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and 60.77% of the soil samples were beyond the low 
risk level for Hg and Cd, respectively. In this research, 
the non-carcinogenic and carcinogenic risk indices 
for children were higher than adult males and adult 
females. Four potential sources were revealed based 
on the PMF and SOM analysis including atmospheric 
deposition and industrial emission; transportation 
source; agricultural source; and a combination of 
agricultural, industrial, and natural sources. Consider-
able and high ecological risk from Hg existed in the 
area close to the coal steam-electric plant, and con-
siderable and high ecological risk from Cd existed in 
the Hulan River estuary area. The eastern part of the 
study area experienced higher non-carcinogenic and 
carcinogenic risks for adults and children than the 
western part of the study area. The source apportion-
ment and ecological and health risk mapping provide 
important role in reducing pollution sources. Zonal 
pollution control and soil restoration measures should 
be performed in the areas with high ecological and 
health risks.

Keywords Soil heavy metals · Health risk 
assessment · Positive Matrix Factorization · Self-
organizing map · Food security

Introduction

Soil heavy metal pollution severely threatens agro-
ecosystem stability and food security. Different from 

Abstract Heavy metals in agricultural soils not 
only affect the food security and soil security, but also 
endanger the human health through the food chain. 
Based on the incorporation of index analysis, posi-
tive matrix factorization (PMF), self-organizing map 
(SOM), and geostatistical methods, this research per-
formed the assessment of source apportionment and 
ecological and health risks of soil heavy metals in 
Hulan River Watershed, Northeastern China. Accord-
ing to the Pollution Load Index (PLI), 83.08% of the 
soil samples were slightly or mildly polluted, and 
1.54% of the soil samples were severely polluted. The 
ecological risk index (EI) showed that about 80.77% 
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organic matter, most heavy metals are prone to trans-
form to more toxic methyl compounds and do not 
degrade naturally. Heavy metals in agricultural soils 
can not only affect the soil security, grain output, 
and quality, but also endanger the health of human 
body through the food chain (Hou et al., 2020). Some 
research indicated that excessive exposure to the 
heavy metals could cause body damages and increase 
the cancer risks (Setia et al., 2021; Wang et al., 2020a, 
b, c, d). Long term accumulation of soil heavy met-
als can bring about the soil nutrient loss and degra-
dation of soil quality and soil function (Semenkov & 
Koroleva, 2020). Furthermore, soil heavy metals can 
cause secondary pollution by transferring to water 
(Karaouzas et al., 2021) and atmosphere (Wan et al., 
2016). As a result, it is important to identify and map 
the source, ecological risks, and human health risks 
of soil heavy metals.

To analyze the effects of heavy metals on ecological 
environment and human health, multiple indices were 
proposed for heavy metal pollution assessment. Some 
indices including index of geoaccumulation (Muller, 
1969), the enrichment factor (Buat-Menard & Chesselet, 
1979), the contamination factor (Hakanson, 1980), and 
individual contamination factor (Ikem et al., 2003) were 
utilized to evaluate the individual soil heavy metal pollu-
tion. Some indices including Pollution Load Index (Wang  
et  al., 2020a, b, c,  d) were utilized to assess the multi-
element heavy metal pollution status. Other indices  
including Ecological Risk Index (Hakanson, 1980; Zeng 
et  al., 2020) and total cancer risk (Wu et  al., 2020a, b) 
have been applied to evaluate the effects of heavy metals 
on environment and human health.

The sources of heavy metals in agricultural soils 
are either related to the anthropogenic activities or 
natural process. Intensive input from human activi-
ties including fertilizers, agrochemicals, wastewater 
irrigation, and automobile exhaust emissions is the 
major driving forces of heavy metal accumulation 
in agricultural soils (Fei et  al., 2019). Apportioning 
the corresponding contributions of soil heavy metals 
is of great importance to implement effective source 
reduction and site-specific sustainable soil man-
agement measurements. The techniques which can 
identify and quantify the sources of heavy metals in 
soils can be classified into source identification and 
source quantification methods. Source identification 
methods, which aim to define the types of pollution 
sources, include principal component analysis (Yang 

et al., 2020) and cluster analysis (Pandey et al., 2014). 
Source quantification methods, which aim to perform 
the quantitative analysis of contributions from differ-
ent sources, include chemical mass balance (CMB) 
(Shi et  al., 2019) and positive matrix factorization 
(PMF) (Wu et al., 2020a, b). Among multiple recep-
tor models, PMF method is an effective and widely 
used method for soil heavy metal apportionment. It 
does not require the prior knowledge of source pro-
files, and it is appropriate to be applied in areas with 
similar parent materials and agricultural management 
practices (Lv, 2019). By integrating PMF and self-
organizing map (SOM), Bhuiyan et al. (2021) identi-
fied four sources of soil heavy metals in Dhaka district 
in Bangladesh. Christensen et al. (2018) analyzed the 
anthropogenic and geogenic sources of heavy metals 
in moss and natural surface soils in Norway by PMF 
and Principal Component Analysis (PCA) methods. 
The source contributions of heavy metals are affected 
by various factors including climate, hydrology, and 
topography. Most research just analyzed the concen-
trations of source contribution, while ignoring the 
associated health and ecological risks. As a result, 
this research combined source apportionment meth-
ods and ecological and human health risk assessment 
to quantify and map the sources and ecological and 
health risks of soil heavy metals.

Although receptor models can help identify the 
potential sources of heavy metal and explain the rela-
tionships between different soil heavy metals, they 
cannot explain the spatial correlations of soil heavy 
metals. Characterizing the spatial pattern of soil 
heavy metals can help identify and demarcate the 
areas with relatively high heavy metal concentration. 
Generally, geostatistical and data mining methods 
are two major methods that are used to characterize 
the spatial pattern of soil heavy metals. Random for-
est and land use regression model had been utilized 
to predict the spatial pattern of soil heavy metals in 
Dongli District, Tianjin (Wang et al. 2020a, b, c, d). 
Geostatistical methods such as ordinary kriging and 
Inverse Distance Weight (IDW) methods had been 
used to analyze the spatial correlations of soil heavy 
metals (Gujre et al., 2021; Sergeev et al., 2019). Geo-
statistical methods can also reveal the spatial structure 
and spatial variability of factors derived from receptor 
models. However, most of the research just analyzed 
the spatial pattern of soil heavy metals and did not 
explore the spatial pattern of source apportionment 
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factors, health risks, and ecological risks (Kharazi 
et al., 2021; Liu et al., 2021a, b; Sergeev et al., 2019). 
Most research could not provide site-specific recom-
mendations to the reginal ecological security and 
food security management.

Songnen Plain, an important part of the northern 
Songliao Plain, is an important commodity grain base 
in China. To feed the growing population, multiple 
natural lands were converted to cropland in the Song-
nen Plain in the past decades (Mao et  al., 2019). In 
addition, the increasing use of chemical fertilizer and 
excessive reclamation have also led to soil degrada-
tion and soil nutrient loss (Song et  al., 2018). How-
ever, few research has performed the source appor-
tionment, ecological risk assessment, and health risk 
assessment of soil heavy metals in this area before. 
The primary goals of this study were to (1) determine 
the concentration of soil heavy metals; (2) assess the 
source apportionment, ecological risk, and health risk 
of soil heavy metals; (3) map the spatial pattern of 
soil heavy metals and related source apportionment 
factors, ecological risks, and healthy risks; and (4) 
make recommendations to the soil and agricultural 
management in Hulan River Watershed in Harbin, 
Heilongjiang province, China.

Materials and methods

Study area description

Hulan River is a tributary of Songhua River located in 
the central part of Heilongjiang province, China. It ori-
gins from Xiao Hinggan Mountains, and then flows into 
the Songhua River in Hulan District of Harbin City, 
capital of Heilongjiang province. Hulan River Water-
shed in Harbin City experienced the northern temperate 
continental monsoon climate with a warm summer and 
a cold winter. The frozen period is from late October 
to late April in this area. The average temperature in 
July and January is 20–23 °C and − 21– − 26 °C, respec-
tively. The average annual precipitation is 574.7  mm. 
The soil type in Hulan River Watershed is Moollisols 
according to the USDA Taxonomy. Maize (Zea mays. 
L.) was the main cropping system in the region. In 
recent years, more and more corn fields are transformed 
to soybean field due to the high economic value and 
market demand of the soybean in China.

Soil sampling and analysis

The top soils (20 cm depth from the surface) of 144 
soil samples were collected across the study area 
(Fig. 1). Each soil sample was a composite of 3 sub-
samples acquired from a 10  m × 10  m grid of land. 
All samples were dried at 25  °C for 2  weeks, and 
then grounded under 100 mesh, and passed through 
a 2-mm sieve. Approximately 0.25  g of soil sample 
was digested with concentrated  HNO3-HF-HClO4 
on an electric hot plate (Dang et al., 2021; Wu et al., 
2019). The contents of soil Cd, Cr, Cu, Pb, Ni, and 
Zn were determined by inductively coupled plasma-
mass spectrometry (ICP-MS) in Geological Bureau 
of Hunan province. The contents of heavy metals 
including As and Hg were determined by atomic fluo-
rescence spectrometry (AFC) in Geological Bureau 
of Hunan province.

Assessment of soil heavy metal pollution

Pollution assessment of soil heavy metal

Single factor pollution index (PI) and Pollution Load 
Index (PLI) were applied to calculate the pollution 
level from each heavy metal and all heavy metals, 
respectively (Zang et al., 2017). PI and PLI were esti-
mated as Eqs. (1) and (2), respectively,

where Ci the concentration of the ith heavy metal in 
soil, and Bi is its geochemical baseline concentration 
in the study area (Sun et al., 2013). PIi is the single 
factor PI of ith heavy metal in soil (Jiang et al., 2021). 
The categories of PI and PLI are shown in Table S1.

Potential ecological risk assessment of heavy metal 
pollution

Ecological risk index (EI) and Comprehensive eco-
logical risk assessment ( RI ) can reflect the ecologi-
cal impacts of a single heavy metal and all the soil 
heavy metals, respectively (Hakanson, 1980). The 
formula of EI and RI was calculated as follows:

(1)PI =
Ci

Bi

(2)PLI =
i
√

PI1 × PI2 × PI3 ×… ⋯ × PIi
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where Ti is the toxic-response factor (Zeng et  al., 
2020). The categories of RI and EI are also shown in 
Table S2.

Potential health risk evaluation of soil heavy metal

The human exposure risks from soil heavy metals 
were estimated by three different pathways includ-
ing ingestion (ing), inhalation (inh), and dermal 
contact (der) (Zhao et  al., 2019). In this study, the 
average daily intake (ADI) (mg/kg/day) of soil 
heavy metals for anthropic health risks through the 
following three pathways was estimated with Eqs. 
(5)–(7):

(3)EIi = Ti × PIi

(4)RI =
∑n

i=1
EIi

The definition and values of exposure parameters 
are summarized in Table S3.

The total non-carcinogenic risk (THI) and total 
cancer risk (TCR) (Wu et al., 2020a, b) were calcu-
lated with Eqs. (8) and (9).

(5)ADIing =
C × Ring × EF × ED × CF

BW × AT

(6)ADIinh =
C × Rink × EF × ED

PEF × BW × AT

(7)ADIder =
C × SA × AF × ABS × EF × ED × CF

BW × AT

(8)THI =
∑n

i=0

ADIi

RfDi

(9)TCR =
∑n

i=0
ADIi × SFi

Fig. 1  Soil sampling sites 
in Hulan River Watershed, 
Harbin, China
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where n is the number of soil heavy metals, ADIi is 
the average daily intake for the ith soil heavy metal, 
RfDi is the reference dose for the ith soil heavy metal, 
and SFi is the slope factor for the ith soil heavy metal. 
If the THI value is higher than 1, there are potential 
non-carcinogenic effects. If the THI value is lower 
than 1, there is no risk of adverse health effect. If the 
TCR value is higher than 1E − 04, the cancer risk is 
unacceptable. If the TCR value is lower than 1E − 04, 
an acceptable risk for cancer can be expected (Wu 
et al., 2020a, b).

Statistical analysis

The descriptive analysis of the data was carried out 
in R software. The spatial distribution of heavy met-
als was characterized by Inverse Distance Weighted 
(IDW) method in ArcGIS 10.4.1. The factor scores 
from PMF analysis, PI, PLI, EI, RI, THI, and TCR 
were interpolated by IDW to show the pollution sta-
tus and ecological and health risks in the study area.

PMF analysis

PMF (version 5.0) is a multivariate receptor model 
developed by Paatero and Tapper (1994). It was 
widely utilized to identify and quantify the sources of 
heavy metals in soil, sediments, and air (Brown et al., 
2015; Christensen et al., 2018; Wu et al., 2020a, b). 
The calculation principle and expression of PMF are 
described as follows:

where i is the soil sample number, j is the heavy metal 
category, p is the number of potential sources, Xij is 
the sample data matrix, gik is the source contribution 
matrix, fkj is the source profile matrix, and eij is the 
residual for each soil sample.

The purpose of the PMF is to achieve the mini-
mum value of the objective function (Q(E)). The 
Q(E) is defined as:

where uij is the uncertainty. uij is calculated as the fol-
lowing formula:

(10)Xij =
∑p

k=1
gikfkj + eij

(11)Q(E) =
∑n

i=1

∑m

j=1
(
eij

uij
)
2

where c is the soil heavy metal concentration, MDL 
is the method detection limit, and σ is a percentage of 
the measurement uncertainty.

Self-organizing map (SOM) analysis

A self-organizing map (SOM) is a data-driven method 
which requires no preliminary knowledge developed by 
(Kohonen, 1998). It is an unsupervised artificial neural 
network model that was widely applied in complex data 
analysis without preliminary knowledge. The mecha-
nism of SOM resembles the process of human brains 
that it can self-organize neurons with the same weight 
vector as the input vectors, and cluster the spatial distri-
bution of similar-function neurons (Wang et al., 2020a, 
b, c, d). The ordered neurons were connected through 
a neighborhood relation on a SOM map. Similar color 
gradients represent positive correlations and antiparallel 
color gradients show negative correlations. Two error 
parameters, including quantization error (QE) and topo-
logical error (TE), were used to control the SOM mod-
eling quality. Firstly, the number of input samples (N) 
was 130, which showed 130 soil samples collected in 
the study area. Secondary, the number of neurons (M) 
was calculated by the formula as follows: M = 5 

√

N

≈55 according to the empirical equation. Finally, the 
final number of neurons (M) in the neural matrix was 
composited of 7*8 neurons by considering QE and TE. 
SOM Toolbox in MATLAB was utilized to apportion 
the sources of soil heavy metals.

Results and discussion

Descriptive analysis of heavy metal concentrations in 
Hulan River Watershed

The descriptive analysis of the soil heavy metal con-
centrations is shown in Table  1. The concentration 
ranges of heavy metals of As, Hg, Cr, Ni, Cu, Zn, Cd, 
and Pb were 3.52–27.97, 0.01–0.21, 16.12–78.12, 
6.99–249.98, 5.64–940.28, 21.6–314.28, 0.04–1.21, 
and 15.77–38.5  mg/kg, with corresponding mean 
values of 10.00, 0.03, 51.91, 26.76, 27.71, 68.39, 
0.15, and 24.64  mg/kg, and median values of 9.66, 

(12)

uij =

�

5

6
×MDL, (c ≤ MDL)

√

(𝜎 × c)2 + (0.5 ×MDL)2, (c > MDL)
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0.03, 54.3, 25.99, 20.61, 64.65, 0.13, and 24.68 mg/
kg, respectively. Approximately all the heavy met-
als of the soil samples exceeded the corresponding 
background value of the soil in Heilongjiang prov-
ince (Sun et al., 2013). In addition, there were 0.77% 
and 3.08% of sampling locations showing higher 
concentration values than the risk screening values 
for Ni/Cu/Zn and Cd, respectively. According to the 
Costa’s classification (Costa et  al., 2019) (high vari-
ation: CV > 35%, medium variation: 16 < CV ≤ 35%, 
low variation: CV ≤ 16%), Cd, Ni, Hg, Cu, and Zn in 
the study area showed high variations, implying the 
anthropogenic activities such as industrial emission, 
traffic emission, and fertilizers might be the important 
sources for these heavy metals. As and Cr showed 
median variations, suggesting they might be affected 
by both anthropogenic activities and natural factors.

Evaluation of soil heavy metal pollution

Pollution evaluation of soil heavy metals

The summary of PLI and PI is shown in Table 2. The 
mean PI values of As, Hg, Cr, Ni, Cu, Zn, Cd, and Pb 
were 1.16, 1.56, 0.97, 1.15, 1.49, 1.22, 1.64, and 1.14, 

respectively, suggesting all the heavy metals except 
Cr in this area were slightly polluted. The percent-
ages of soil samples showing PI values larger than 1 
for As, Hg, Cr, Ni, Cu, Zn, Cd, and Pb were 74.01%, 
80.77%, 53.85%, 73.85%, 73.85%, 81.54%, 88.46%, 
87.69%, and 81.54%, respectively, suggesting most 
of the soil sampling sites were heavy metal polluted. 
According to the classification of PLI, 83.08% of the 
soil samples were slightly or mildly polluted, and 
1.54% of the soil samples were severely polluted, and 
only 16.92% of the soil samples were unpolluted.

Ecological evaluation of soil heavy metals

The order of mean EI values of the heavy metals 
in soil samples was Hg (62.30) > Cd (49.22) > As 
(11.63) > Cu (7.45) > Pb (5.68) > Ni (5.74) > Cr 
(1.94) > Zn (1.22) (Table  3). All soils experi-
enced low ecological risk with all the heavy met-
als except Hg and Cd. As the toxic-response factor 
of Hg and Cd is higher than other soil heavy met-
als, EI mean values of Hg and Cd were larger than 
40, showing both heavy metals reached moderate 
risk level. A total of 80.77% and 60.77% of the soil 
samples exceeded the low risk level for Hg and Cd, 

Table 1  Descriptive statistics of soil heavy metals in the study area (mg/kg)

As Hg Cr Ni Cu Zn Cd Pb

Min 3.52 0.01 16.12 6.99 5.64 21.60 0.04 15.77
Max 27.97 0.21 78.12 249.98 940.28 314.28 1.21 38.50
Mean 10.00 0.03 51.91 26.76 27.71 68.39 0.15 24.64
Median 9.66 0.03 54.30 25.99 20.61 64.65 0.13 24.68
Standard deviation 2.83 0.02 9.87 20.30 80.86 28.89 0.11 2.99
Coefficient variation 28.25% 73.48% 19.02% 75.86% 291.79% 42.25% 76.08% 12.13%
Skewness 3.38 4.82 −1.39 10.43 11.32 5.38 7.02 0.50
Kurtosis 19.38 30.48 3.30 115.62 128.67 41.42 62.54 3.57
Risk screening value 30.00 2.40 200.00 100.00 100.00 250.00 0.30 120.00
Background value 9.14 0.03 42.46 23.65 17.78 52.05 0.07 20.23
Higher than background value (%) 74.01% 80.77% 53.85% 73.85% 73.85% 81.54% 88.46% 87.69%
Higher than risk screening value (%) 0.00% 0.00% 0.00% 0.77% 0.77% 0.77% 3.08% 0.00%

Table 2  Summary 
statistics of the Single factor 
Pollution Index (PI) and 
Pollution Load Index (PLI) 
in the agricultural soils of 
Hulan River Watershed

As Hg Cr Ni Cu Zn Cd Pb PLI

Mean 1.16 1.56 0.97 1.15 1.49 1.22 1.64 1.14 1.19
Min 0.41 0.45 0.30 0.30 0.30 0.39 0.47 0.73 0.41
Max 3.25 10.29 1.46 10.73 50.55 5.62 13.41 1.77 3.58
Pollution % 74.01% 80.77% 53.85% 73.85% 73.85% 81.54% 88.46% 87.69% 83.08%
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respectively. RI combined ecological risk from all 
heavy metals and they ranged from 45.63 to 553.15 
with the mean value of 145.19, indicating low com-
bined ecological risk of soil heavy metals across the 
Hulan River Watershed. Only 24.62% of the soil 
samples exceeded the low risk level of RI (Table 3).

Health risk evaluation of soil heavy metals

The average HI values were all below 1 for adult and 
children, and the average THI and TCR values were  

also higher than 1 and 1E − 04 for children, respec-
tively (Table 4). The results suggest the non-carcinogenic  
and carcinogenic risks of the soil heavy metals in the study a 
rea were not in an acceptable range for the children. 
The values of three exposure pathways for average THI 
and TCR were in the order of  THIder >  THIing >  THIinh, 
and TCR ing > TCR der > TCR inh, respectively, suggesting 
ingestion and derma contact were two major pathways 
for heavy metal health risks. For As, Cr, and Ni, the 
average HI accounted for THI was in the order of As 
(62.21%) > Cr (27.47%) > Ni (1.37%), and the aver-
age CR accounted for TCR was in the order of Ni 
(42.60%) > As (32.92%) > Cr (24.49%). The non-carci-
nogenic and carcinogenic risk indices for children were 
higher than those for adult males and females, which 
is confirmed by other research (Amin et al., 2013; Li 
et al., 2021).

Source analysis of soil heavy metals based on PMF 
and SOM

Figure  2 shows the contributions of sources of soil 
heavy metals. Factor 1 was dominated by Hg with 
the loadings of 99.8%. Factor 1 was also moderately 
loaded with Cd (34.7%), As (21.0%), and Pb (21.0%) 
(Fig. 2). The high concentration of Hg was shown in 
the central part of the study area where coal steam-
electric plant is built (Fig. 4). Multiple research also 
indicated that coal burning and atmospheric depo-
sition were the major sources of Hg (Cooke et  al., 
2020; Liu et al., 2021a, b). Some research proved Cd, 
As, and Pb were important elements imported into the 
soil during atmospheric deposition (Luo et al., 2009; 
Zhao et al., 2019). As a result, factor 1 is considered 
as industrial emission and atmospheric deposition.

Factor 2 was moderately loaded by Pb (33.6%) 
and Cd (24.6%). Previous studies showed that Pb in 
soil was regarded as one of the contaminants of traf-
fic emission. Pb can not only be released from vehicle 

Table 3  Summary statistics 
of Ecological risk index 
(EI) and Comprehensive 
ecological risk assessment 
(RI) in the agricultural soils 
of Hulan River Basin

As Hg Cr Ni Cu Zn Cd Pb RI

Mean 11.63 62.30 1.94 5.74 7.45 1.22 49.22 5.68 145.19
Min 4.09 17.80 0.60 1.50 1.52 0.39 14.00 3.63 45.63
Max 32.52 411.60 2.91 53.64 252.76 5.62 402.33 8.87 553.15
Beyond 

low risk 
%

0.00% 80.77% 0.00% 0.77% 0.77% 0.00% 60.77% 0.00% 24.62%

Table 4  Mean value of non-carcinogenic risk index and car-
cinogenic risk index of soil heavy metals based on three expo-
sure pathways

Male Female Children

Non-carcinogenic risk index
HI-As 1.42E − 01 1.65E − 01 7.00E − 01
HI-Hg 1.49E − 04 1.74E − 04 4.81E − 03
HI-Cr 5.83E − 02 6.80E − 02 3.19E − 01
HI-Ni 2.12E − 03 2.47E − 03 1.77E − 02
HI-Cu 1.06E − 03 1.23E − 03 9.00E − 03
HI-Zn 3.64E − 04 4.23E − 04 3.00E − 03
HI-Cd 7.86E − 04 9.16E − 04 3.57E − 03
HI-Pb 1.17E − 02 1.36E − 02 9.41E − 02
THIIngestion 8.42E − 02 9.81E − 02 7.62E − 01
THIInhalation 3.63E − 04 4.22E − 04 1.63E − 03
THIDermal 1.32E − 01 1.54E − 01 3.87E − 01
THI 2.17E − 01 2.52E − 01 1.15E + 00
Carcinogenic risk index
CR-As 2.19E − 05 2.55E − 05 2.70E − 05
CR-Cr 1.26E − 05 1.47E − 05 2.82E − 05
CR-Ni 2.18E − 05 2.54E − 05 4.91E − 05
CR-Cd 5.44E − 11 6.33E − 11 6.12E − 11
TCR Ingestion 4.15E − 05 4.83E − 05 9.34E − 05
TCR Inhalation 1.38E − 07 1.60E − 07 1.55E − 07
TCR Dermal 1.47E − 05 1.71E − 05 1.08E − 05
TCR 5.63E − 05 6.56E − 05 1.04E − 04
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tires and brake pad (Xiao et al., 2020), but also from 
road dust deposit (Yesilkanat & Kobya, 2021). The 
area close to the major highways and roads in the 
study area had relative higher Pb concentration com-
pared with other areas (Fig. 3). Some research proved 
that traffic was an important source of Cd (Jayarathne 
et al., 2018). Therefore, factor 2 is considered as traf-
fic emission.

Factor 3 was highly dominated by Cu and Zn with 
the loadings of 80.6% and 80.0% (Fig.  2). Previ-
ous studies have shown that farming practices, such 
as the application of fertilizer, pesticide, and live-
stock manure, were perceived to be the predominant 
sources of Cu and Zn (Manoj & Kawsar, 2020; Shen 
et al., 2020). Relatively high concentration of Cu was 
shown in the northern part of the study area where 
the major land use type is upland planted with maize. 
In addition, high concentration of Zn was overlapped 

with the spatial distribution of livestock farms, sug-
gesting the livestock manure and effluent discharge 
from the livestock farms may lead to the Zn pollution 
in those areas. As a result, factor 3 is considered as 
agricultural source.

Factor 4 was described by Cr, As, Ni, Pb, and Cd 
concentration with the loadings of 65.3%, 56.7%, 
54.7%, 42.3%, and 29.2%. Therefore, Cr, As, Ni, and 
Pb were the principal elements to demonstrate the 
source of pollution in factor 4. It is well known that 
those heavy metals could stem from mixed sources 
including natural source, sewage irrigation, indus-
trial activities, and other anthropogenic origins (Chai 
et  al., 2021; Heidari et  al., 2021). Relatively high 
Cr concentration was shown in the central part of 
the study area where urban area of Hulan District is 
located. Multiple factories, residential areas, roads, 
and commercial buildings could be the important 

Fig. 2  Profiles and contri-
butions of sources of soil 
heavy metals from PMF 
model
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anthropogenic sources of Cr in the central part of 
the study area. The farmland in the northeastern 
part of the study area and Hulan River estuary area 
also had relatively high As concentration. Various 
research already had proved that fertilizer, pesticide, 
and manure were the major sources of Cr, As, and 
Ni in agricultural area (Kharazi et  al., 2021; Setia 
et  al., 2021). As a result, factor 4 is poised to be a 
combination of agricultural source, natural source, 
industrial emission, traffic emission, and atmospheric 
deposition.

Figure 3 is the SOM diagram of soil heavy metal 
concentration in the study area. The image shows the 
weight of each soil heavy metal of the input vector. 
The lighter the color, the greater the weight. If two 
soil heavy metals are similar in color on a component 
plane, it indicates that the two soil heavy metals are 
positively correlated and have a common source. It 
can be seen from Fig. 3 that the color gradients of Cr 

and Pb are similar, indicating that Cr and Pb are posi-
tively correlated and may have a common source of 
pollution, which is confirmed by PMF analysis as a 
mixed source. The color gradients of Zn and Cu are 
comparable and highly distributed at the upper left 
corner, which are very different from those of Cr and 
Pb. The left neurons of the maps show overall high 
concentration of Hg and Cd compared with right neu-
rons of the maps.

Spatial analysis of soil heavy metals

Spatial pattern of soil heavy metal concentrations

Spatial pattern of all the heavy metals is shown in 
Fig.  4. Multiple research already concluded that 
anthropogenic activities such as fertilizers, pesti-
cides, herbicides, and sewage irrigation can contrib-
ute to the enrichment of Cr and Pb in agricultural 

Fig. 3  SOM map of 
concentration of soil heavy 
metals
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soil (Kharazi et  al., 2021; Liu et  al., 2021a, b). 
Relatively high Cr concentration was shown in the 
eastern part of the study area where the coal steam-
electric plants, plastic steel factories, pharmaceuti-
cal factories, building materials factories, residen-
tial areas, commercial buildings, and roads could be 
the major anthropogenic sources of Cr. Relatively 
higher Pb concentration was displayed in the areas 
close to the major highways and roads. The spatial 
distributions of Ni and Cu were similar. Some farm-
lands in the northern part of the study area showed 
remarkable higher Ni and Cu concentration com-
pared with other areas. It is highly possible that 
farmlands in this area experienced accumulation 
due to the agricultural activities such as fertilizer, 
pesticide, and sewage irrigation. High Zn concentra-
tion displayed spotty pattern across the study area. 
Hot spots of As emerged in the northeastern part of 
the Hulan River Watershed where there are multiple 
food processing plants located in Baikui town and 
Huangjia town in Hulan District (Fig. 4f). High Hg 
concentration was mainly distributed in the central 
part of the study area, which is overlapped with the 
spatial distribution of the coal steam-electric plants 

(Fig.  4g). Relatively high Cd concentration was 
shown in the Hulan Estuary. The increasing dis-
charge of industrial and domestic effluents from the 
Hulan River may contribute to the accumulation of 
Cd in the study area. Multiple research also found 
the accumulation of Cd appears in other river estu-
aries such as Yangtze River Estuary of China (Wang 
et  al., 2021), Scheldt estuary of Europe (Gaulier 
et  al., 2021), and Mlalazi estuary of South Africa 
(Adeleke et al., 2020).

Spatial pattern of the source contributions to the soil 
heavy metals

The factor scores were plotted using IDW method 
(Fig. 5). Factor 1 (atmospheric deposition and indus-
trial emission) was highly concentrated in the cen-
tral part of the study area where coal steam-electric 
plants discharged heavy metals such as Hg. Factor 1 
was also highly loaded in the southeastern part of the 
study area where urban areas had high contribution of 
the atmospheric deposition and industrial emission. 
Factor 2 (traffic source) was widely distributed in the 
western and southern part of the study area where 

Fig. 4  Spatial distribution  maps of soil (a) Cr, (b) Pb, (c) Ni, (d) Cu, (e) Zn, (f) As, (g) Hg, and (h) Cd 
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multiple expressways and highways were built. Factor 
3 (agricultural source) was highly loaded in a small 
farmland area located in the northern part of the 
study area where farmlands in this area had signifi-
cantly higher Ni, Cu, and Zn concentration compared 
with other areas. Factor 4 was widely distributed in 
the study area as it was a combination of agricultural 
source, industrial emission, atmospheric deposition, 
and natural source.

Spatial pattern of the pollution, ecological risk 
and health risk indices of soil heavy metals

Figure 6 shows the spatial pattern of PI and PLI of 
heavy metals in the study area. According to Fig. 6, 

most of study area was unpolluted and slightly pol-
luted for As, Cr, Cu, Ni, Pb, and Zn. Hulan Estuary 
area was highly polluted by Cd, and some farmlands 
in the study area were also mildly or moderately 
polluted by Cd. Most of the study area was moder-
ately contaminated by soil heavy metals according 
to the spatial pattern of the PLI (Fig. 6i).

Figure  7 shows the spatial pattern of ecological 
risk indices of soil heavy metals in the study area. 
As, Cu, Cr, Ni, Pb, and Zn posed low ecological 
risk in most of the study area. Considerable and 
high ecological risk from Hg existed in the central 
part of the study area, and considerable and high 
ecological risk from Cd existed in the Hulan River 
estuary. RI values in the eastern part of the study 

Fig. 5 (a-d)  The spatial 
distribution of  source 
contribution to soil heavy 
metals in the study area
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area were higher compared with the western part of 
the study area (Fig.  7). In general, the spatial pat-
tern of RI revealed that the eastern part of the study 
area experienced moderate ecological risk of soil 
heavy metals.

The average THI ranged between 0.08 and 0.47 for 
adult males, 0.09–0.55 for adult females, and 0.44–2.38 
for children (Fig. 8a–c). From Fig. 8c, the average THI 
for children in most of the study area exceeded 1, sug-
gesting that children experienced non-carcinogenic risk 

Fig. 6  Spatial distributions of pollution index (PI) (a-h) and pollution load index (PLI) (i) for heavy metals in Hulan River Basin
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in most of the study area. From Fig. 8d–f, the average 
TCR ranged between 1.81E − 05 and 2.34E − 04 for 
adult male, and 2.11E − 05–2.72E − 04 for adult male, 
and 3.22E − 05–5.06E − 04 for children. The aver-
age TCR for adult males and females in a small area 
located in the northern part of the study area exceeded 

1.0E − 04, suggesting adults in this area experienced 
carcinogenic risks. The spatial pattern of TCR for chil-
dren also revealed that most of the study area showed 
relatively high TCR (> 1.0E − 04), suggesting children 
in these areas also experienced carcinogenic risks. In 
general, the non-carcinogenic and carcinogenic risks 

Fig. 7  Spatial distributions of pollution ecological risk indices (EI) (a-h) and integrated ecological risk index (RI) (i) for heavy met-
als in Hulan River Basin
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for adult and children along the Hulan River were lower 
than other areas, and children in most of the study area 
experienced carcinogenic and non-carcinogenic risks.

In general, considerable and high ecological risk 
from Hg existed in the area close to the coal steam-
electric plant, and considerable and high ecological 
risk from Cd existed in the Hulan River estuary area. 
Children in most of the Hulan River Watershed expe-
rienced carcinogenic and non-carcinogenic risks. Zonal 
pollution control and soil restoration measures should 
be implemented in the areas with high ecological and 
health risks.

Comparison with other soil heavy metal studies

Compared with other Northeastern China cities (Table S4),  
the mean concentration of Cu in this study area was the 
highest. In this area, the mean As concentration is higher 
than Changchun and Baicheng-songyuan Area, and the 

mean concentration of Ni showed lower concentration 
compared with Shenyang. Mean Cr concentration is 
higher than Changchun, Dehui, and Baichang-Songyuan 
area. Compared with the research conducted in Eastern 
China, the average concentration of Cd, Hg, Pb, and Zn 
was lower than those research in Eastern China. In North 
China, As and Cd of Tianjin and Shanxi were higher than 
Hulan River Watershed. The concentrations of all the soil 
heavy metals in the study areas of Central China were 
higher than those in Hulan River Watershed. Compared 
with the study areas in South China, the concentrations of 
all the soil heavy metals except Hg and Pb in Hulan River 
Watershed were higher than those in Guandong, while the 
concentrations of all the soil heavy metals except As in 
Hulan River Watershed were higher than those in Sanya. 
The concentrations of all the soil heavy metals in Hulan 
River Watershed were lower compared with other study 
areas in other developing countries such as India and 
Nigeria.

Fig. 8 (a-f)  Spatial distributions of health risks for heavy metals in Hulan River Basin
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Conclusion

The concentrations of all the heavy metals in the soil 
samples exceeded the background values in the study 
area. The mean PI value of As, Hg, Cr, Ni, Cu, Zn, 
Cd, and Pb was 1.16, 1.56, 0.97, 1.15, 1.49, 1.22, 
1.64, and 1.14, respectively, suggesting all the heavy 
metals except Cr in this area were slightly polluted. 
According to PLI, 83.08% of the soil samples were 
slightly or mildly polluted, and 1.54% of the soil sam-
ples were severely polluted, and only 16.92% of the 
soil samples were unpolluted. All soils belonged to 
the low ecological risk categories except Cd and Hg 
based on EI values. In addition, non-carcinogenic and 
carcinogenic risks for the children owed to the soil 
heavy metals were not in an acceptable range. Based 
on the PMF and SOM analysis, four potential sources 
were revealed including (1) atmospheric deposition 
and industrial emission; (2) traffic source; (3) agri-
cultural source; and (4) a combination of agricul-
tural source, industrial emission, traffic emission, and 
natural source. Considerable and high ecological risk 
from Hg existed in the area close to the coal steam-
electric plant, and considerable and high ecological 
risk from Cd existed in the Hulan River estuary area. 
The eastern part of the study area experienced higher 
non-carcinogenic and carcinogenic risks for adults 
and children than the western part of the study area. 
Zonal pollution control and soil restoration measures 
should be taken in the areas with high ecological and 
health risks in Hulan River Watershed.

Author contribution Yiming Xu designed the paper frame-
work and wrote the manuscript. Xianxia Wang organized data 
and wrote the manuscript. Guannan Cui made a research plan 
and performed statistical analysis. Ke Li was involved in data 
curation and statistical analysis. Yanfeng Liu and Bin Li per-
formed soil sampling. Zhiliang Yao supervised the study, and 
was also involved in data curation and editing the manuscript.

Funding This work was supported by the National Natural 
Science Foundation of China (41861124004) and National Nat-
ural Science Foundation of China (42001107).

Availability of data and materials All the original data 
included in this study are available upon request by contact 
with the corresponding author.

Declarations 

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing inter-
ests.

References

Adeleke, B., Robertson-Andersson, D., & Moodley, G. (2020). 
Comparative analysis of trace metal levels in the crab 
Dotilla fenestrata, sediments and water in Durban Bay har-
bour, Richards Bay harbour and Mlalazi estuary, Kwazulu-
Natal, South Africa. Heliyon, 6(8), e04725. https:// doi. org/ 
10. 1016/j. heliy on. 2020. e04725

Amin, N.-, Hussain, A., Alamzeb, S., & Begum, S. (2013). 
Accumulation of heavy metals in edible parts of veg-
etables irrigated with waste water and their daily intake 
to adults and children, District Mardan, Pakistan. Food 
Chemistry, 136(3), 1515–1523. https:// doi. org/ 10. 1016/j. 
foodc hem. 2012. 09. 058

Bhuiyan, M. A. H., Karmaker, S. C., Bodrud-Doza, M., Rakib, 
M. A., & Saha, B. B. (2021). Enrichment, sources and 
ecological risk mapping of heavy metals in agricultural 
soils of Dhaka district employing SOM, PMF and GIS 
Methods. Chemosphere, 263, 128339. https:// doi. org/ 10. 
1016/j. chemo sphere. 2020. 128339

Brown, S. G., Eberly, S., Paatero, P., & Norris, G. A. (2015). 
Methods for estimating uncertainty in PMF solutions: 
Examples with ambient air and water quality data and guid-
ance on reporting PMF results. Science of the Total Environ-
ment, 518–519, 626–635. https:// doi. org/ 10. 1016/j. scito tenv. 
2015. 01. 022

Buat-Menard, P., & Chesselet, R. (1979). Variable influence 
of the atmospheric flux on the trace metal chemistry of 
oceanic suspended matter. Earth and Planetary Science 
Letters, 42(3), 399–411. https:// doi. org/ 10. 1016/ 0012- 
821X(79) 90049-9

Chai, L., Wang, Y., Wang, X., Ma, L., Cheng, Z., & Su, L. 
(2021). Pollution characteristics, spatial distributions, and 
source apportionment of heavy metals in cultivated soil 
in Lanzhou, China. Ecological Indicators, 125, 107507. 
https:// doi. org/ 10. 1016/j. ecoli nd. 2021. 107507

Christensen, E. R., Steinnes, E., & Eggen, O. A. (2018). 
Anthropogenic and geogenic mass input of trace elements 
to moss and natural surface soil in Norway. Science of the 
Total Environment, 613–614, 371–378. https:// doi. org/ 10. 
1016/j. scito tenv. 2017. 09. 094

Cooke, C. A., Martínez-Cortizas, A., Bindler, R., & Sexauer 
Gustin, M. (2020). Environmental archives of atmospheric 
Hg deposition – A review. Science of the Total Environ-
ment, 709, 134800. https:// doi. org/ 10. 1016/j. scito tenv. 
2019. 134800

Costa, B. R. S., Oldoni, H., Silva, W. A., Martins, R. L., & Bassoi, 
L. H. (2019). Temporal variation and spatial distribution of 
relative indices of leaf chlorophyll in grapevine cv. chardon-
nay. Engenharia Agrícola, 39(spe), 74–84. https:// doi. org/ 10. 
1590/ 1809- 4430- eng. agric. v39ne p74- 84/ 2019

Dang, P., Gu, X., Lin, C., Xin, M., Zhang, H., Ouyang, W., 
et al. (2021). Distribution, sources, and ecological risks of 

Page 15 of 17    181

https://doi.org/10.1016/j.heliyon.2020.e04725
https://doi.org/10.1016/j.heliyon.2020.e04725
https://doi.org/10.1016/j.foodchem.2012.09.058
https://doi.org/10.1016/j.foodchem.2012.09.058
https://doi.org/10.1016/j.chemosphere.2020.128339
https://doi.org/10.1016/j.chemosphere.2020.128339
https://doi.org/10.1016/j.scitotenv.2015.01.022
https://doi.org/10.1016/j.scitotenv.2015.01.022
https://doi.org/10.1016/0012-821X(79)90049-9
https://doi.org/10.1016/0012-821X(79)90049-9
https://doi.org/10.1016/j.ecolind.2021.107507
https://doi.org/10.1016/j.scitotenv.2017.09.094
https://doi.org/10.1016/j.scitotenv.2017.09.094
https://doi.org/10.1016/j.scitotenv.2019.134800
https://doi.org/10.1016/j.scitotenv.2019.134800
https://doi.org/10.1590/1809-4430-eng.agric.v39nep74-84/2019
https://doi.org/10.1590/1809-4430-eng.agric.v39nep74-84/2019


Environ Monit Assess (2022) 194: 181 

1 3
Vol:. (1234567890)

potentially toxic elements in the Laizhou Bay, Bohai Sea: 
Under the long-term impact of the Yellow River input. 
Journal of Hazardous Materials, 413, 125429. https:// doi. 
org/ 10. 1016/j. jhazm at. 2021. 125429

Fei, X., Xiao, R., Christakos, G., Langousis, A., Ren, Z., Tian, 
Y., & Lv, X. (2019). Comprehensive assessment and 
source apportionment of heavy metals in Shanghai agri-
cultural soils with different fertility levels. Ecological 
Indicators, 106, 105508. https:// doi. org/ 10. 1016/j. ecoli nd. 
2019. 105508

Gaulier, C., Zhou, C., Gao, Y., Guo, W., Reichstädter, M., 
Ma, T., et al. (2021). Investigation on trace metal specia-
tion and distribution in the Scheldt estuary. Science of the 
Total Environment, 757, 143827. https:// doi. org/ 10. 1016/j. 
scito tenv. 2020. 143827

Gujre, N., Mitra, S., Soni, A., Agnihotri, R., Rangan, L., Rene, E. 
R., & Sharma, M. P. (2021). Speciation, contamination, eco-
logical and human health risks assessment of heavy metals in 
soils dumped with municipal solid wastes. Chemosphere, 262, 
128013. https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 128013

Hakanson, L. (1980). An ecological risk index for aquatic pollution 
control.a sedimentological approach. Water research, 14(8), 
975–1001. https:// doi. org/ 10. 1016/ 0043- 1354(80) 90143-8

Heidari, M., Darijani, T., & Alipour, V. (2021). Heavy metal 
pollution of road dust in a city and its highly polluted sub-
urb; quantitative source apportionment and source-specific 
ecological and health risk assessment. Chemosphere, 273, 
129656. https:// doi. org/ 10. 1016/j. chemo sphere. 2021. 129656

Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, 
J., Tsang, D. C. W., et al. (2020). Metal contamination and 
bioremediation of agricultural soils for food safety and 
sustainability. Nature Reviews Earth & Environment, 1(7), 
366–381. https:// doi. org/ 10. 1038/ s43017- 020- 0061-y

Ikem, A., Egiebor, N. O., & Nyavor, K. (2003). Trace ele-
ments in water, fish and sediment from Tuskegee Lake, 
Southeastern USA. Water, Air, and Soil Pollution, 149(1), 
51–75. https:// doi. org/ 10. 1023/A: 10256 94315 763

Jayarathne, A., Egodawatta, P., Ayoko, G. A., & Goonetilleke, 
A. (2018). Role of residence time on the transformation 
of Zn, Cu, Pb and Cd attached to road dust in different 
land uses. Ecotoxicology and Environmental Safety, 153, 
195–203. https:// doi. org/ 10. 1016/j. ecoenv. 2018. 02. 007

Jiang, H.-H., Cai, L.-M., Hu, G.-C., Wen, H.-H., Luo, J., Xu, 
H.-Q., & Chen, L.-G. (2021). An integrated exploration 
on health risk assessment quantification of potentially haz-
ardous elements in soils from the perspective of sources. 
Ecotoxicology and Environmental Safety, 208, 111489. 
https:// doi. org/ 10. 1016/j. ecoenv. 2020. 111489

Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, 
T. D., & Skoulikidis, N. (2021). Heavy metal contamina-
tion status in Greek surface waters: A review with appli-
cation and evaluation of pollution indices. Chemosphere, 
263, 128192. https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 
128192

Kharazi, A., Leili, M., Khazaei, M., Alikhani, M. Y., & 
Shokoohi, R. (2021). Human health risk assessment of 
heavy metals in agricultural soil and food crops in Hama-
dan, Iran. Journal of Food Composition and Analysis, 
100, 103890. https:// doi. org/ 10. 1016/j. jfca. 2021. 103890

Kohonen, T. (1998). The self-organizing map. Neurocomput-
ing, 21(1), 1–6. https:// doi. org/ 10. 1016/ S0925- 2312(98) 
00030-7

Li, L., Zhang, Y., Ippolito, J. A., Xing, W., & Tu, C. (2021). 
Lead smelting alters wheat flour heavy metal concentra-
tions and health risks. Journal of Environmental Quality, 
50(2), 454–464. https:// doi. org/ 10. 1002/ jeq2. 20198

Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., et  al. 
(2021a). Quantitative source apportionment, risk assess-
ment and distribution of heavy metals in agricultural soils 
from southern Shandong Peninsula of China. Science of 
the Total Environment, 767, 144879. https:// doi. org/ 10. 
1016/j. scito tenv. 2020. 144879

Liu, S., Wang, X., Guo, G., & Yan, Z. (2021b). Status and envi-
ronmental management of soil mercury pollution in China: 
A review. Journal of Environmental Management, 277, 
111442. https:// doi. org/ 10. 1016/j. jenvm an. 2020. 111442

Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y.-G. (2009). An 
inventory of trace element inputs to agricultural soils in 
China. Journal of Environmental Management, 90(8), 
2524–2530. https:// doi. org/ 10. 1016/j. jenvm an. 2009. 01. 011

Lv, J. (2019). Multivariate receptor models and robust geosta-
tistics to estimate source apportionment of heavy metals  
in soils. Environmental Pollution, 244, 72–83. https:// doi. 
org/ 10. 1016/j. envpol. 2018. 09. 147

Manoj, M. C., & Kawsar, M. (2020). Metal contamination 
assessment in a sediment core from Vagamon Lake, 
southwest India: Natural/anthropogenic impact. Environ-
mental Nanotechnology, Monitoring & Management, 14, 
100362. https:// doi. org/ 10. 1016/j. enmm. 2020. 100362

Mao, D., He, X., Wang, Z., Tian, Y., Xiang, H., Yu, H., et al. 
(2019). Diverse policies leading to contrasting impacts 
on land cover and ecosystem services in Northeast China. 
Journal of Cleaner Production, 240, 117961. https:// doi. 
org/ 10. 1016/j. jclep ro. 2019. 117961

Muller, G. (1969). Index of geoaccumulation in sediments of 
the Rhine River. GeoJournal, 2(3), 109–118.

Paatero, P., & Tapper, U. (1994). Positive matrix factoriza-
tion: A non-negative factor model with optimal utiliza-
tion of error estimates of data values. Environmetrics, 
5(2), 111–126. https:// doi. org/ 10. 1002/ env. 31700 50203

Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment 
of air pollution around coal mining area: Emphasizing 
on spatial distributions, seasonal variations and heavy 
metals, using cluster and principal component analysis. 
Atmospheric Pollution Research, 5(1), 79–86. https:// 
doi. org/ 10. 5094/ APR. 2014. 010

Semenkov, I., & Koroleva, T. (2020). Heavy metals content 
in soils of Western Siberia in relation to international 
soil quality standards. Geoderma Regional, 21, e00283. 
https:// doi. org/ 10. 1016/j. geodrs. 2020. e00283

Sergeev, A. P., Buevich, A. G., Baglaeva, E. M., & Shichkin, 
A. V. (2019). Combining spatial autocorrelation with 
machine learning increases prediction accuracy of soil 
heavy metals. CATENA, 174, 425–435. https:// doi. org/ 
10. 1016/j. catena. 2018. 11. 037

Setia, R., Dhaliwal, S. S., Singh, R., Kumar, V., Taneja, S., 
Kukal, S. S., & Pateriya, B. (2021). Phytoavailability and 
human risk assessment of heavy metals in soils and food 

181   Page 16 of 17

https://doi.org/10.1016/j.jhazmat.2021.125429
https://doi.org/10.1016/j.jhazmat.2021.125429
https://doi.org/10.1016/j.ecolind.2019.105508
https://doi.org/10.1016/j.ecolind.2019.105508
https://doi.org/10.1016/j.scitotenv.2020.143827
https://doi.org/10.1016/j.scitotenv.2020.143827
https://doi.org/10.1016/j.chemosphere.2020.128013
https://doi.org/10.1016/0043-1354(80)90143-8
https://doi.org/10.1016/j.chemosphere.2021.129656
https://doi.org/10.1038/s43017-020-0061-y
https://doi.org/10.1023/A:1025694315763
https://doi.org/10.1016/j.ecoenv.2018.02.007
https://doi.org/10.1016/j.ecoenv.2020.111489
https://doi.org/10.1016/j.chemosphere.2020.128192
https://doi.org/10.1016/j.chemosphere.2020.128192
https://doi.org/10.1016/j.jfca.2021.103890
https://doi.org/10.1016/S0925-2312(98)00030-7
https://doi.org/10.1016/S0925-2312(98)00030-7
https://doi.org/10.1002/jeq2.20198
https://doi.org/10.1016/j.scitotenv.2020.144879
https://doi.org/10.1016/j.scitotenv.2020.144879
https://doi.org/10.1016/j.jenvman.2020.111442
https://doi.org/10.1016/j.jenvman.2009.01.011
https://doi.org/10.1016/j.envpol.2018.09.147
https://doi.org/10.1016/j.envpol.2018.09.147
https://doi.org/10.1016/j.enmm.2020.100362
https://doi.org/10.1016/j.jclepro.2019.117961
https://doi.org/10.1016/j.jclepro.2019.117961
https://doi.org/10.1002/env.3170050203
https://doi.org/10.5094/APR.2014.010
https://doi.org/10.5094/APR.2014.010
https://doi.org/10.1016/j.geodrs.2020.e00283
https://doi.org/10.1016/j.catena.2018.11.037
https://doi.org/10.1016/j.catena.2018.11.037


Environ Monit Assess (2022) 194: 181

1 3
Vol.: (0123456789)

crops around Sutlej river, India. Chemosphere, 263, 128321. 
https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 128321

Shen, X., Zeng, J., Zhang, D., Wang, F., Li, Y., & Yi, W. 
(2020). Effect of pyrolysis temperature on characteris-
tics, chemical speciation and environmental risk of Cr, 
Mn, Cu, and Zn in biochars derived from pig manure. 
Science of the Total Environment, 704, 135283. https:// 
doi. org/ 10. 1016/j. scito tenv. 2019. 135283

Shi, T., Ma, J., Wu, F., Ju, T., Gong, Y., Zhang, Y., et al. (2019). 
Mass balance-based inventory of heavy metals inputs to 
and outputs from agricultural soils in Zhejiang province, 
China. Science of the Total Environment, 649, 1269–1280. 
https:// doi. org/ 10. 1016/j. scito tenv. 2018. 08. 414

Song, X.-D., Yang, F., Ju, B., Li, D.-C., Zhao, Y.-G., Yang, 
J.-L., & Zhang, G.-L. (2018). The influence of the conver-
sion of grassland to cropland on changes in soil organic 
carbon and total nitrogen stocks in the Songnen Plain of 
Northeast China. CATENA, 171, 588–601. https:// doi. org/ 
10. 1016/j. catena. 2018. 07. 045

Sun, G., Chen, Y., Bi, X., Yang, W., Chen, X., Zhang, B., & Cui, 
Y. (2013). Geochemical assessment of agricultural soil: A 
case study in Songnen-Plain (Northeastern China). CATENA, 
111, 56–63. https:// doi. org/ 10. 1016/j. catena. 2013. 06. 026

Wan, D., Song, L., Yang, J., Jin, Z., Zhan, C., Mao, X., et  al. 
(2016). Increasing heavy metals in the background atmos-
phere of central North China since the 1980s: Evidence 
from a 200-year lake sediment record. Atmospheric Envi-
ronment, 138, 183–190. https:// doi. org/ 10. 1016/j. atmos env. 
2016. 05. 015

Wang, F., Guan, Q., Tian, J., Lin, J., Yang, Y., Yang, L., & Pan, 
N. (2020a). Contamination characteristics, source appor-
tionment, and health risk assessment of heavy metals 
in agricultural soil in the Hexi Corridor. CATENA, 191, 
104573. https:// doi. org/ 10. 1016/j. catena. 2020. 104573

Wang, H., Yilihamu, Q., Yuan, M., Bai, H., Xu, H., & Wu, J. 
(2020b). Prediction models of soil heavy metal(loid)s 
concentration for agricultural land in Dongli: A compari-
son of regression and random forest. Ecological Indica-
tors, 119, 106801. https:// doi. org/ 10. 1016/j. ecoli nd. 2020. 
106801

Wang, S., Kalkhajeh, Y. K., Qin, Z., & Jiao, W. (2020c). Spa-
tial distribution and assessment of the human health risks 
of heavy metals in a retired petrochemical industrial area, 
South China. Environmental Research, 188, 109661. 
https:// doi. org/ 10. 1016/j. envres. 2020. 109661

Wang, Z., Xiao, J., Wang, L., Liang, T., Guo, Q., Guan, Y., 
& Rinklebe, J. (2020d). Elucidating the differentiation 
of soil heavy metals under different land uses with geo-
graphically weighted regression and self-organizing map. 
Environmental Pollution, 260, 114065. https:// doi. org/ 10. 
1016/j. envpol. 2020. 114065

Wang, Y., Liu, R., Miao, Y., Jiao, L., Cao, L., Li, L., & Wang, 
Q. (2021). Identification and uncertainty analysis of high-
risk areas of heavy metals in sediments of the Yangtze 
River estuary, China. Marine Pollution Bulletin, 164, 
112003. https:// doi. org/ 10. 1016/j. marpo lbul. 2021. 112003

Wu, S., Zhou, S., Bao, H., Chen, D., Wang, C., Li, B., et  al. 
(2019). Improving risk management by using the spa-
tial interaction relationship of heavy metals and PAHs in 
urban soil. Journal of Hazardous Materials, 364, 108–
116. https:// doi. org/ 10. 1016/j. jhazm at. 2018. 09. 094

Wu, J., Li, J., Teng, Y., Chen, H., & Wang, Y. (2020a). A par-
tition computing-based positive matrix factorization (PC-
PMF) approach for the source apportionment of agricul-
tural soil heavy metal contents and associated health risks. 
Journal of Hazardous Materials, 388, 121766. https:// doi. 
org/ 10. 1016/j. jhazm at. 2019. 121766

Wu, X., Chen, C., Vu, T. V., Liu, D., Baldo, C., Shen, X., et al. 
(2020b). Source apportionment of fine organic carbon 
(OC) using receptor modelling at a rural site of Beijing: 
Insight into seasonal and diurnal variation of source con-
tributions. Environmental Pollution, 266, 115078. https:// 
doi. org/ 10. 1016/j. envpol. 2020. 115078

Xiao, X., Zhang, J., Wang, H., Han, X., Ma, J., Ma, Y., & Luan, 
H. (2020). Distribution and health risk assessment of poten-
tially toxic elements in soils around coal industrial areas: A 
global meta-analysis. Science of the Total Environment, 713, 
135292. https:// doi. org/ 10. 1016/j. scito tenv. 2019. 135292

Yang, Y., Yang, X., He, M., & Christakos, G. (2020). Beyond 
mere pollution source identification: Determination of 
land covers emitting soil heavy metals by combining PCA/
APCS, GeoDetector and GIS Analysis. CATENA, 185, 
104297. https:// doi. org/ 10. 1016/j. catena. 2019. 104297

Yesilkanat, C. M., & Kobya, Y. (2021). Spatial characteristics 
of ecological and health risks of toxic heavy metal pollu-
tion from road dust in the Black Sea coast of Turkey. Geo-
derma Regional, 25, e00388. https:// doi. org/ 10. 1016/j. 
geodrs. 2021. e00388

Zang, F., Wang, S., Nan, Z., Ma, J., Zhang, Q., Chen, Y., & 
Li, Y. (2017). Accumulation, spatio-temporal distribu-
tion, and risk assessment of heavy metals in the soil-corn 
system around a polymetallic mining area from the Loess 
Plateau, northwest China. Geoderma, 305(Supplement C), 
188–196. https:// doi. org/ 10. 1016/j. geode rma. 2017. 06. 008

Zeng, Y., Bi, C., Jia, J., Deng, L., & Chen, Z. (2020). Impact 
of intensive land use on heavy metal concentrations and 
ecological risks in an urbanized river network of Shang-
hai. Ecological Indicators, 116, 106501. https:// doi. org/ 
10. 1016/j. ecoli nd. 2020. 106501

Zhao, R., Guan, Q., Luo, H., Lin, J., Yang, L., Wang, F., et al. 
(2019). Fuzzy synthetic evaluation and health risk assess-
ment quantification of heavy metals in Zhangye agricul-
tural soil from the perspective of sources. Science of the 
Total Environment, 697, 134126. https:// doi. org/ 10. 1016/j. 
scito tenv. 2019. 134126

Publisher’s note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

Page 17 of 17    181

https://doi.org/10.1016/j.chemosphere.2020.128321
https://doi.org/10.1016/j.scitotenv.2019.135283
https://doi.org/10.1016/j.scitotenv.2019.135283
https://doi.org/10.1016/j.scitotenv.2018.08.414
https://doi.org/10.1016/j.catena.2018.07.045
https://doi.org/10.1016/j.catena.2018.07.045
https://doi.org/10.1016/j.catena.2013.06.026
https://doi.org/10.1016/j.atmosenv.2016.05.015
https://doi.org/10.1016/j.atmosenv.2016.05.015
https://doi.org/10.1016/j.catena.2020.104573
https://doi.org/10.1016/j.ecolind.2020.106801
https://doi.org/10.1016/j.ecolind.2020.106801
https://doi.org/10.1016/j.envres.2020.109661
https://doi.org/10.1016/j.envpol.2020.114065
https://doi.org/10.1016/j.envpol.2020.114065
https://doi.org/10.1016/j.marpolbul.2021.112003
https://doi.org/10.1016/j.jhazmat.2018.09.094
https://doi.org/10.1016/j.jhazmat.2019.121766
https://doi.org/10.1016/j.jhazmat.2019.121766
https://doi.org/10.1016/j.envpol.2020.115078
https://doi.org/10.1016/j.envpol.2020.115078
https://doi.org/10.1016/j.scitotenv.2019.135292
https://doi.org/10.1016/j.catena.2019.104297
https://doi.org/10.1016/j.geodrs.2021.e00388
https://doi.org/10.1016/j.geodrs.2021.e00388
https://doi.org/10.1016/j.geoderma.2017.06.008
https://doi.org/10.1016/j.ecolind.2020.106501
https://doi.org/10.1016/j.ecolind.2020.106501
https://doi.org/10.1016/j.scitotenv.2019.134126
https://doi.org/10.1016/j.scitotenv.2019.134126

	Source apportionment and ecological and health risk mapping of soil heavy metals based on PMF, SOM, and GIS methods in Hulan River Watershed, Northeastern China
	Abstract 
	Introduction
	Materials and methods
	Study area description
	Soil sampling and analysis
	Assessment of soil heavy metal pollution
	Pollution assessment of soil heavy metal
	Potential ecological risk assessment of heavy metal pollution
	Potential health risk evaluation of soil heavy metal

	Statistical analysis
	PMF analysis
	Self-organizing map (SOM) analysis

	Results and discussion
	Descriptive analysis of heavy metal concentrations in Hulan River Watershed
	Evaluation of soil heavy metal pollution
	Pollution evaluation of soil heavy metals
	Ecological evaluation of soil heavy metals
	Health risk evaluation of soil heavy metals

	Source analysis of soil heavy metals based on PMF and SOM
	Spatial analysis of soil heavy metals
	Spatial pattern of soil heavy metal concentrations
	Spatial pattern of the source contributions to the soil heavy metals
	Spatial pattern of the pollution, ecological risk and health risk indices of soil heavy metals

	Comparison with other soil heavy metal studies

	Conclusion
	References


