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standardized height (standh), elevation, relative slope 
position (rsp), and normalized height (normalh). 
Also, the PLSR model selected standardized height 
(standh), relative slope position (rsp), slope, and 
channel network base level (chnl base) to model SOC 
stocks. In both RF and PLSR methods, the standh 
and rsp factors were suitable parameters for estimat-
ing the SOC stocks. Predicting the spatial distribution 
of SOC stocks using environmental factors showed 
that the R2 values for RF and PLSR models were 
0.81 and 0.40, respectively. The result of this study 
showed that in areas with complex land features, ter-
rain attributes can be good predictors for estimating 
SOC stocks. These predictors allow more accurate 
estimates of SOC stocks and contribute considerably 
to the effective application of land management strat-
egies in arid and semiarid area.

Keywords  Moisture index · Partial least squares 
regression · Random forest · Terrain attributes

Introduction

Soil organic carbon (SOC) stocks are one of the most 
important properties of soil. It has a strong connection 
with soil behavior and production potentials, such as 
providing nutrients to plants, water retention, green-
house gas retention, resistance against physical deg-
radation, and yield. Therefore, its reduction can have 
detrimental effects on soil properties (Maia et  al., 
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2010; Venter et al., 2021). The effects of climate, soil 
characteristics, and management on SOC stock accu-
mulation have been extensively investigated (Rabbi 
et  al., 2015; Söderström et  al., 2014). However, the 
relative importance of these factors remains unclear, 
mainly in the arid and semiarid zones (Sabetizade 
et al., 2021).

Sanderman et al. (2017) stated that environmental 
factors such as land use changes affect the amount of 
SOC stocks (Chakan et  al., 2017). Therefore, envi-
ronmental factors are useful tools for predicting SOC 
stocks (Dong et al., 2021). Among the environmental 
factors, topography is an important factor in the for-
mation of soil in different climates. Topographic fea-
tures, including elevation, slope, aspect, curvatures, 
and other dependent factors, are effective factors in 
controlling the movement and maintenance of the 
soil water. Therefore, it will have influences on most 
soil characteristics, including SOC stocks (Hu et al., 
2018; Prietzel et al., 2016).

In areas with more topographic variation, a larger 
SOC stock variation is expected (Zhu et  al., 2019). 
In addition, studying the relationships between cli-
matic and environmental factors with the amount of 
SOC stocks in different regions can help us to predict 
SOC stocks. It can help us to simulate how the envi-
ronmental changes affect soil carbon levels; therefore, 
modeling can be a useful tool in studying the SOC 
stocks using these parameters (Prichard et al., 2000).

To study the SOC stocks, the development of 
digital soil mapping (DSM) methods and their 
applications (McBratney et  al., 2003) have created 
the ability to study the spatial distribution of SOC 
stocks using SCORPAN factors (e.g., soil, climate, 
organisms, material parent) (Bargaoui et  al., 2019; 
Minasny et  al., 2013). Many algorithms have been 
used for modeling SOC stocks, such as random for-
est (RF) model (Gomes et  al., 2019; Hengl et  al., 
2015; Hounkpatin et  al., 2018; Yang et  al., 2016), 
super vector machine (SVM) model (Minasny et al., 
2018; Ottoy et al., 2017; Wang et al., 2018), the mod-
els based on kriging (Gomes et al., 2019; Wang et al., 
2018), and partial least squares regression (PLSR) 
model (Jiménez et al., 2019; Keskin et al., 2019; Zhu 
et  al., 2019). The RF and PLSR methods are based 
on the well-known classification and regression. 
These models have been used in various digital soil 
mapping studies over the past decade (Behrens et al., 
2019). Huang et al. (2018) showed that these models 

predict the spatial distribution of soil properties using 
environmental factors with more accuracy.

Identifying suitable environmental factors for the 
SOC prediction model is still a challenging issue. 
Therefore, the aims of this study are the following: 
(1) modeling surface SOC stocks using environmen-
tal factors including terrain attributes, moisture index, 
and normalized difference vegetation index (NDVI); 
(2) selecting environmental factors using RF and 
PLSR models to achieve useful and effective environ-
mental factors to optimize the model; and (3) evalu-
ating the accuracy and comparing the efficiency of 
RF and PLSR models in modeling and estimating the 
spatial distribution of SOC stocks.

Materials and methods

Study area, land use, and sampling points

The study area is the northwest of Iran (Fig. 1A). It 
extends from latitudes of 45°52′00″ N to 46°23′00″ 
N and from longitudes of 36°24′00″ E to 36°46′00″ 
E with a total area of 1.14 × 103 km2 (Fig. 1B). The 
study area has an average annual temperature of 12 °C 
with 350–450  mm of annual precipitation. Grass-
lands, gardens and irrigated farming, dry farming, 
and watercourse are major land uses (Fig.  1B). The 
elevation of this region ranges from 1311 to 2224 m. 
The slopes are from 2 to more than 60%. Also, this 
area has a variety of complex aspects. The soil orders 
of this region include Entisols and Inceptisols. Some 
of the highlands of this region are rock outcrops (Ira-
nian soil and water institute, 1991).

For land use map, Landsat 8 satellite images were 
used with a spatial resolution of 30  m (Mohajane 
et al., 2018). Landsat 8 satellite images of the study 
area were downloaded from the earth explorer web-
site (https://​earth​explo​rer.​usgs.​gov/). Pre-processing, 
including atmospheric and radiometric calibrations, 
were performed in ENVI 5.3 software. To classify 
land uses, a maximum likelihood algorithm (Jensen, 
2005) was employed by controlling 200 points in dif-
ferent land uses and 200 points in Google Earth soft-
ware. Based on this, a land use map was obtained 
(Fig. 1B).

Multiple conditioned Latin Hypercube method 
(cLHm) was used to select the sampling points. 
Using this method, 210 points with a density of 0.184 
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were identified for sampling (Fig.  1B) (Ließ, 2020; 
Minasny & McBratney, 2006; Minasny et al., 2013). 
Sampling points were identified by Montana 680 
GPS-Garmin, and soil sampling was performed. All 
of the soil samples were collected from 8 June to 30 
July 2019.

Laboratory analysis and calculation of SOC stocks

After sampling, the soil samples were air-dried and 
passed through a 2-mm sieve. Organic Carbon (OC) 
was measured using the Walkley–Black method 
(Nelson & Sommers, 1982). Some researchers have 
shown that the recovery of OC by the Walkley–Black 
method is nearly 76 percent, as OC exists in a reduced 
form in organic compounds, and it can be oxidized to 

CO2. However, mineral carbonates exist in oxidized 
forms and do not participate in oxidation and reduc-
tion reactions (Schumacher, 2002). To overcome this 
problem, 1.32 as a correction factor, is often used to 
adjust for the complete recovery of OC (1).

where OCCorrected is the measured organic carbon in 
the laboratory.

Soil bulk density was measured by the cylinder 
method (Klute & Page, 1986), because the gravels 
cannot hold the SOC stocks; therefore, gravels were 
removed, and the actual amount of soil was calculated 
(Tian et  al., 2009). After removing the gravel, the 
equivalent soil depth was calculated by Eq. 2 (Ellert 

(1)OCCorrected = OCMeasured × 1.32

Fig. 1   Location of the study area in Iran and West Azerbaijan province (A), and locations of sampling points (B)
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et al., 2002). Finally, the amount of soil SOC stocks 
was obtained using Eq. 3 (Deng et al., 2014).

where hi is the equivalent soil depth (m), D is the soil 
depth (0.3  m), Bdmin is minimum soil bulk density 
(gr/cm3) in total samples (with removed gravel), and 
Bdi is the measured soil bulk (gr/cm3) density for i 
sample (with removed gravel).

Environmental factors including terrain attribute, 
vegetation, and moisture indices

Digital elevation model (DEM) of the study area, 
with 30 × 30 m2 spatial resolution, was acquired from 
the earth explorer website (https://​earth​explo​rer.​usgs.​
gov/). Based on the DEM data, 23 terrain attributes 

(2)hi =
D × Bdmin

Bdi

(3)SOCstocks = OCCorrected × Bdi × hi × 10

(Guo et  al., 2019) were derived using SAGA GIS 
software (Conrad et  al., 2015). All of these indica-
tors are given in Table 1. The terrain attributes were 
divided into three groups, including local, regional, 
and combined attributes which were calculated based 
on fixed window and neighboring pixels, contribut-
ing area concepts, and local and regional attributes, 
respectively (Quinn et al., 1991).

To obtain the moisture index, the evaporation of 
MODIS products and precipitation data of TRMM 
products from the Giovanni website were used 
(https://​giova​nni.​gsfc.​nasa.​gov/). These parameters 
were resampled to 30 × 30 m2 by R-Studio software, 
which adopts the digital elevation model (DEM) data 
as a covariant. After that, the moisture index was cal-
culated according to Ivanov’s moisture formula by 
R-Studio software (Eq. 4) (Wang et al., 2019).

(4)K =
R

E0

Table 1   The list of terrain 
attributes as predictors 
of SOC stock modeling 
derived from the DEM 
(Guo et al., 2019)

Classification Symbol Attribute Unit

Original DEM elevation Digital elevation model m
Local slope Slope Degree

aspect Aspect Degree
hcurv Plan curvature m−1

vcurv Profile curvature m−1

ruggedness Terrain ruggedness index Non-dimensional
convexity Terrain surface convexity Non-dimensional
convergence Convergence index %

Regional twi Topographic wetness index Non-dimensional
chnl base Channel network base level m
chnl alti Vertical distance to channel network m
vall depth Valley depth m
rsp Relative slope position Non-dimensional
slph Slope height [0–1]
normalh Normalized height %
standh Standardized height m
midslppst Mid-slope position Non-dimensional
sink Closed depressions Non-dimensional
texture Terrain surface texture Non-dimensional
mrvbf Multi-resolution valley bottom flatness Non-dimensional
mrrtf Multi-resolution ridge top flatness Non-dimensional
we Wind effect Non-dimensional
waf Effective air flow heights Non-dimensional

Combined LS Slope length (LS) factor m
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where E0 is the evaporation, K is the moisture index, 
and R is the annual precipitation (mm).

After preparing Landsat 8 satellite images from 
the USGS website and performing pre-processing, 
including all corrections made to satellite image 
bands, NDVI was calculated by Red (R) and infrared 
(NIR) bands, according to Eq. 5 in ENVI 5.3 software 
(Zhao et al., 2014).

Selecting environmental factors to predict spatial 
distribution of SOC stocks

In this study, at the first stage, Pearson’s correlation 
between SOC stocks and environmental factors was 
obtained. Then, SOC stocks were modeled by random 
forest (RF) (Gomes et  al., 2019; Hounkpatin et  al., 
2018) and partial least squares regression (PLSR) 
(Jiménez et  al., 2019; Keskin et  al., 2019) models 
to select environmental factors for estimation spatial 
prediction. The RF and PLSR methods divided the 
data into two groups: test and train (train = 170 data 
of 210 data and test = 40 data of 210 data) (RColor-
Brewer & Liaw, 2018). To perform the RF model, 
the most important parameters to predict SOC stocks 
were identified with SAS JMP software. To perform 
the PLSR model at first, SmartPLS software was used 
to identify environmental factors for estimating SOC 
stocks. Then, the selected data using SmartPLS soft-
ware were transferred to the Unscrambler software, 
and the major parameters were identified. Finally, the 
spatial distribution of SOC stocks was predicted by 
the RF and PLSR models in the R program.

Evaluation of spatial estimation methods

The SOC stocks data were obtained for the train and test 
sample sites from the assessment of spatial distribution 

(5)NDVI =
NIR − R

NIR + R

maps of the estimated SOC stocks. Different validation 
indices, including the root-mean-square error (RMSE), 
mean absolute deviation (MAD), coefficient of determi-
nation (R2), and concordance (ρc) were used to interpret 
the measured and estimated values of SOC stocks using 
the following equations (Eqs. 6, 7, 8, and 9) (Kuhn & 
Johnson, 2013).

where Obs is the measured value, Pred is the predic-
tion value extracted from the model, Obs is the aver-
age measured values, n is the number of sampling 
points, ρ is Pearson’s correlation coefficient between 
the predictions and observations, and µObs and µPred 
are the means of the predicted and observed values, 
respectively. σ2

Obs and σ2
Pred are the corresponding 

variances.

Results

Descriptive statistics of SOC stocks in different land 
uses

The summary statistical of SOC stocks has been 
shown for all land uses and each land use in Table 2. 
The results showed that the maximum, minimum, 

(6)R2 = 1 −

∑n

i=1
(Obs − Pred)2

∑n

i=1

�
Obs − Obs

�2

(7)RMSE =

�∑n

i=1
(Obs − Pred)

n

(8)MAD =

∑n

i=1
�Obs − Perd�

n

(9)ρc =
2ρσobsσpred

σ2
obs

+ σ2
perd

+
(
μobs − μperd

)2

Table 2   Descriptive 
statistics of SOC stocks (kg/
m2) data

Type of land use N Maximum Minimum Mean Median Skewness Kurtosis

All land use 210 4.5 0.51 2.7 2.57 −0.139 −0.746
Grasslands 96 4.5 1.28 3.23 1.28 −0.768 0.266
Dry farming 91 3.85 0.9 2.18 2.05 0.201 −0.248
Garden and irri-

gated farming
14 3.85 1.28 2.74 2.76 −0.228 −0.315

Watercourse 9 3.72 0.51 1.97 2.12 1.641 0.036
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mean, median, skewness, and kurtosis values for 
SOC stocks were 4.5, 0.514, 2.7, 2.571, −0.139, 
and −0.746, respectively, in the total land uses in 
the study area (Table  2). Also, the amount of SOC 
stocks for grasslands was the highest. In this land 
use, the presence of natural vegetation has increased 
SOC stocks, and thus soil quality has been improved 
(Roose et al., 2005). As a result of the higher micro-
organisms activity, SOC stocks were further accumu-
lated (Hooper et  al., 2000; Wang et  al., 2019). The 

maximum, minimum, mean, median, skewness, and 
kurtosis values for SOC stocks in grasslands were 4.5, 
1.286, 3.239, 3.20, −0.768, and 0.266, respectively 
(Table 2). The lowest amount of SOC stocks is related 
to the watercourse. Probably, soil erosion in this land 
use reduced the amount of SOC stocks (Wang et al., 
2010). The maximum, minimum, mean, median, 
skewness, and kurtosis values for SOC stocks in the 
watercourse were 3.729, 0.514, 1.977, 2.121, 1.641, 
and 0.036, respectively (Table 2).

Fig. 2   Pearson’s correlation (P-value < 0.05 level) between SOC stocks with environmental factors (including vegetation index, 
moisture index, and terrain attributes)
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Relative environmental factors with SOC stocks

Based on the Pearson correlation (p-value < 0.05 
level), SOC stocks were not correlated with the 
NDVI, and did not show any correlation with the 
aspect in the local group. Also, SOC stocks were not 
correlated with the midslppst (mid-slope position), 

and sink (closed depressions) in the regional group 
(Fig. 2). Rahmati et al. (2016) investigated the SOC 
stocks in the Lighvan watershed located in north-
western Iran in four land uses, including barren 
lands, weak grasslands, irrigated lands, and dry farm-
ing using the ETM+ sensor. Their results revealed 
that remote sensing was an ineffective method in 

Fig. 3   Total effect (%) of 
each environmental factors 
on estimating SOC stocks 
by RF model

0 5 10 15 20 25 30 35 40

slph

texture

standh

elevation

rsp

 normalh

Total effect (%)

Fig. 4   Environmental factors selected by the RF model, slope height (A), terrain surface texture (B), standardized height (C), eleva-
tion (D), relative slope position (E), and normalized height (F)
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estimating SOC in areas using vegetation cover. This 
result might attribute to the disturbance of vegetation 
in the spectral reflectance of OC.

Selecting environmental factors by RF model

The results of SOC stock modeling using the RF 
model showed that the environmental factors that 
have the greatest effect on the prediction of SOC 
stocks include standh, texture, slph, elevation, rsp, 
and normalh. The modeling results with these param-
eters showed that the total effects were slph, standh, 
texture, elevation, rsp, and normalh 34.32, 15.9, 
15.1, 14.6, 10.81, and 9.36 (%), respectively (Fig. 3). 
Therefore, the total effect of the slph parameter was 
the highest value, and the total effect of normalh was 
the lowest value. The importance of the RF model 
in estimating the factors is represented in Fig.  4. 

The estimated factors varied significantly: slph (2.4 
to 287.8), texture (0 to 56.85), standh (1307.09 to 
2212.45), elevation (1311 to 2224), rsp (0 to 1), and 
normalh (0.08 to 0.99). The highest value of these 
factors was in the west of the watershed, and the low-
est value was in the middle of the studied watershed.

Selecting environmental factors by PLSR model

The analytical model shows the effects of the stud-
ied environmental factors in Fig. 5. In this diagram, 
each line has a path and direction, which is the path 
coefficient, or the standardized beta coefficient of the 
multiple regression model. Each coefficient repre-
sents the value of the effect of the independent vari-
able on the dependent variable. Also, in path analysis, 
the unknown variable of error quantity (e2) remains, 
and the sum of the coefficient of explanation and the 

Fig. 5   PLS algorithm with all environmental factors (including moisture index, local, regional and combined attributes)
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variable of error is equal to one (R2 + e2 = 1) (Norris 
et al., 2015). The results of SOC stock modeling from 
the PLS algorithm in SmartPLS software showed that 
the path coefficient of moisture index was 0.099 and 
terrain attributes including local, regional, and com-
bination were 0.221, 0.395, and −0.023, respectively 
(Fig. 5).

The purpose of factor analysis is summarizing the 
data in the form of more effective factors in the model 
(Harman, 1976). Factor analysis results showed that 
local parameters including slope, ruggedness, eleva-
tion, convexity, and convergence and regional param-
eters including rsp, standh, normalh, texture, chnl 
base, slph, and eaf had significant effects on SOC 
stocks (Table 3). So, modeling was carried out with 
these parameters. The results of modeling by selected 
parameters using factor analysis showed no change in 
the R2 value (Fig. 6).

The results from PLSR analysis in Unscrambler 
software showed that among the selected param-
eters using factor analysis modeling in SmartPLS 

software (Zhu et al., 2019), the four factors of standh, 
rsp, slope, and chnl base demonstrated 40% of SOC 
stock variations. Also, for test data, this relationship 
was 34% (Fig. 7). The values of the path coefficient 
parameter for standh, rsp, slope, and chnl base were 
0.929, 0.885, 0.850, and 0.843, respectively (Fig. 6). 
Thus, among the selected parameters using factor 
analysis, they had a path coefficient of more than 
0.840. Therefore, the spatial distribution of the PLSR 
model in R software was selected for SOC stocks 
using these four factors (Fig. 7).

After obtaining the main parameters of the PLSR 
model, the PLSR relationship for the selected param-
eters using these four factors was obtained (Table 4). 
These relationships with a 40% coefficient of deter-
mination (R2) predict SOC stocks using the selected 
parameters by the PLSR model. The importance 
order of the PLSR model in terms of factor analysis 
is demonstrated in Fig.  8. There were the following 
variations in the parameter values: standh (1307.09 to 
2212.45), rsp (0 to 1), slope (0 to 1.09%), and chnl 

Table 3   The result of 
factor analysis

Parameters SOC stocks 
(kg/m2)

Moisture index Terrain attributes

Local Regional Combined

SOC stocks (kg/m2) 1.00
K 1.00
convergence 0.718
convexity 0.713
elevation 0.750
hcurv 0.508
ruggedness 0.751
slope 0.768
vcurv 0.505
chnl alti 0.531
chnl base 0.778
eaf 0.748
mrrtf −0.311
mrvbf −0.738
normalh 0.829
rsp 0.880
slph 0.769
standh 0.876
texture 0.801
twi −0.841
vall depth −0.513
we 0.518
ls 1.00
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base (1311 to 2224). The highest and lowest values 
are related to the northwest and middle of the water-
shed, respectively.

Spatial distribution of SOC stocks

The spatial distribution results of RF (Fig.  9A) and 
PLSR (Fig.  9B) models using training points (170 
points) are presented. The R2 values for RF and 
PLSR models are 0.81 and 0.40, respectively. Also, 
the accuracy criteria RMSE and MAE and ρc val-
ues for the RF model are better than the value of 
these parameters for the PLSR model (Table 5). The 

difference in spatial variation is due to the difference 
in selecting the factors of these models to estimate the 
SOC stock distribution, but generally, the pattern of 
the SOC stock distribution using the RF and PLSR 
methods was similar.

The results of R2 for the model validation using test 
points (40 points) of RF and PLSR methods are 0.76 
and 0.34, respectively. Also, accuracy criteria RMSE, 
MAE, and ρc values for the RF model are better than 
the values of these parameters for the PLSR model 
(Table 5). Generally, it can be concluded that the RF 
method is a more suitable method than PLSR in esti-
mating SOC stock distribution. Increasing elevation 

Fig. 6   PLS algorithm using selected environmental factors by factor analysis

Fig. 7   The relative impor-
tance of covariates for SOC 
stock prediction using the 
PLSR model
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and topography variation increases the rate of spatial 
changes in SOC stocks. As a key factor in soil forma-
tion, topography is a major factor which has a signifi-
cant effect on soil properties. Therefore, it is expected 
that in areas with high topographic changes, the 
SOC stocks have greater changes (Zhu et al., 2019). 
The SOC stock distributions in the western and east-
ern regions were the highest amounts (Fig.  9). The 
increase in elevation has probably reduced anthropo-
genic activity because of the return of plant residues, 
and the accumulation of plant residues has increased 

the amount of SOC stocks in these areas (Bonfatti 
et al., 2016).

Discussion

The benefits of SOC stock in agricultural develop-
ment have been well known, and many models have 
been proposed to understand and predict SOC stock 
(Gurung et al., 2020). But what is important is to pre-
dict the amount of SOC stock using the most efficient 

Table 4   PLS regression model of SOC stocks at 0–30 cm soil depth (n = 170)

Y is SOC stocks (kg/m2), x1, x2, x3, and x4 are standh, rsp, slope, and chnl base respectively

Model equation R2

Y = 9.6E − 4 x1 + 0.495 x2 + 9.01 E − 3 x3 + 7.837 E − 4 x4 − 0.253 0.40**

Fig. 8   Environmental factors selected by the PLSR model, standardized height (A), relative slope (B), slope (C), and channel net-
work base level (D)
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indicators. In this study, we tried to select the best 
environmental factors for predicting the amount of 
SOC stock using RF and PLSR models. The results 
showed that the prediction accuracy of these models 
to predict SOC stock varied (Tables 4 and 5). These 
differences in model prediction can be due to differ-
ences in the inconsistent state of nature, the nature of 
the model, and differences in the characteristics of the 
sampling points (Zhao & Li, 2017). Therefore, it is 
not possible to avouch which models are inefficient 
for predicting SOC stock, but it is clear that the accu-
racy of the predictive models varies (Gurung et  al., 
2020).

In this study, the results of the PLSR model by 
selecting the parameters using path analysis showed 
no change in the R2 value (Table 3, Figs. 6, 7, and 
8). We concluded that path analysis can be useful 
in recognizing the effects of variables on each other 
and prioritizing them in predicting the spatial vari-
ation of SOC stocks (Jiménez et  al., 2019). Factor 
analysis using the studied indicators showed that 
the standh index had the maximum effect on SOC 

stocks because in many areas the climate is con-
trolled by topography variations (Gao et al., 2015). 
Probably, increasing the elevation affects the soil 
formation processes such as increasing clay, lime-
stone leaching, and reducing soil acidity (Rhoton 
et al., 2006). Other chosen parameters for path anal-
ysis were the slope and relative slope position (rsp). 
These parameters significantly affect the amount of 
SOC stocks, because the following particles that are 
transferred to the lower areas by erosion accumulate 

Fig. 9   The spatial predicted of SOC stocks at 0–30 cm soil depth using the RF (A) and PLSR (B) models

Table 5   Calibration and validation indices of SOC stocks 
(0–30 cm) predicted by RF and PLSR methods

Methods R2 RMSE (kg/m2) MAD (kg/m2) ρc

Training points (n = 170)
RF model 0.81 0.44 0.32 0.83
PLSR model 0.40 0.70 0.56 0.51
Testing points (n = 40)
RF model 0.76 0.42 0.30 0.74
PLSR model 0.34 0.73 0.60 0.44
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at the foot slope and increase the amount of SOC 
stocks in these areas (Zhao & Li, 2017). Another 
effective factor in path analysis was the chnl base. 
The chnl base, with slope, plays an essential role in 
the movement of materials and erosion. Therefore, 
this parameter has a fundamental impact on the 
SOC stocks (Maerker et  al., 2016; Schillaci et  al., 
2017; Shahini Shamsabadi et al., 2019).

In this study, some differences in the relative 
contribution of attributes were observed by the RF 
model. In the RF model, the main factor for esti-
mating the amount of SOC stocks was slph; how-
ever, other parameters were selected to estimate the 
amount of SOC stocks including standh, elevation, 
rsp, and normalh (Fig. 3). The complex topography 
in this area may have led to the heterogeneity of 
SOC stock estimation because in areas with complex 
topography, there are many uncertainties in estimat-
ing SOC stocks. In fact, it is expected that in these 
areas, changes in the topographic pattern cause 
changes in slope-dependent parameters. As a result, 
it makes the different slope and rsp, making diffi-
cult the estimation of SOC stocks. However, a deep 
understanding of the spatial variation of SOC stocks 
and its effective factors has not yet been achieved 
(Zhu et al., 2019). But in these and similar areas, ele-
vation, slope, and aspect with their related parame-
ters are probably the main factors in controlling SOC 
stocks, because they cause changes in climate, hydro-
logical, and environmental conditions (Qin et  al., 
2016). The changes in these conditions are related 
to the response of topography variations, and as a 
result, they will affect the SOC stocks (Zhao & Li, 
2017). The texture is another factor that was selected 
by the RF model (Fig. 3). It showed the softness and 
roughness of the ground earth surface. By the eleva-
tion of this index, the amount of surface roughness 
probably increased, so it acts as a barrier against par-
ticle transfer (Iwahashi & Pike, 2007).

Conclusions

In this study, we aimed to select environmental fac-
tors to predict and estimate the spatial distribution 
of SOC stocks using RF and PLSR models. The 
overall results showed that the RF model was more 
accurate than the PLSR model in selecting suitable 
environmental factors for estimating SOC stocks. In 

both RF and PLSR models, selected standh and rsp 
factors were effective parameters in estimating SOC 
stocks, which indicates that the standh and rsp play 
important roles in determining the amount of SOC 
stocks, and by entering these parameters and the 
other important factors in these models, the amount 
of SOC stocks can be easily obtained. Neverthe-
less, because of the complex relationships between 
SOC stocks and related environmental factors, more 
detailed studies are needed to find causal relation-
ships and enhance the accuracy of SOC stock esti-
mates. As the shortage of SOC stocks is a new 
threat to land degradation and a reduction in the 
agricultural production potential, simple ways need 
to be found to estimate SOC stocks.

Data Availability  The datasets generated during  and/or 
analyzed during the current study are  available from the cor-
responding author on reasonable  request. Supplementary data 
associated  with this article can be found, in the online ver-
sion,  at  https://​earth​explo​rer.​usgs.​gov/ and  https://​giova​nni.​
gsfc.​nasa.​gov/​giova​nni/.
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