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corresponds to the areas where industrial activities 
are marginal. The results also imply that agricultural 
activities in grain production areas must be reconsid-
ered and replanned according to the new classifica-
tion of land suitability assessment. In this respect, our 
study suggests that the policymakers and the govern-
ment should take necessary steps to ensure the pro-
tection and sustainability of agricultural lands while 
planning for the industrial and settlement develop-
ment in grain production areas.

Keywords  Agriculture · Grains · Thrace · GIS-
MCDA · ALSA

Introduction

Agriculture is one of the most basic activities, which 
humans embark on to meet their nutritional needs. 
Agriculture is among the priority concerns for 
human life, which cannot be replaced by political, 
economic, social, and technological developments 
(İkincikarakaya et al., 2013). In the recent couple of 
decades, the world has been confronted a rapid agri-
cultural degradation process caused by major envi-
ronmental problems, such as fast-expanding urbaniza-
tion, climate change, drought, and erosion (Liu et al., 
2017; Schmitter et  al., 2018). Increasing population 
and threats to agricultural production led to food 
competition and the necessity to increase agricultural 
productivities (Horuz & Dengiz, 2018). Therefore, 
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agricultural land suitability assessment to evalu-
ate agricultural productivity in Tekirdağ province to 
determine precise productive agricultural areas. This 
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are supported by terrestrial samples and processed 
with spatial technologies. The results of the study 
indicate that the agricultural potential of the provin-
cial lands is quite high. It reveals that 65.7% of prov-
ince lands are suitable for agricultural production. 
Of the remaining lands, 20.3% is marginally suitable 
while only 8% of the land is unsuitable for agricul-
tural production. In the northwestern part, suitable 
land for agricultural productivity is higher com-
pared to other parts of the study area. This part also 
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agricultural production gained strategic importance 
in the last decades. The global population is pro-
jected to increase to over 9 billion over the next four 
decades, with much of this growth concentrated in 
developing countries (Patel et al., 2015). Recent stud-
ies have reported that agricultural production should 
be increased by 60% to meet the consumption needs 
of the world population by 2030 (Korkmaz, 2007; 
Vurarak & Bilgili, 2015). Given that, most countries 
today support studies that aim at efficient agriculture 
(Dengiz et  al., 2009) to establish sustainable agro-
ecosystems (Dengiz & Ozcan, 2006; Dindaroglu & 
Canbolat, 2011).

Agricultural land suitability assessment (ALSA 
thereafter) is an effective way to determine the char-
acteristics of agricultural productivity (Nouri et  al., 
2017). By using ALSA, the advantages and limita-
tions of the land for agricultural production can be 
properly computed (Elsheikh et  al., 2013; Krois & 
Schulte, 2014; Pan & Pan, 2012). However, to achieve 
better results for suitability assessment, one must con-
sider both quantitative methods based on terrestrial 
data and qualitative data obtained by expert opinion 
(El Baroudy, 2016; Kourtit et  al., 2014). Besides, it 
is necessary to include reliable spatial analyses and 
evaluations by using spatial information technologies 
to achieve rational results. Geographic information 
system (GIS) is one of the most common tools used 
in the management of spatial information and per-
forming complex analyses by qualitative and quanti-
tative methods (Dengiz & Sarıoglu, 2011).

Although various methods, such as the analytical 
hierarchy process (AHP) (Akıncı et al., 2013; Kumar 
& Hassan, 2013; Pramanik, 2016; Zhang et  al., 
2015), fuzzy logic techniques (Arsanjani et al., 2013; 
Boroushaki & Malczewski, 2010), artificial neural 
networks (Kong et  al., 2016), and machine learn-
ing models (Taghizadeh-Mehrjardi et  al., 2020), are 
common nowadays, the multi-criteria decision analy-
sis (MCDA) is highly preferred lately for the agri-
cultural land studies (Arabameri et  al., 2019; Chen 
et  al., 2010; Jahan et  al., 2016; Joerin et  al., 2001; 
Rodriguez-Gallego et  al., 2012; Yalew et  al., 2016). 
MCDA is an established technique, which is used 
when choosing variables that involve multiple crite-
ria. Therefore, MCDA can also be used to help design 
a dynamic model when selecting criteria.

Recently, the dynamic models of GIS-based multi-
criteria decision analysis (GIS-MCDA) are preferred 

particularly in ALSA studies (Darwish et  al., 2006; 
El Baroudy, 2011; Gbanie et al., 2013; Hamzeh et al., 
2014; Malczewski, 2006; Mishelia & Zirra, 2015; 
Mokarram et al., 2010; Terh & Cao, 2018). Decision- 
makers frequently face a lack of reliable informa-
tion for agricultural productivity. An inclusive GIS-
MCDA analysis could offer location-based informa-
tion for better decisions so that the gap between the 
knowledge of the decision-makers and optimum 
decision of the agricultural productivity can be filled 
(Kamali et al., 2017).

There has been an increasing interest in the agri-
cultural practices conducted from an environmental 
sustainability perspective. In a similar vein, research 
on ALSA for agricultural productivity has drawn 
attention in developing countries including Turkey 
(Arslan, 2016). The agricultural production in Turkey 
is usually carried out at low-yield-high-cost condi-
tions. While these conditions cause extreme pressure 
on the farmers, they sometimes cause damages to the 
agricultural lands due to exploitation of the lands. 
Using productive agricultural land beyond their capa-
bilities may cause various problems including soil 
salinity, landslide, and erosion (Tugay, 2012). Further, 
these problems may cause food deficiency and mal-
nutrition. To avoid such problems, policymakers must 
be proactively involved in protecting and improving 
fertile farmland. One of the most effective ways to 
overcome such problems is to conduct more research 
regarding the suitability of agricultural lands.

Tekirdağ province has one of the most important 
agricultural lands of the Thrace Peninsula. The prov-
ince not only has larger agricultural areas compared 
to other provinces but also reserves one of the most 
fertile agricultural lands in Turkey (TUIK, 2020), 
which contributes to the economy of the entire coun-
try. However, increasing population and industrial 
activities in the region have substantially affected 
agricultural productivity since the beginning of the 
twenty-first century (Sarı & Özşahin, 2016). Specifi-
cally considering the investment plans to be imple-
mented in the region concerning its population, settle-
ment, and industrial pressure in the next two decades, 
it is extremely necessary to plan ahead for better 
management of the agricultural lands in the prov-
ince. Yet, because of its proximity to the mega-city 
İstanbul, it has become a substitute center for industry 
and tourism in the last century (Ozsahin et al., 2019). 
Further, the area has attracted human population 
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from nearby cities (e.g., İstanbul, Edirne, and Çanak-
kale) leading to the rural areas becoming subject to 
intense human pressure. As a result, pressure from 
seasonal and industrial migration to the province both 
threaten the sustainability of fertile agricultural lands 
and pave the way for the destruction of natural envi-
ronmental components (Ozsahin & Eroglu, 2018). 
Given that, the determination and effective use of 
the existing agricultural lands in the study area con-
stitute a fundamental necessity for the future of the 
province. Preparing an inventory that would contain 
precise information on the agricultural characteristics 
of this provincial land should enable any subsequent 
planning to be based on solid foundations (Akgul & 
Basayigit, 2005).

Agricultural productivity is the key to the planning 
land management for both sustainable agriculture and 
sustainable use of natural resources (Zengin et  al., 
2003). Therefore, determining accurate land suitabil-
ity in terms of economically viable, sustainable, and 
resilient production systems depends on the accurate 
and balanced structure between nature and the agri-
cultural ecosystems (Jaklič et al., 2018).

GIS-based modeling has been used for various 
agricultural products (Montgomery et  al., 2016; Pan 
& Pan, 2012; Zabihi et al., 2019). While these studies 
are informative to understand the spatial variation of 
agricultural products, they generally used a very lim-
ited number of factors to fully comprehend these vari-
ations. (Kamali et al., 2017). Therefore, land suitabil-
ity assessment for agricultural productivity remained 
neglected (Balezentis et  al., 2020). One of the most 
important features that distinguish the present study 
from previous studies is that many factors that have 
the potential to affect agricultural productivity have 
been analyzed and variables with an importance value 
of less than 1% were eliminated. Therefore, compre-
hensive results were aimed (Malczewski, 2004) and 
so the reliability of the model has been maximized.

The present study aims to use a dynamic model 
in which model parameters can be easily modified 
based on the geographical conditions of the study 
area (i.e., natural environment and socio-economic 
characteristics). Therefore, the ALSA was chosen to 
be applied dynamically for agricultural productiv-
ity. In this respect, a model of GIS-MCDA has been 
developed based on remote sensing, digital mapping, 
and fieldwork data of the study area. This approach 
was adopted to detect the spatial distribution of 

agricultural productivity in the province and to deter-
mine the most suitable areas for the best agricultural 
production along with the other land use classes. In 
addition, this study aims to guide how to achieve a 
sustainable and productive agricultural land where 
similar geographic and climate conditions dominate.

In previous ALSA studies, the subject of agricul-
tural productivity has been studied based on soil and 
climate characteristics (Montgomery et  al., 2016; 
Zabihi et  al., 2019). However, socio-economic fac-
tors that potentially affect agricultural productivity 
have been mostly ignored. In this study, natural and 
socio-economic factors including soil, seeds, irriga-
tion, climate, and humans that have the potential to 
affect agricultural productivity were included in the 
model, which was selected based on the results of the 
variable importance. Furthermore, developing tech-
nologies, the qualitative and quantitative analyses of 
agricultural areas, determining the potentials of avail-
able resources, and creating databases and maps are 
also necessary (Dengiz & Sarıoglu, 2011; Ozyazıcı 
et al., 2014). In this respect, the present study applies 
a dynamic technique regarding ALSA and agricul-
tural productivity in the case of Tekirdağ province, 
which might be considered also for the other parts of 
the world where similar characteristics are present.

Materials and methods

Study area

The study area is the entire Tekirdağ province, 
which is located in the northwest of Turkey and is 
dominated by a wavy plateau fragmented by rivers 
(Fig.  1). Some plains are also formed in the coastal 
areas, and valleys are located down streams of the riv-
ers. In the province, a wide variety of rocky assem-
blages belonging to different geological periods are 
observed. A humid and temperate climate is observed 
in the coastal areas whereas continental climate with 
arid and continental characteristics prevails in the 
inner parts of the province. Based on these climate 
conditions, the natural vegetation of the area is the 
steppe in the inner parts and temperate deciduous for-
est in the coastal areas. Soil taxonomy distinguished 
in the area includes Entisol, Alfisol, Inceptisol, Mol-
lisol, Vertisol, and Andisol, which are spread across 
the study area depending on the prevailing climate 
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and flora characteristics (Ozsahin & Eroglu, 2018). 
The study area can be considered as relatively rich in 
surface and groundwater, which has water available 
for irrigation 883 hm3/year, 80.75% (713 hm3/year) of 
surface, and 19.25% (170 hm3/year) of groundwater 
(Basa et  al., 2017). About 90% of the drinking and 
potable water is obtained from groundwater and the 
remaining 10% is obtained from surface water in the 
area (Basa et al., 2017).

The study area encompasses about 400,000  ha of 
agricultural land. The most common agricultural prod-
ucts in the study area are crops. The most produced 
crops in the study area are wheat (Triticum aestivum) 
192,000 ha, sunflower (Helianthus) 15,000 ha, barley 
(Hordeum vulgare) 13,000  ha, and canola (Brassica 
napus) 6000 ha. Besides, some fruits (10,000 ha), veg-
etables (4000 ha), and ornamental plants are also pro-
duced in the area (Agriculture Report, 2019).

Fig. 1   The location of the study area is the Tekirdağ province
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Data

The main factors affecting the ALSA for agricultural 
productivity are topography, soil, seeds, irrigation, 
climate conditions, and human activity (Aldababseh, 
2018). It is plausible to generate spatial modeling for 
ALSA with the correct determination of these key fac-
tors and the subfactors affecting them. In this study, 
we created a dynamic model based on GIS-MCDA 
using a diversity of variables. We used a 100-m spa-
tial resolution to form a common resolution for the 
entire study area and ensure harmony between the 
datasets. In this context, we used a topography map 
(scale: 1:100,000) as a base map and DEM (resolu-
tion: 100  m) (GDM-ATLAS, 2020). Fieldwork was 
performed to collect soil samples and environmen-
tal data. We randomly collected 130 soil samples 
from the entire study area to investigate soil factors, 
physical and chemical measurements, and the spa-
tial distribution of the basic characteristics (climate, 
topography, main material, land use, and land cover) 
which form the soil and affect the distribution of soil 
species (Ozsahin & Eroglu, 2018). We also obtained 
the production and yield data and human factors from 
published reports, data, and statistics from the study 
area (Agriculture Report, 2019; Farmer Registration 
System Report, 2019; TUIK, 2020). Besides, irriga-
tion data was obtained from Tekirdağ State Hydrau-
lic Works 113th Branch Directorate (DSI, 2018). Data 
such as grain production and yield are obtained from 
TUIK on a district basis. Therefore, to integrate the 
data into the model, we first created a vector layer 
then converted it to raster datasets with 100 m resolu-
tion. As for the climate data, the long-term (50 years) 
meteorological observations were obtained from the 
General Directorate of Meteorology of the Ministry of 

Agriculture and Forestry (TSMS, 2020). Because soil, 
seed, groundwater depth, and climate data are point-
featured data types, these data must be converted 
to raster data. Therefore, inverse distance weighted 
(IDW) process was applied using ArcGIS Geostatisti-
cal Analyst to these data to convert them into raster 
format. IDW interpolation creates continuous raster 
data using a linear-weighted combination of the sam-
ple points from the study area. In this way, we created 
a new raster dataset derived from data, which obtained 
from various sources. Further, new variables were 
integrated into the GIS-MCDA model (Table 1).

Soil samples were collected from the study area 
from a depth of 0–30 cm. The data obtained during 
the collection of the soil samples were used for train-
ing and validation purposes. Using the leave-one-out 
cross-validation method, 70% of the data were used 
for training and the remaining 30% for validation 
purposes.

Methods

Several models for agricultural productivity have been 
used in various studies; the decision support for agro-
technology transfer, agricultural production systems 
research (Jones et al., 2001), effects of climate changes 
on crop production (Jin, 1996; Sadras & Calderini, 
2009), digital agriculture (Gao, 2001), functional 
structural plant models (Fourcaud et al., 2008; Hanan 
& Hearn, 2003), site suitability, and the analytic hier-
archy (Mighty, 2015) are the most widely used models. 
Among them, MCDA combined with other methods is 
the most commonly used method in the last few dec-
ades (Abeysingha et  al., 2015; Caglayan et  al., 2020; 
Kourtit et al., 2014; Malczewski, 2006; Malczewski & 
Rinner, 2015; Vanolya et al., 2019; Yalew et al., 2016). 

Table 1   Data and the variables used in the model

The variables (V1–V42) are defined in Appendix 1

Main factors Variable no Data source

Topography (F1) V1–V4 GDM-ATLAS, 2020
Soil (F2) V5–V23 Soil sample analysis (N = 130) and soil map (Ozsahin & Eroglu, 2018)

Seeds (F3) V24–V29 Agriculture Report, 2019; Farmer Registration System Report, 2019

Irrigation (F4) V30–V32 DSI, 2018
Climate (F5) V33–V36 TSMS, 2020
Human (F6) V37–V42 Farmers Registration Report, 2019; TUIK, 2020
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In our study, we used a model based on GIS-MCDA in 
a grain production area to define a spatial distribution 
of the agricultural land suitability.

Agricultural productivity is affected by several fac-
tors/subfactors (FAO, 1983, 1985; Sys et  al., 1991, 
1993). However, the criteria to specify the number 
of factors are still unclear. Based on the literature, we 
determined 6 main factors and 42 variables for this 
study model (Table 1). The scoring of the determined 
variables has been developed according to the coef-
ficient method. We then used the variable importance 
method in the R programming language to eliminate 
the least important variables in the model. In this step, 
we eliminated the variables whose value is less than 1% 
in the variable importance analysis. Thus, the remain-
ing 20 factors, those with variable importance above 
1%, were included in the study model (see Table 2).

To build the model, we first converted the resolu-
tion of all datasets to raster format with a resolution 
of 100 m. Thus, we have ruled out the problems that 
may arise from the resolution differences. Then, we 
calculated the weight values of the criteria accord-
ing to the analytical hierarchy method. At this stage, 
we used a pairwise comparison scale. The values of 
the scale are between 0 and 1, where 0 indicates the 
least suitable and 1 indicates the most suitable area 
for agricultural use. Using the matrix obtained from 
the scaling process, we then calculated the normal-
ized weight values of all variables. In the next stage, 
we merged the criteria according to the weighted lin-
ear combination method since it is a highly preferred 
method in agricultural studies (Dengiz & Sarıoglu, 
2013). Accordingly, we determined each cluster value 
using the equation given below:

where C is the total value of the cluster, K
i
 is the 

weight value of the criterion, K
n
 is the subcriterion 

score, and n is the total number of parameters.
We completed the merge of the clusters using the 

cell statistics in the geoprocessing tools in the spatial 
analysis module using the ArcGIS software version 
10.8. The cell statistics calculates a per-cell statistic 
from multiple rasters. By using this tool, we merged 
all the clusters based on the mean overlay analysis. 
Using mean overlay analysis, we combined informa-
tion from one GIS layer with another to derive an 

(1)C =
∑n

i=1

(

K
i
∗ K

n

n

)

attribute for one of the layers. In this step, we used the 
following equation to calculate the efficiency of the 
agricultural productivity (AP):

where C1 is topography, C2 is soil, C3 is the seed, C4 
is irrigation, C5 is climate, and C6 is the human fac-
tor. In the final stage, we ran the established model 
and created the suitability map. We classified the map 
into five land use classes, which had been proposed 
by ALSA studies: (1) highly productive, (2) produc-
tive, (3) moderate, (4) marginal, and (5) unproductive 
classes (Riquier et al., 1970; Sys et al., 1991; Dengiz & 
Ozcan, 2006). We then applied the ground data points 
that the GPS records and field observations obtained 
from the fieldwork for 3-year duration (2016–2018) 
from the Farmer Registration System (Farmer Regis-
tration System Report, 2019) for validation. Further-
more, we analyzed the correlation between the status 
of current agricultural activities and the productivity 
potentials of the study area. At this step, we used the 
most recent land use data by the European Union Land  
Use Project named CORINE (Chief Inspectorate of 

(2)AP = (C1 × C2 × C3 × C4 × C5 × C6)1∕6

Table 2   Selected variables according to the variable impor-
tance analysis

Abbrev Variable Importance (%)

V27 Grain production 96.00
V25 Grain yield 55.56
V40 Fertilizer 50.19
V41 Pesticide 27.82
V36 Vegetation period 13.61
V24 Seed yield 8.32
V32 Hydrogeology 7.66
V31 Groundwater depth 7.25
V18 Calcium 4.39
V26 Fruit yield 4.11
V28 Vegetable production 4.00
V30 Distance to water source 2.62
V35 Solar radiation 2.49
V33 Temperature 2.25
V29 Fruit production 2.25
V34 Precipitation 2.24
V7 Drainage 1.96
V11 Salinity 1.89
V9 Soil reaction 1.76
V15 Nitrogen 1.63
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Environmental Protection, 2020). Then, the land use 
map was overlapped with the land suitability map to 
reveal the suitability classes for each land use class.

Results

Calibration and validation

We performed the calibration of the model based on 
the yield averages of crop production between 2013 
and 2015, and the validation between data between 
the 2016 and 2018 production years. The calibration 
and the validation periods have been determined by 
measurements from two governmental institutions 
(Farmer Registration System and Turkish Statisti-
cal Institute). The average yield of agricultural pro-
duction is at the district level, which are the most 
detailed measurements obtained for the study area 
(Agriculture Report, 2019; Farmer Registration 
System Report, 2019; TUIK, 2020). We analyzed 
the calibration and validation results of the study 
using Nash–Sutcliffe efficiency (NSE), observations 
standard deviation ratio (RSR), and percentage bias 
(PBIAS). We then used the performance evaluation 
of the model using the model performance rating 
scale (Abeysingha et al., 2015; Moriasi et al., 2007) 
and evaluated statistical method results (see Table 3) 
based on the coefficient of determination (R2).

In the present study, a calibration was performed 
to optimize the structure of the model and to esti-
mate the spatial differences in the model equations. 
In addition, validation was performed to check if 
the values assigned to the model parameters were 
statistically significant (see Table  3). Using statisti-
cal methods, calibration and validation values indi-
cate optimal values for the model. The results of the 
mean calibration values are as follows: NSE = 0.85, 
RSR = 0.36, and PBIAS = 25.72. Mean validation val-
ues are NSE = 0.91, RSR = 0.28, and PBIAS = 21.53 
(see Table 4). These mean values reflecting the over-
all study area are in the optimal NSE and RSR range. 
PBIAS values are acceptable according to the model 
performance rating scale (Moriasi et al., 2007, 2015).

While the statistics of the calibration period of the 
model represent symmetrical distributions, the val-
ues of the validation period show more negatively 
distorted properties (Fig. 2). In addition, the R2 val-
ues indicate a strong positive relationship between 
the variables (NSE: 0.8838, RSR: 0.8314, PBIAS: 
0.7797) at a 95% confidence interval.

Variable importance

Land suitability assessment for agricultural produc-
tivity is controlled by very complex factors and sub-
factors. One of the most characteristic features that 

Table 3   Model performance rating based on RSR, NSE, and PBIAS

NSE Nash–Sutcliffe efficiency, RSR RMSE-observations standard derivation ratio, PBIAS percentage bias

Performance rating NSE RSR PBIAS

Very good 0.75 < NSE < 1.00 0.00 < RSR < 0.5 PBIAS < 10
Good 0.65 < NSE < 0.75 0.5 < RSR < 0.6 10 < PBIAS < 15
Satisfactory 0.5 < NSE < 0.65 0.6 < RSR < 0.7 15 < PBIAS < 25
Unsatisfactory NSE < 0.5 RSR > 0.7 PBIAS > 25

Table 4   Model calibration 
and validation statistics for 
agricultural productivity

Measuring station Calibration Validation

NSE RSR PBIAS NSE RSR PBIAS

Minimum 0.38 0.23 18.69 0.80 0.22 17.83
Maximum 0.95 0.78 43.94 0.95 0.45 31.08
Mean 0.85 0.36 25.72 0.91 0.28 21.53
Median 0.90 0.32 24.41 0.94 0.24 19.12
Std. deviation 0.17 0.16 7.45 0.06 0.09 4.98
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distinguish the present study from the previous stud-
ies is that it examined and incorporated many factors/
subfactors in the model. However, the significance and 
impact degree of the factors to the model performance 
is one of the most important questions in the field. For 
this reason, an evaluation of variable importance was 
conducted to eliminate insignificant variables. As a 
result of the evaluation, variables with a factor weight 
value of less than 1% were excluded from the model, 
and so the remaining 20 variables were identified as 
the most effective variables in the study (see Table 2). 
The R2 value of the variable importance results was 
determined as 82. Accordingly, although there were 
statistically significant changes in the productive and 
unproductive classes compared to the pre-elimination 
of the variables, no significant changes were observed 
in the other productivity classes. In addition, the study 
model determined the maximum and minimum values 
better using variable importance results.

Productivity

The results of the model indicate that a significant 
portion of the land (34%) in the study area was 
found to be in the productive class (see Table  5). 
The other productivity classes occupying a larger 
portion of the study area are marginal (28.8%) and 
moderate (27.9%), respectively. The highly produc-
tive (3.7%) and unproductive (5.7%) classes in the  

study area are relatively insignificant compared to the  
total land surface area. The present study focuses on 
the spatial distribution, proportion, and productivity 
of land use classes. In this respect, not only the pro-
portion of the land productivity but also the “loca-
tion” reflects the matter of concern.

The productivity map shows that the northwestern 
part of the study area consists mostly of highly pro-
ductive and productive classes. Most of the marginal 
and unproductive classes are found to be distributed 
in the eastern and southwestern parts of the study area 
(see Fig. 3). In these areas, which are mainly used as 
settlement and industrial activities, unsuitability is 
mostly related to human factors. Although the popu-
lation in these areas is not very dense in winters, it 
is very densely populated in summers because of the 
tourism and summer housing.

Fig. 2   Calibration and validation performance of the model

Table 5   Distribution of ALSA classes for agricultural produc-
tivity in the study area

Productivity 
class

Productivity 
value

Area (ha) Ratio (%)

Highly productive 0.65–1 197,343.0 31.3
Productive 0.60–0.65 226,919.1 35.9
Moderate 0.55–0.60 28,128.9 4.5
Marginal 0.50–0.55 128,287.4 20.3
Unproductive 0–0.50 50,643.1 8.0
Total 631,321.4 100.0
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The model indicates a significant relationship 
between agricultural productivity and current land 
use classes in the study area. Furthermore, agricul-
ture is most common (89.65%) in a highly produc-
tive class; however, a remarkable portion of unpro-
ductive lands appears to be used for agriculture as 
well (Table  6). However, it should be pointed that 
the unproductive land is only 8% of the study area as 
indicated in Table 5.

Further, the agricultural areas that appear to be 
suited in the marginal and unproductive classes are 
mostly located in the northeastern part of the prov-
ince (see Fig.  4). One of the most unproductive 
lands is located around an industrial city, Çorlu, and 
its buffer area. Further, two stripes around the city 
are in marginal areas again where the industry is in 
play. The southwest corner of the study area appears 
to be the marginal class as this area is mostly rocky 

Fig. 3   Land suitability map of agricultural productivity in the study area
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and mountainous, which is not suitable for agricul-
ture (see Fig. 4). These areas are forested and covered 
mostly with oak trees and shrubs. Apart from these 
areas, the western part of the study area is covered 
with highly productive and productive classes.

The results indicate that the grain yield is high in 
the highly productive class (28.51%) and low in the 
unproductive class (13.79%). The fruit yield is high 
in the moderate class (25.93%) and low in the highly 
productive class (13.85%). These findings suggest 
that a strong relationship exists between the results of 
the model and the spatial distribution of grain yield 
(see Table  7). However, the same result does not 
apply to the fruit yield. Therefore, the model is appro-
priate for use in grain productivity.

Discussion

Agricultural land suitability depends on the follow-
ing factors: topography, soil, seeds, irrigation, cli-
mate, and human activity (Liliane & Charles, 2020) 
(Table  8). These most basic factors, which directly 
affect both quality and yield, control the spatial dis-
tribution of agricultural productivity. Soil, without 
any doubt, plays a critical role in the spatial distribu-
tion of agricultural productivity and so it has a robust 
effect on ALSA (Ates & Turan, 2015; Cimrin & Boy-
san, 2006; Saglam & Dengiz, 2013). The soil types in 
the study area exhibit deep, clay, well-drained physi-
cal properties with very low erosion risk. In terms of 
chemical components, the soil in the area, in general, 
is mildly acidic and has slightly alkaline pH values, 
low to medium lime, medium to rich organic matter, 
high in nitrogen, while indicating calcium and zinc 
deficiency. It also has sufficient chemical properties 

for other vital elements, such as nitrogen, potassium, 
phosphorus, calcium, and magnesium. These findings 
indicate that the soil in the study area contains almost 
all necessary components for crop production and has 
more favorable conditions as compared to the rest of 
the agricultural lands in Turkey (Zengin et al., 2003).

Another factor that significantly affects the ALSA 
is the seed type (Kayacetin, 2006; Yılmaz & Kınay, 
2015). The seed type is a determinant factor for crop 
yield grown in the study area and is characterized by 
the type of crops in accordance with the suitability of 
other conditions. The crop yield is medium to high in 
the study area. The average maximum yield has been 
determined in grains to be 1.620 kg/da. The fruit yield 
is 1.073  kg/da, which is quite low in the province, 
whereas no record of vegetable yield is obtained. In 
terms of production amount, crops are the most sig-
nificant products of the study area (45,421.20 ton/
year) followed by vegetables (2119.80 ton/year) and 
fruits (2632.80 ton/year) (TUIK, 2020).

Another significant factor that affects the ALSA 
for agricultural productivity is irrigation. The study 
area offers favorable conditions for both irrigated and 
rain-fed agriculture. Riparian areas, where continu-
ous flow is experienced, and areas surrounding dams 
for irrigation are the most suitable lands for irrigated 
agriculture. In the study area, most of the water (about 
90%) for agricultural use is obtained from groundwa-
ter. The groundwater level is high around Hayrabolu, 
while it is low around industrial cities (Çorlu-Ergene-
Çerkezköy) where most of the population of the prov-
ince is located. Like many other highly populated 
areas, excessive use of groundwater in the province 
causes a depletion of groundwater levels in recent 
years (Basa et al., 2017). The presence and amount of 
groundwater level in the study area varies according 

Table 6   Distribution 
of productivity classes 
overlapped with the current 
land use classes

Land use Productivity (%)

Highly 
productive

Productive Moderate Marginal Unproductive

Agriculture 89.65 75.75 60.26 55.38 69.10
Vineyard 0.06 0.15 0.70 1.73 0.00
Forest 2.88 13.84 30.43 30.58 9.33
Bushes 0.00 0.27 2.37 0.62 0.07
Barren 0.00 0.02 0.02 0.06 0.06
Settlements 2.09 4.92 3.00 6.78 17.99
Pasture 5.33 5.05 3.22 4.85 3.44
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Fig. 4   Distribution of productivity classes overlapped with current land use classes
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to the hydrogeological environment and the condi-
tions offered by the lithological units underground. 
Although hydrogeologically favorable, the environ-
mental conditions are dominant in the study area due 
to the impermeable or semi-permeable lithological 
structure in the northern and southern parts of the 
provincial lands containing low to medium ground-
water. Irrigation water comes predominantly from 
surface water in the northern and southern areas.

Another important factor found to be affecting 
the ALSA is the climate variables. Agricultural pro-
cedures evolve and adapt to the dominant climate 
factors. Many agricultural activities in the area are 
vulnerable to the impact of climate change. The 
study area is under the influence of Marmara (transi-
tional) climate conditions (Sahin & Cigizoglu, 2012). 
Mainly due to the variations in temperature and pre-
cipitation, the non-irrigated agricultural produc-
tion varies annually (West, 2019). The mean annual 
temperature is 13.4 °C and the mean annual precipi-
tation is 586.36 mm depending on the local climate 
characteristics. While coastal areas offer a humid and 
hot climate, Ergene Basin has more continental cli-
mate conditions. The increase in evaporation in the 
dry season causes the need for irrigation. This water 
requirement is met by irrigation from surface waters. 
This situation causes a significant change in the dis-
tribution of the greening period of vegetation in the 
study area (Ozsahin & Eroglu, 2018). In the northern 
areas, the greening period of the vegetation varies 
usually between 180 and 240 days.

One of the most dynamic factors affecting the tem-
poral and spatial variability of ALSA is the human 

impact. Human practices are of great importance 
in terms of management and usage of agricultural 
areas (Tasan & Demir, 2017). Agricultural reports 
indicate that approximately 80% (49,583  ha) of the 
province is suitable for agriculture. However, only 
64% (39,667 ha) of this land is used for agricultural 
activities, where 25,527 farmers are active workers 
(Agriculture Report, 2019; Farmer Registration Sys-
tem Report, 2019). The aforesaid records indicate that 
198,692 ton of fertilizer and 635 ton of agricultural 
pesticides are used on 305,300 parcels of the land. 
The parcels are generally 10–50 ha in size. Therefore, 
while human influence on agricultural productivity 
in the study area increases with the use of fertilizers 
and pesticides, it also has a reducing effect with mis-
uses of the lands as well as by dividing the parcels 
into smaller parts (Kontgis et  al., 2019; Kremer & 
DeLiberty, 2011). This situation is due to the socio-
economic characteristics of the study area, regardless 
of natural conditions (Ozsahin & Eroglu, 2017).

The results of the model indicate that some prod-
ucts show better yield in different productivity 
classes. Grain yield is higher in the highly produc-
tive class (28.51%) and lower in the unproductive 
class (13.79%). On the other hand, the fruit yield is 
higher in the moderate class (25.93%) and lower in 
the highly productive class (13.85%). These findings 
suggest that while a strong correlation exists between 
the spatial distribution of grain yield and the produc-
tivity classes, the situation is quite different for fruit 
yield. Besides, needs for minerals, water, and climate 
conditions are varied dramatically depending on the 
type of fruit. The study area has a negligible number 

Table 7   The relationship 
between the productivity 
and average yield of grains 
and fruits

Productivity value is 
between 0 and 1 where 0 
indicated least productive 
and 1 indicated most 
productive areas

Productivity class Productivity value Minimum Maximum Mean (%)

Grains
   Highly productive 0.65–1.00 27,758.80 52,463.05 28.51
   Productive 0.60–0.65 16,667.34 52,471.85 22.98
   Moderate 0.55–0.60 16,667.06 51,153.44 18.84
   Marginal 0.50–0.55 11,553.32 44,341.47 15.87
   Unproductive 0–0.50 11,207.22 33,568.44 13.79

Fruits
   Highly productive 0.65–1.00 737.68 5526.40 13.85
   Productive 0.60–0.65 737.01 5727.63 22.39
   Moderate 0.55–0.60 482.53 5745.91 25.93
   Marginal 0.50–0.55 252.16 5745.04 22.23
   Unproductive 0–0.50 235.04 3418.70 15.60
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of orchards compared to grains. Thus, the results of 
the model might be skewed if used for fruit produc-
tivity. Therefore, it would be more appropriate to use 
the model in determining suitable areas for grains 
rather than in any other agricultural suitability.

In general, model validation can be considered 
as satisfactory if NSE > 0.50 and RSR < 0.70, and 
if PBIAS is 25% for streamflow, 55% for sediment, 
and 70% for N and P (Moriasi et al., 2007). The high 
maximum and minimum values and variances of 
NSE, RSR, and PBIAS presented in calibration and 
validation are due to variation of agricultural land 
use in the province (see Fig. 3). For validation, the 
data obtained in the form of district averages differ 
in each district as the agricultural land availability 
varies. This causes the high variance of NSE, RSR, 
and PBIAS presented in calibration and validation. 
It is plausible to obtain different results if the study 
is conducted only in agricultural areas. However, in 
the present study, besides the agricultural lands in 
the districts, other land use classes were also exam-
ined. The reason for this is to detect all suitable and 
unsuitable land uses in the study area. As seen in 
Table 6, the existence of productive classes in land 
use classes other than agricultural areas (pasture, 
forest, and settlements) suggests that some of the 
productive lands in the study area are misused or not 
used at all.

The model projection indicated a linear decrease 
of agricultural use from highly productive to marginal 
classes. Agriculture is the most common in the highly 
productive class. However, the remaining portion of 
the productive area is subject to further research and 
evaluation. On the other hand, a high percentage of 
the unproductive lands appear to be used for agricul-
ture in the study area. This situation could be related 
to the fact that the study area is located in fertile land 
in general, in which wide agricultural activities are 
spread throughout the area. This situation might lead 
the local governments and the policymakers to desig-
nate the entire land for agriculture. Thus, agricultural 
activities in marginal and unproductive areas may 
represent a misuse of land and cause various environ-
mental problems. Therefore, the agricultural activi-
ties in the study area should be performed only in 
highly productive, productive, and moderate classes. 
Depending on the demand for agricultural products, it 
also might be beneficial to use marginal class in some 
cases.

Conclusion

In this study, a spatial model developed for ALSA 
for agricultural productivity has been introduced 
and applied using the GIS-MCDA technique. The 
model was applied to the entire land use types to 
determine the most suitable lands for agricultural 
productivity. The results indicate that a significant 
portion of the lands, which are used for settlement 
and other uses in the study area, is in fact suitable 
for agricultural production. The model also indi-
cates that the highly productive and productive 
classes are in the northwestern part, while marginal 
and unproductive classes are in areas where settle-
ment and industrial activities are concentrated. In 
addition, the relationship between productivity and 
the current land uses indicates that agriculture in 
the study area should be cultivated only in highly 
productive, productive, and moderate classes. How-
ever, the study model offers advantageous condi-
tions only to determine grain agriculture. For other 
types of agricultural uses, it is uncertain how it 
might result; therefore, more research is encour-
aged. The model performance rating indicates a 
high NSE and RSR range and acceptable PBIAS 
values. In addition, it has been determined that 
modeling the interrelation between the parameters 
with correct methods and techniques is important 
for a better assessment of land suitability for better 
agricultural productivity. In this way, more produc-
tive lands can be identified, and more accurate deci-
sions can be made in spatial site selection to prevent 
unsuitable land use.

Since cultivation areas are limited and cannot 
be expanded to increase agricultural production, 
the outcomes of this study suggest that the exist-
ing agricultural areas should be protected, and sus-
tainable agriculture practices should be applied. 
Sustainable and productive agricultural production 
is essential to meet the grain needs of the rapidly 
increasing population. Otherwise, unsustainable 
agriculture might result in food security problems 
in the near future for societies that provide a sig-
nificant part of their food from grains. This study 
indicates that with better land use planning and the 
application of modern agricultural techniques, it 
is possible to increase the productivity of grains. 
Focusing on solving current problems of agricul-
ture, in a supportive nature, this study provides 
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precise spatial information about the consistency 
and reliability of the findings. Nevertheless, more 
research is encouraged to ensure that agriculture 
would reach the desired place in terms of produc-
tion and sustainability Table 8.
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Appendix

Table 8   Ratio of factors and variables affecting agricultural 
productivity

Main 
factors

Variables/
units

Classified as Rating

Topography 
(F1)

Altitude (V1) 
(m)

 < –100 1

100–250 0.75
250–500 0.5
500– >  0.25

Slope (V2) 
(%)

0–2 1
2–4 0.75
4–6 0.50
6–12 0.25
12– >  0

Aspect (V3) 
(direction)

Flat 1
S 0.75
W-E 0.50
N 0.25

Landforms 
(V4) (major 
landforms)

Plain 1
Plateau 0.50
Mountain 0

Table 8    (Continued)

Main 
factors

Variables/
units

Classified as Rating

Soil (F2) Depth (V5) 
(cm)

 < –30 0
30–60 0.25
60–90 0.5
90–120 0.75
120– >  1

Texture (V6) 
(%)

C-SC-SiC 0
SCL-SiCL 0.25
CL-SiL-SL 0.5
LS 0.75
L 1

Drainage (V7) Very poor 0
Poor 0.25
Moderate 0.5
Good 0.75
Very good 1

Erosion (V8) Very low 1
Low 0.8
Moderate 0.6
High 0.4
Very high 0.2
Extremely high 0

Reaction (V9) 
(pH)

 < –6.5 0
6.5–7 1
7– >  0

Lime (V10) 
(%)

 < –5 1
5– >  0

Salinity (V11) 
(%)

0.01–0.03 1
0.03–0.05 0

Electric 
conductivity 
(V12) (µS/
cm)

 < –200 1
200– >  0

Cation 
exchange 
capacity 
(V13) 
(me/100 g)

10.66–25 0
25–47.13 1

Organic matter 
(K14) (%)

 < –3 0
3– >  1

N (V15)  
(ppm)

 < –750 0
750– >  1

P (V16) (ppm)  < –8 0
8–25 1
25– >  0
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Table 8    (Continued)

Main 
factors

Variables/
units

Classified as Rating

K (V17)  
(ppm)

 < –110 0
110–290 1
290– >  0

Ca (V18) 
(ppm)

 < –1150 0
1150–3500 1
3500– >  0

Mg (V19) 
(ppm)

 < –160 0
160–480 1
480– >  0

Fe (V20) 
(ppm)

 < –4.5 0
4.5– >  1

Zn (V21) 
(ppm)

 < –0.7 0
0.7– >  1

Mn (V22) 
(ppm)

 < –14 0
14–50 1
50– >  0

Cu (V23) 
(ppm)

 < –2 0
2– >  1

Seeds (F3) Seed yield 
(V24) 
(kilogram 
per decare)

 < –200 0
200–300 0.3
300–400 0.7
400– >  1

Grain yield 
(V25) 
(kilogram 
per decare)

 < –20.000 0
20,000.01–

30,000
0.3

30,000.01–
40,000

0.7

40,000.01– >  1

Fruit yield 
(V26) 
(kilogram 
per decare)

 < –1000 0
1000.01–2000 0.25

2000.01–3000 0.5

3000.01–4000 0.75

4000.01– >  1
Grain 

production 
(V27) (ton)

 < –100,000 0

100,000.01– 
200,000

0.25

200,000.01–
300,000

0.5

300,000.01–
400,000

0.75

400,000.01– >  1

Table 8    (Continued)

Main 
factors

Variables/
units

Classified as Rating

Vegetable 
production 
(V28) (ton)

 < –15,000 0
15,000.01–

30,000
0.25

30,000.01–
45,000

0.5

45,000.01–
60,000

0.75

60,000.01– >  1
Fruit 

production 
(V29) (ton)

 < –10.000 0
10,000.01–

20,000
0.25

20,000.01–
30,000

0.5

30,000.01–
40,000

0.75

40,000.01– >  1
Irrigation 

(F4)
Distance 

to water 
sources 
(V30) (m)

0–100 1

100.01–250 0.75
250.01–500 0.5
500.01–1000 0.25
1000.01– >  0

Groundwater 
depth (V31) 
(m)

32.85–50 1
50–75 0.5
75–110.95 0

Hydrogeology 
(V32)

Permeable zone 1

Semi-permeable 
zone

0.5

Impermeable 
zone

0

Climate 
(F5)

Temperature 
(V33) (°C)

 < –13 0
13– >  1

Precipitation 
(V34) (mm)

 < –550 0
550– >  1

Solar radiation 
(V35) (h/
min)

 < –6.5 0.5
6.5– >  1

Vegetation 
period (V36) 
(day)

 < –300 0
300– >  1

Human 
(F6)

Number of 
farmers 
(V37) 
(person)

 < –100 0

100–250 0.5

250– >  1
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