south), which depend on evapotran-
spiration (ET) from the Amazon to produce rain, 
which is also important for the water uses men-
tioned above. Finally, the global climate is sensitive 
to changes in the Amazon hydrological cycle.
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