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ranked 1 among the three data sets. The IMD ground-
based gridded data are not homogeneous based on 
the absolute homogeneity test, even though they had 
the highest rank. The IMD gridded data are further 
corrected based on double mass curve analysis. The 
corrected data were analyzed using the precipitation 
concentration index (PCI) to assess the temporal vari-
ation in precipitation, and it was found that the loca-
tion falls under a uniform distribution zone.

Keywords  Entropy · Compromise programming · 
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Introduction

Accurate and reliable precipitation data are essential 
for modeling studies in hydrology. Precipitation is one 
of the most important components of the hydrological 
cycle and cannot be ignored in hydrological modeling 
(Pascale et al., 2015). For hydro-meteorological analy-
sis in many regions, long-term data sets for rain gauge 
observations are unavailable (Salman et  al., 2018). 
Remote sensing satellite-based precipitation can pro-
vide homogeneous, continuous information in space 
and time over a region (Roca, 2019). At present, vari-
ous gridded data sets like ground- and satellite-based 
data sets are increasingly used in hydrological studies. 
Even though many data sources for precipitation are 
available, these data sets may not be consistent due to 
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different sources and estimation procedures (Tapiador 
et al., 2017). Hence, it is very imperative to evaluate 
the suitability of these time series data for hydrologi-
cal modeling studies. Few studies have been carried 
out recently that compare various gridded data sources 
(Beck et al., 2017; Cattani et al., 2016; Hu et al., 2016; 
Prakash et  al., 2016a, 2016b; Salman et  al., 2018; 
Sharannya et  al., 2020; Sireesha et  al., 2020; Sun 
et  al., 2018). These methods can be classified under 
two groups, namely (1) comparison of the statistical 
indices using a reference data set and (2) evaluation of 
its use for a specific application.

Sharannya et al. (2020) performed analysis of grid-
ded precipitation data, specifically Tropical Rainfall 
Measuring Mission (TRMM) and the Climate Haz-
ards Group Infra-Red Station Precipitation (CHIRPS) 
data sets, for the an Indian river catchment named 
Gurupura. They have used Soil and Water Assess-
ment Tool (SWAT) in order to simulate stream flows 
and compare them with flows generated by the India 
Meteorological Department (IMD). The TRMM out-
performed CHIRPS in terms of rainfall estimation, 
based on the statistical results. Sireesha et al. (2020) 
evaluated the performance of gridded precipitation 
data sets, namely, Global Precipitation Climatol-
ogy Centre (GPCC), TRMM, and Modern-Era Ret-
rospective Analysis for Research and Applications 
(MERRA) in the Sina basin, India. The statistical 
indicators, percentage bias (PBias), normalized root-
mean-square error (NRMSE), Nash–Sutcliffe effi-
ciency (NSE), modified index of agreement (MD), 
and volumetric efficiency (VE) were used to check the 
suitability of the gridded data sets. The selected grid-
ded precipitation data sets were ranked using compro-
mise programming (CP). TRMM occupies the first 
position, followed by MERRA.

In the present study, three gridded data sets, 
namely India Meteorological Department gridded 
data (IMD gridded), TRMM, and MERRA were 
used. Among these data sets, IMD gridded data are 
prepared using Shepard’s interpolation using the 
daily precipitation data from 6995 observed stations 
over India after controlling the quality of observed 
station data (Pai et al., 2014). TRMM data are based 
on remote sensing, while MERRA data are based 
on reanalysis. In India, recently, many studies have 
been carried out by taking IMD gridded data as the 
standard data for evaluation of satellite-based data 
and many other hydrological studies (Sharannya 

et al., 2020; Venkatesh et al., 2020). There are only 
limited studies on the assessment of IMD gridded 
rainfall for its suitability in hydrological applica-
tions (Chowdhury et al., 2021; Subash et al., 2020). 
Subash et al. (2020) carried out a study to assess the 
error characteristics of gauge-only gridded product 
(IMD gridded data) and multi-satellite gridded pre-
cipitation data (TRMM-TMPA-3B42). As the ref-
erence data set, rain gauge observation data from 
the Kabini drainage basin in southern India were 
selected. Multiple visual and statistical metrics were 
used for evaluating the gridded data set. The results 
show that IMD gridded data outperforms the multi-
satellite precipitation product. Chowdhury et  al. 
(2021) analyzed the various gridded precipitation 
data of the Satluj River basin in India using compro-
mise programming. The Technique for Order Pref-
erence by Similarity to an Ideal Solution in Fuzzy 
Field (f-TOPSIS) was applied to get the weight of 
the selected performance indicators. The APHRO-
DITE (Asian Precipitation-Highly-Resolved Obser-
vational Data Integration towards Evaluation) got 
the highest rank, followed by IMD gridded data and 
ERA interim.

Few studies have ranked global climate mod-
els (GCMs) using multi-criteria decision-making 
(MCDM) techniques. Raju et al. (2017) ranked thirty-
six GCMs based on the simulations of maximum 
and minimum temperatures of India across 40 grid 
data points. The correlation coefficient, skill score, 
and normalized root mean square error are used as 
performance indicators for assessing GCMs. The 
entropy method was adopted to compute the indica-
tor weights, and the compromise programming tech-
nique is adopted for GCM ranking. Raju and Kumar  
(2014)  adopted MCDM for evaluating 11 GCM data 
sets in India based on precipitation data. Raju and 
Kumar (2014) used Preference Ranking Organization 
Method (PROMETHEE II) to rank eleven GCMs for 
the climate variable precipitation based on five per-
formance indicators, considering equal and varying 
weights. To calculate the weights, they employed the 
entropy method.

The precipitation data sets have to be checked 
for homogeneities because measurement techniques 
and observational procedures are different for differ-
ent data sources; environment characteristics may be 
different. In the case of gauge-based measurements, 
the location of stations may be different. For the 
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detection of non-homogeneities in data series, there 
are various methods. The absolute homogeneity tests 
are a combination of the Pettitt test, standard normal 
homogeneity test (SNHT), Buishand range test (BR), 
and von Neumann ratio (VNR) test (Che Ros et  al., 
2016). In these tests, the results are classified into 
homogeneous, doubtful, and change point (suspect) 
based on the number of tests accepting the alternative 
hypothesis.

The precipitation concentration index (PCI) is an 
essential index for understanding the temporal varia-
tion of rainfall and for evaluating changes in the sea-
sonal rainfall pattern (Ghorbani et  al., 2021; Zhang 
et al., 2019). PCI is a valuable indicator for predict-
ing hydrological risks like droughts and floods (Gocic 
et al., 2016).

The present study focuses on the Kallada River 
basin, Kerala, India, originating from the Western 
Ghats Mountains. Even though a few studies have 
already been carried out related to the adequacy of 
gridded data sets, there are only limited studies on 
the ranking of precipitation data sources. In addition, 
these techniques have not been applied to the Kerala 
basin. In the present study, the main objectives are 
(a) to examine and to assess the suitability of gridded 
precipitation data sets using multi-criteria decision-
making methods such as the compromise program-
ming technique and PROMETHEE II, (b) to exam-
ine the homogeneity of data sets, and (c) to rectify 
the top-ranked data for inconsistency, if present, and 
to evaluate the temporal variability in precipitation 
using the precipitation concentration index.

Materials and methods

Study area

The Western Ghats, also known as the Sahyadri, is 
a mountain range that extends 1600  km along the 
western coast of Peninsular India and passes through 
Tamil Nadu, Kerala, Karnataka, Maharashtra, and 
Gujarat. These mountains forms Kerala’s most cru-
cial topographic feature, significantly affecting the 
state’s climate, vegetation, and river hydrology. In 
Kerala, there are 44 rivers, out of which 41 are west 
flowing with the origin from the Western Ghats and 
flows westwards towards the Arabian Sea or into the 
Backwaters of Kerala. The Kallada River basin was 

chosen as the study area, with its origin in Kulathu-
puzha at 1750 m. It passes through Punalur, Pathan-
apuram, Kunnathur, Puthoor, and Kallada for 121 km 
until it reaches Ashtamudi Lake. The catchment area 
of the river basin is 1699 km2. The Kallada River is 
significant to south Kerala as a source of irrigation, 
electricity generation, and aquaculture (Satya naray-
ana reddy et  al., 2021). Kallada River is positioned 
between 8° 49′–9° 17′ north latitudes and 76° 24′–77° 
16′ east longitudes (Fig. 1). This river is the conflu-
ence of three major rivers, named Kulathupuzha, 
Shenduary, and Kalthuruthi, which join near Parappar 
in Thenmala. Major rain gauge stations are located 
at Punalur, Kollam, and Aryankavu. The landscape 
is classified into four physiographic zones: low-
land (0–30  m), midland (30–200  m), foothill zones 
(200–600  m), and highland (above 600  m) (GSI, 
2005).

The climate of the Kallada River is generally tropi-
cal with marked warm and humid seasons and sea-
sonal precipitation. In summer and winter, maximum 
and minimum temperatures of 34 °C and 21 °C were 
recorded. The mean yearly precipitation is 2600 mm. 
Moisture is about 90% in the wet season. The catch-
ment receives precipitation from two types of mon-
soon, i.e., one is southwest (June to September) and 
the other is northeast (October to November) with 
51.8% and 24% of yearly precipitation, respectively. 
The remaining 24.2% of precipitation is received dur-
ing the non-monsoon season.

Data sets

Monthly observed rainfall data for Punalur station in 
the Kallada basin and ground-based gridded data with 
0.25° × 0.25° resolution is obtained from IMD Pune. 
The observed precipitation data and the ground-based 
gridded data of IMD were available from 1981 to 
2013. The satellite-based gridded precipitation data 
TRMM is a joint mission between Japan Aerospace 
Exploration Agency (JAXA) and the National Aero-
nautics and Space Administration (NASA). Monthly 
TRMM 3B43, version 7 product with a spatial reso-
lution of 0.25° × 0.25° during the years 1998–2013 
were downloaded from the GES DISC-NASA web-
site in NetCDF format. MERRA-2 is a global atmos-
pheric reanalysis data developed by the NASA Global 
Modeling and Assimilation Office (GMAO). It sup-
plies a regularly gridded and homogeneous data set, 
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with 0.5° × 0.625° spatial resolution for 1981–2013. 
MERRA data are generally classified as modern rea-
nalysis systems with a higher spatial resolution that 
applies advanced numerical models and assimila-
tion schemes to combine observations from multiple 
sources. Table 1 provides the details of the data.

Methodology

The inverse distance interpolation technique is used 
to resample the three gridded precipitation data sets 
to the position of the observed data point. Statistical 
parameters are utilized as performance indicators to 
compare the different gridded data with the observed 
data. The entropy method is adopted to determine 
indicator weights. Ranking of selected data sources 
was done using MCDM techniques, namely com-
promise programming (CP) and PROMETHEE II. A 
homogeneity test was also performed for all the data 
sets. The highest-ranked data set is corrected based 
on double mass curve analysis. The corrected data 
set is examined for the variability of precipitation 

rate using PCI. The step-by-step adopted procedure is 
shown in Fig. 2.

Statistical indices

The statistical indices, namely correlation coefficient 
(R), normalized root mean square error (NRMSE), 
Nash–Sutcliffe efficiency (NSE), modified index of 
agreement (MD), and volumetric efficiency (VE), are 
determined in comparison with IMD observed station 
data. The statistical indices were normalized before 
analysis.

Correlation coefficient (R)

It is used to find how robust a relationship exists 
between different sets of data. If the value of R = 1, 
there is a positive correlation; if R =  −1, then there 
is a negative correlation; and if R = 0, then there is no 
correlation between the data sets. It is evaluated as:

(1)
R =

n(
∑

pq) − (
∑

p)(
∑

q)
�

[n
∑

p2 −
�∑

p)
2
�
[n
∑
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∑

q)
2
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Fig. 1   Study area◂

Table 1   Precipitation data set information

Data sets Spatial resolution/format Temporal resolution Coverage Source

IMD observed station data - Monthly (1981–2013) Kallada River basin India Meteorological 
Department (IMD)

IMD (gridded) 0.25° × 0.25° Monthly (1981–2013) Regional India Meteorological 
Department (IMD) 
(https://​www.​imdpu​ne.​
gov.​in/​Clim_​Pred_​LRF_​
New/​Grided_​Data_​Downl​
oad.​html)

TRMM (gridded) 0.25° × 0.25° NetCDF, 
ASCII

Monthly (1998–2013) Global, land only Tropical Precipitation 
Measuring Mission 
(TRMM) Multi-satellite 
Precipitation Analysis 
(TMPA), TRMM-3B43 
V.7 (https://​disc.​gsfc.​nasa.​
gov/​datas​ets/​TRMM)

MERRA (gridded) 0.5° × 0.625° NetCDF, 
ASCII

Monthly (1981–2013) Global, land only Modern-Era Retrospective 
Analysis for Research and 
Applications, MERRA 
V5.2.0 2D (https://​disc.​
gsfc.​nasa.​gov/​datas​ets/​
merra)
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Normalized root mean square error (NRMSE)

NRMSE of 0 value means a perfect fit for the data. 
NRMSE is calculated as:

Nash‑Sutcliffe efficiency (NSE)

This index is a normalized static measure and is cal-
culated as:

(2)NRMSE =

�
1

n

∑n

i=1
(Xsimi − Xobsi)

2
� 1

2

1

n

∑n

i=1
Xobsi

(3)NSE = 1 −

∑n

i=1
(Xobsi − Xsimi)

2

∑n

i=1

�
Xobsi − Xobsi

�2

A positive value shows that the estimation is good, 
a negative value shows that the estimation ability is 
poor, and 1 indicates the best model.

Modified index of agreement (MD)

MD varies between 0 and 1. A value of 1 means per-
fect agreement.

MD is calculated as:

Volumetric efficiency (VE)

It measures the ratio between observed and model 
precipitation volumes over a period of time. A value 
of 1 indicates the ideal condition.

(4)MD = 1 −

∑n

i=1
�Xsim − Xobs�

∑n

i=1
(
���Xobs − Xobs

��� +
���Xsim − Xobs

���)

Fig. 2   Methodology 
flowchart
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VE is calculated as:

Here, Xobs = observed precipitation, Xsim = gridded 
precipitation, and Xobs = mean observed precipitation.

Ranking of gridded data sets

Determination of weights of indicators using 
the entropy method

Various indicators’ weights are determined by 
employing the entropy method (Raju and Kumar 2014). 
The weight of indicators for each gridded data set was 
assessed using a formulated payoff matrix (Pomerol 
and Romero 2000). The weights for each indicator are 
determined without decision maker intervention, which 
is the main advantage of this method, which eliminates 
the excessive bias against the indicator. The indicator 
weights can be computed as follows:

For the given normalized payoff matrix Pij , the 
entropy Ej for the indicators j for the set of gridded 
precipitation data sets are computed as follows:

where i = 1, …….., N is the number of gridded pre-
cipitation data sets and j is the number of indicators.

The degree of diversification, Dj , for the informa-
tion given by outcomes of indicator j is

Normalized indicator weights are estimated as

Compromise programming

Compromise programming is a multi-criteria approach 
to decision-making, based on the principle that a solu-
tion to an acceptable “distance” solution is as “simi-
lar” as possible (Raju et al., 2017; Zeleny, 2011). The 
Lp metric family is used as a distance measure for CP 
and expressed as

(5)VE = 1 −

∑n

i=1
(Xsimi − Xobsi)∑n

i=1
Xobsi

(6)Ej = −
1

ln
(
Pij

)
∑N

i=1
Pijln

(
Pij

)
for j = 1…… , J

(7)Dj = 1 − Ej for j = 1… .., J

(8)Wj =
Dj

∑J

i=1
Dj

where a represents a particular precipitation data set; 
j is the performance indicator, j = 1, 2, …, n; Wj is 
the weight of each indicator; f ∗

j
 is the normalized 

ideal value for indicator j ; fj(a) is the normalized 
value of the indicator j for the precipitation data a ; 
and p is the metric parameter ( p = 1 for linear meas-
ure and p = 2 for Euclidian squared distance meas-
ure). The precipitation data set having the least Lp 
metric value is considered the best.

PROMETHEE II  PROMETHEE II, a multi-criteria 
decision-making approach (MCDM), is formulated 
according to the preference function approach (Brans, 
et al., 1986). The preference function Pj(x, y) represents 
the degree of preference of a particular precipitation 
data set “x” with regard to precipitation data set “y,” 
for a given performance indicator j and generalized 
criterion function. Different types of criterion func-
tions are available, but the usual criterion was adopted 
in the present study, in which the preference function 
depends on a small positive difference dj(x, y).

The definition of preference function is as follows:

Then, the multi-criteria preference index �(x, y) is 
the weighted average of preference function Pj(x, y) 
defined as:

Here, Wj is the weight that is assigned for each indi-
cator, based on the entropy method. J is the perfor-
mance indicator.

(9)Lp(a) =
[∑J

j=1
WJ

P|||fj
∗ − fj(a)

|||
p] 1

p

(10)Pj(x, y) =

[
0 ifdj(x, y) ≤ 0

1 ifdj(x, y) > 0

]

(11)�(x, y) =

∑J

j=1
WjPj(x, y)

∑J

j=1
Wj

(12)�+(x) =

∑
n �(x, y)

n − 1

(13)�−(x) =

∑
n �(y, x)

n − 1

(14)�(x) = �+(x) − �−(x)
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Here, �+(x) and �−(x) are the outranking index of 
the gridded precipitation data set “x” in the total data 
set “n,” and �(x) is the overall ranking of the gridded 
data set “x.” The gridded data set having the highest 
�(x) value is considered to be the most suitable pre-
cipitation data set.

Homogeneity tests

The homogeneity test was used to check whether the 
given data is homogeneous over time. In other words, 
if there exists any significant change point in a time 
series, then it is classified as non-homogeneous. This 
test is used to identify and adjust the variation of non-
climatic parameters caused due to the differences in 
observation procedures, time, and relocation of the 
gauging site (Peterson, et al., 1998). This inhomoge-
neity in the historical data has a high impact on the 
outcome of data analysis and forecast. Data homo-
geneity is an integral part of historical data archival. 
There are several methods and tools available for test-
ing homogeneity. The most common types of these 
tests are the Pettitt test, standard normal homogeneity 
test (SNHT), Buishand test, and von Neumann ratio 
(VNR) test. The combination of all four tests together 
is called as absolute homogeneity test.

Pettitt test

It is a non-parametric ranking method widely used for 
continuous climate series or hydrological series data 
to capture a single point of change. The steps for non-
parametric statistic are as follows (Pettitt, 1979):

1.	 Ranking of the observations (x) in increasing 
order (i.e., x1, x2 ……….xn).

2.	 The estimation of Vi,n is as follows:

Here, ri is the rank of xi.

3.	 The estimation of Ui is as follows:

4.	 The value of Kn is obtained from:

(15)Vi = n + 1 − 2ri for i = 1, 2, 3,…… .n

(16)Ui = Ui−1 + Vi

5.	 Finally, the estimation of P is as follows:

The null hypothesis rejects if the P value is smaller 
than “α,” whereas “α” is the level of significance.

Buishand test

This test is a parametric test that is more susceptible 
to deviations in the center of the data set (Costa & 
Soares, 2009). This test is based on the adjusted par-
tial sum with the total deviation from the average 
value.

Calculation of adjusted partial sum is as follows:

Here,X is the average of the observations in a data 
set ( X1, X2………. XN ) and k is the observation num-
ber where the change point has occurred.

The rescaled adjusted partial sum is calculated as:

The statistic Q used to test homogeneity is given by:

The null hypothesis will be accepted if the Q√
N

 
value is less than the standard critical values.

Standard normal homogeneity test

In the study of climatic variations, SNHT is the most 
widespread homogeneity tests. SNHT is more sus-
ceptible to detecting the change points at the start and 
end of the series.

(17)Kn = max1≤i≤n
||Ui

||

(18)P = 2e

(
−

6K2n

n3+n2

)

(19)S∗
0
= 0;S∗

k
=
∑k

i=1
(Xi − X) for k = 1, 2,… .N

(20)S∗∗
k

=
S∗
k

DX

for k = 1, 2,…… .N

(21)DX =

�∑N

i=1

�
xi − xn

�2

N

(22)Q = max0≤k≤N
||S

∗∗
k
||
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The statistic T(k) is computed as:

If there exists a change point in the data set, T(k) 
hits the peak value during the kth year. Then, T0 is 
computed as:

Von Neumann ratio (VNR) test

This test detects the change point according to the sta-
tistics of N (von Neumann, 1941), which is given by:

If the value of N = 2, it states that the data set is a 
homogeneous series, whereas if there is a change 
point in the data set, then the value of N ˂ 2 (Buishand, 
1982). The critical values of N are taken from Buishand 
(1982).

Precipitation concentration index (PCI)

This index is helpful to assess the variation of pre-
cipitation in annual, seasonal, and supra-seasonal 
scales (Michiels et al., 1992; Oliver, 1980). Based on 
PCI, the classification of precipitation distribution is 

(23)T(k) = kz
2

1
+ (n − k)z

2

2

(24)z1 =
1

k

∑k

i=1

�
Yi − Y

�

s

(25)z2 =
1

n − k

∑n

i=k+1

�
Yi − Y

�

s

(26)T0 = max(T(k))for1 ≤ k ≤ n

(27)N =

∑n−1

i=1

�
Yi − Yi+1

�2

∑n

i=1

�
Yi − Y

�2

shown in Table 2 (EE et al., 2017). The PCI at annual 
scale is calculated as follows:

Pi = annual rainfall in an ith month.
Seasonal PCIs for winter (December–February), 

summer (Mar–May), SW monsoon (June–September), 
and NE monsoon (October–Nov) and supra-seasonal 
PCI for dry season (December–May) and wet season 
(June–November) are as follows:

PCI values theoretically lie between 8.3 (uniform) 
and 100 (extreme) distributions. Based on the values 
of Table  2, the type of precipitation distribution is 
classified.

Results and discussion

In this study, the three gridded data sets, namely 
IMD gridded data, TRMM, and MERRA data, are 
evaluated on a monthly scale with reference to the 
observed rain gauge data. The gridded precipita-
tion data were resampled to the observation data 
point using inverse distance interpolation. The 
statistical indices obtained by comparing different 
gridded data sets with the observed data are given 
in Table 3. From the present study, it was observed 
that TRMM is showing the best performance based 
on the indices R and NRMSE. These results agree 

(28)PCIannual =

∑12

i=1
P2

i

(
∑12

i=1
pi)

2
× 100

(29)

PCIwinter,summer =

∑3

i=1
P2

i
�∑3

i=1
pi

�2
× 25;

PCISWmonsoon =

∑4

i=1
P2

i
�∑4

i=1
pi

�2
× 33;

PCINEmonsoon =

∑2

i=1
P2

i
�∑2

i=1
pi

�2
× 17

(30)PCIsupra−seasonal =

∑6

i=1
P2

i

(
∑6

i=1
pi)

2
× 50

Table 2   Significance of PCI values

Significance Uniform Moderate Irregular Strong 
irregular

PCI value PCI ≤ 10 10 ˂ 
PCI ≤ 15

15 ˂ 
PCI ≤ 20

PCI > 20
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with the finding of Sireesha et  al. (2020). Prakash 
et al. (2015) stated that most satellite data have dif-
ficulties in representing rainfall over orographic 

regions including the Western Ghats Mountains, 
Northeast India, and the Himalayan foothills. 
In terms of NSE and MD, IMD performs better. 
MERRA is the best based on VE. Thus, it is evi-
dent that one cannot finalize the performance of the 
gridded data sets purely based on these statistical 
indices alone.

The visual comparison is also carried out using 
the Taylor diagram, box plots, cumulative distribu-
tion function, time series plots, and scatter plots. 
The TRMM shows a higher correlation and less 
standard deviation (Fig. 3). The interquartile range 
of TRMM is small compared to those of the other 
gridded data sets for the annual series (Fig.  4). 

Table 3   Statistical parameters

Statistical parameters Data set (gridded precipitation)

IMD TRMM MERRA​

Correlation coefficient 0.82 0.85 0.64
NRMSE 0.54 0.53 0.71
NSE 0.62 0.58 0.27
VE 0.8 0.75 0.86
MD 0.9 0.85 0.77

Fig. 3   Taylor diagram of 
gridded precipitation data 
sets
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This tallies with the study of Subash et al. (2020). 
This is true during the northeast monsoon sea-
son also (Fig.  5). The monthly average values of 
IMD gridded, TRMM, and MERRA were 193 mm, 
166  mm, and 258  mm, respectively, against 
221 mm for the observed data. The cumulative dis-
tribution plot of IMD gridded data compares well 
with the station rain gauge data (Fig. 6). Based on 
these figures, it is clear that the gridded IMD data 
are very close to the observed data; however, the 
MERRA data is overestimated, and the TRMM 
data is underestimated. Almeida et  al. (2020) 

stated that for a river basin in Brazil, TRMM satel-
lite data overestimated precipitation during the wet 
season while it was underestimated during the dry 
season. Prakash et  al. (2016a, 2016b) also stated 
that TRMM (TMPA-3B42RT) overestimates over 
most part of India during monsoon season. In this 
study, it was found that during all the months, the 
TRMM data is underestimated. The gridded IMD 
data set underestimates during the initial period, 
which is evident from the time series plot (Fig. 7). 
From the scatter plot, it is clear that TRMM is 
more diagonally oriented than MERRA and IMD 
gridded data sets (Figs. 8, 9, and 10).

Ranking of gridded data sets

Compromise programming and PROMETHEE 
II are applied to rank the three gridded data sets. 
Before applying these techniques to rank the data 
sets, the indicator weights are found using the 
entropy method. Because the performance of the 
gridded data set was different based on different 
indices, all the statistical indices were normal-
ized before applying the entropy method. Table 4 
presents the total entropy Ej , degree of diversifi-
cation Dj , and normalized weights of indicators 
Wj . These are computed using Eqs. (6), (7), and 
(8), respectively. Among all five indicators, NSE 

Fig. 4   Box plot of annual gridded precipitation data sets

Fig. 5   Box plot of monthly gridded precipitation data sets
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appears to have a higher significance value of 
41%, indicating that its impact on the ranking of 
the precipitation data set is significant, whereas R, 

VE, and MD’s total contribution is less than 20%, 
and NRMSE contributes 26%.

Fig. 6   Comparison of the non-exceedance probability of data sources

Fig. 7   Monthly rainfall time series of Punalur station and gridded data
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Ranking using compromise programming

The CP technique is used to rank data sets, which 
calculates the deviation between ideal and data val-
ues (Sireesha et  al., 2020; Ghorbani et  al.,  2021). 
For R, NSE, VE, and MD, the highest value are 
taken as the ideal, whereas for NRMSE, the lowest 
value is taken. The ideal values of statistical indi-
cators, namely R, NRMSE, NSE, VE, and MD, are 
found to be 0.24, 0.15, 0.17, 0.26, and 0.24. The Lp 
metric was calculated using Eq. (9) and is given in 
Table 5. The Lp metric of IMD gridded data is the 
lowest value out of the three data sets of gridded 
precipitation. So IMD gridded is ranked 1, followed 
by TRMM and MERRA.

Ranking using PROMETHEE II

The function of the usual criterion of Brans et  al. 
(1986) was considered in this study. According to 
this function, the preference of elements is either 
0 or 1. In Table  4, the difference between the cor-
relation coefficient values of IMD and TRMM is 
0.22 −0.24 =  −0.02, and so the equivalent value of 
preference function is 0 as per Eq. (10) (as −0.02 < 0) 
(Raju & Kumar, 2014). Likewise, the difference 
between the correlation coefficient values of TRMM 
and IMD for R is 0.02, and the equivalent value of 
preference function is 1 as per Eq. (10) (as 0.02 > 0). 
Likewise, all the indicator difference function of 
the pairs of gridded precipitation is estimated. The 

Fig. 8   Observed precipita-
tion vs IMD gridded data 
set scatter plot

Fig. 9   Observed precipita-
tion vs TRMM gridded data 
set scatter plot
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preference function weightage is calculated using 
the weights estimated by the entropy method, i.e., 
the multi-criteria preference index using Eq.  (12), 
and is given in Table  6. �+ , �− , and � values and 
ranking corresponding to each data set are given in 
Table  7. The values in Table  7 are computed based 
on Eqs. (12), (13), and (14). In the case of IMD, 
the sum of all elements in the row from Table  6 
/ (number of elements − 1) = (0 + 0.53 + 0.62) / 
(3 − 1) = 0.58 (�+) (Eq.  (12)). Similarly, the sum-
mation of the elements in the column / (no. of ele-
ments − 1) = (0 + 0.13 + 0.38) / (3 − 1) = 0.26 ( �−) 
(Eq. (13)). The � value according to Eq. (14) is 0.32 
for IMD. The gridded data set having the highest 
value of � is considered the best. Table 7 shows that, 
based on the � value, the IMD gridded data are rated 
as the best data set (rank 1), and the TRMM is rated 
as the second-best (rank 2), followed by MERRA 
(rank 3) with 0.32, −0.08, and −0.24, respectively.

Homogeneity test

The four available precipitation monthly data sets 
at the Punalur location are tested for homogeneity 

Fig. 10   Observed precipi-
tation vs MERRA gridded 
data set scatter plot

Table 4   Weights of indices obtained from entropy method

Data R NRMSE NSE VE MD

IMD 0.22 0.15 0.17 0.22 0.24
TRMM 0.24 0.15 0.16 0.21 0.24
MERRA​ 0.2 0.22 0.08 0.26 0.23
Total entropy 0.91 0.82 0.72 0.92 0.94
Degree of diversification 0.09 0.18 0.28 0.08 0.06
Normalized weights 0.13 0.26 0.41 0.12 0.08

Table 5   Compromise programming results

Statistical index IMD gridded TRMM MERRA​

R 0.22 0.24 0.2
NRMSE 0.15 0.15 0.22
NSE 0.17 0.16 0.08
VE 0.22 0.21 0.26
MD 0.24 0.24 0.23
Lp metric 0.007 0.01 0.06

Table 6   Multi-criteria preference index values

Gridded data IMD TRMM MERRA​

IMD 0 0.53 0.62
TRMM 0.13 0 0.62
MERRA​ 0.38 0.38 0

Table 7   Values of �+ , �− , and � ranks of gridded precipita-
tion data sets

�+ �− � Rank

IMD 0.58 0.26 0.32 1
TRMM 0.38 0.46  − 0.08 2
MERRA​ 0.38 0.62  − 0.24 3
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using Pettitt, SNHT, Buishand, and von Neumann 
ratio tests. Test results are tested at 5% significant 
level. The data set is rated as non-homogeneous 
when the P-value is less than 5% significant level. 
The results are tabulated in Table 8, and the results 
show that all data excluding IMD gridded precipi-
tation were homogeneous for Pettitt, SNHT, and 
Buishand tests, whereas for all data sets, the VNR 
test showed inhomogeneity characteristics. Pet-
titt and Buishand tests show that the IMD gridded 
data sets are homogeneous, while SNHT and VNR 
tests show that the data series is inhomogeneous. 
The rainfall data sets are classified into homoge-
neous, doubtful, and existence of change point 
(suspect) based on the absolute homogeneity test. 

The data set is graded to be homogeneous when it 
rejects one or none null hypothesis, doubtful when 
it rejects two tests out of the four tests, and is said 
to be suspect when it rejects three or all tests under 
5% significant level. Based on this, the results are 
shown in Table  8. Except for IMD gridded data 
set, all the data were found to be valid.

The SNHT test result graph and a double mass 
curve are drawn for IMD gridded data set and 
are given in Figs.  11 and 12. During the period 
1985–1990, there exists an inconsistency, which is 
evident from the figures. The IMD gridded data is 
corrected based on the slope of the double mass curve 
and is given in Fig. 13.

Table 8   Homogeneity test results

Data Pettitt test SNHT Buishand test VNR Class

K
N

P Trend T0 P Trend Q P Trend N P Trend

Observed 4028 0.73 H0 3.6 0.72 H0 16.96 0.42 H0 1.23  < 0.0001 Ha Useful
IMD gridded 238 0.99 H0 34.7 0.005 Ha 10.43 0.98 H0 1.2  < 0.0001 Ha Doubtful
TRMM gridded 980 0.45 H0 3.63 0.48 H0 11.26 0.26 H0 1.3  < 0.0001 Ha Useful
MERRA gridded 1353 0.81 H0 5.38 0.4 H0 9.62 0.6 H0 1.26  < 0.0001 Ha Useful

Fig. 11   SNHT test for IMD gridded data during the period of 1981–2013
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Assessment of IMD gridded precipitation data set 
using PCI

The IMD gridded precipitation data set after cor-
rection is analyzed for the variation of the pre-
cipitation rate on a temporal scale. The estimation 
of PCI uses Eq. (28) for annual, Eq. (29) for sea-
sonal, and Eq. (30) for supra-seasonal. The results 
are tabulated in Table  9 based on the signifi-
cance criteria of PCI values. The annual PCI of 
the precipitation data set ranges from 9.80 (2011) 
to 20.96 (1999). Further analysis of annual PCI 
shows that 81.82% falls under the zone of moder-
ate precipitation, whereas 12.12% in the zone of 
irregular precipitation, 3.03% in the zone of the 
strong irregularity of precipitation, and 3.03% in 
the zone of uniform precipitation distribution out 

of 33  years of available data. The graphical rep-
resentation of the yearly annual PCI showed in 
Fig. 14a.

Similarly, on a seasonal basis, PCI was calculated 
for winter, summer, and SW (southwest) and NE 
(northeast) monsoon seasons. In Fig. 14b, the graph-
ical plot of calculated values is shown for seasonal 
variation. From Table 9, it is clear that the mean val-
ues of seasonal PCI show that the type distribution 
is strong irregular (winter) and uniform (summer, 
SW and NE monsoons). On the supra-seasonal basis, 
i.e., dry and wet seasons, PCI is calculated and rep-
resented in Fig. 14c. From Table 9, it is clear that for 
the dry season, 60.61% falls under the zone of mod-
erate precipitation, and for the wet season, 66.67% 
falls under the zone of uniform precipitation.

Fig. 12   Double mass curve during the period of 1981–2013
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Fig. 13   Comparison of observed data with corrected IMD gridded data set

Table 9   PCI results of IMD gridded data set for the period 1981–2013

U uniform, M moderate, IR irregular

Annual Seasonal Supra-seasonal

Winter Summer SW monsoon NE monsoon Dry season Wet season

Uniform 3.03% 6.06% 57.58% 69.70% 72.73% 3.03% 66.67%
Moderate 81.82% 30.30% 30.30% 30.30% 27.27% 60.61% 27.27%
Irregular 12.12% 27.27% 12.12% 0.00% 0.00% 27.27% 6.06%
Strong irregular 3.03% 36.36% 0.00% 0.00% 0.00% 9.09% 0.00%
Mean PCI 13.63 (M) 16.82 (IR) 10.82 (M) 9.65 (U) 9.41 (U) 15.25 (IR) 10.26 (M)
Above average 14 17 11 12 9 11 11
Below average 19 16 22 21 24 22 22
Minimum PCI 9.80 (2011) 8.88 (2011) 8.42 (1990) 8.27 (1988) 8.50 (1983, 1984, 

1992, 2000, 
2009)

9.14 (2011) 8.72 (1988)

Maximum PCI 20.96 (1999) 25 (1983) 19.77 (1983) 13.54 (1985) 13.87 (1999) 29.49 (1992) 19.24 (2005)
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Conclusions

Accurate precipitation data has a significant role 
to play in river basin level planning and manage-
ment. In the present study, a suitable data source was 
selected from IMD, TRMM, and MERRA gridded 
precipitation data sets by comparing with the IMD 
observed data. Multi-criteria decision-making tech-
niques, namely compromise programming and PRO-
METHEE II, were employed to select the best data 
set. The data set ranked 1 is selected and corrected 
for inconsistency. The PCI was estimated for the cor-
rected data set to characterize the temporal patterns of 
precipitation in the catchment area. One of the criti-
cal findings from the present study is that the gridded 
data set, whether it is gauge-based/satellite-based data 
set, should not be directly used for hydrological stud-
ies. A suitable correction has to be applied before its 
use.

The key findings are as follows:

•	 Based on CP and PROMETHEE II, IMD grid-
ded data set ranked 1, followed by TRMM and 
MERRA.

•	 Gridded IMD precipitation data fails the homo-
geneity test. The homogeneity test and the dou-
ble mass curve show that gridded IMD data have 
inconsistency during the periods 1985 and 1990. 
The gridded IMD data is corrected for inconsist-
ency.

•	 The PCI average values of corrected gridded 
IMD data set for the period 1981–2013 state 
that the location falls in the zone of moderate 
for annual precipitation and uniform for summer, 
SW monsoon, and NE monsoon.
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