
Vol.:(0123456789)
1 3

https://doi.org/10.1007/s10661-021-09354-x

Statistical analysis of active fire remote sensing data: 
examples from South Asia

Jyoti U. Devkota   

Received: 23 February 2021 / Accepted: 30 July 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

collected by such platforms, important information on 
impact of forest fires can be indirectly assessed.

Keywords  Variogram · Autocorrelation · Spatial 
interpolation · Ordinary kriging

Introduction

Spatial data play an important role in today’s world. 
These data are collected with reference to geographi-
cal locations. The spatial data of active fire are col-
lected by various satellites. The sensors in these 
satellites are used to map area burned and assess char-
acteristics of active fire. The effects on the ecology 
after these fires subside are also characterized with 
these sensors. Different space and airborne sensors 
that have been used to assess fire behavior are dis-
cussed in detail by Lentile et al. Changes in the envi-
ronment before and during these fires can be detected 
by these sensors. Post-fire spectral response can also 
be assessed by these devices (Lentile et al., 2006).

Active fires in South Asia are primarily vegetation 
fires. There are many reasons for these fires. Agri-
culture residues such as straw, stalks, and husks are 
burnt by farmers. This is also done to clear the land 
for agriculture for next season. Although this has 
been one of the major contributors to air pollution 
of South Asia, it is thought to be the best and least 
expensive method for land clearing. This method has 
been thought to promote the growth of grasses in the 

Abstract  Active fires emit aerosols and greenhouse 
gases in the atmosphere. In this paper, the behavior 
of active fires over a period of 1 year in Nepal, Bhu-
tan, and Sri Lanka is studied using spatial statistics. 
In these countries, these fires are mainly forest and 
vegetation fires; they wreak havoc to the environ-
ment by damaging flora and fauna and emitting toxic 
gases. This study is based on data acquired through 
remote sensing of data acquisition platform, NASA’s 
MODIS. Spatial statistics is used here to study the 
incidence of such fires with respect to geographi-
cal location. The behaviors of parameters of various 
autoregressive models like Spatial Durban Model, 
Spatial Lag Model, Spatial Error Model, Manski 
Model, and Kelegian Prucha Model are minutely 
analyzed. The best model with the highest pseudo 
R2 is selected. The spatial behavior of the fire radia-
tive power (FRP) for the three countries is also pre-
dicted using spatial interpolation and kriging. The 
burning potential of vegetations in unsampled areas 
is envisaged by thus predicting FRP. This study gives 
a country-wise perspective to the behavior of fire; 
this is with reference to South Asia. It holds a great 
significance for countries of the developing world 
which lack a strong backbone of good-quality offi-
cial records. Through the statistical analyses of data 
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farms. It is also thought to boost agriculture and tim-
ber produce. But some fires are also caused by neg-
ligence and ignorance of the smokers and passersby. 
Hunters, poachers, grazers, and non-timber product 
collectors also deliberately set these forests on fire 
(Kunwar & Khaling, 2006).

Forest fires are one of the major reasons for forest 
degradation (Matin & Chitale, 2017). Reddy and Bird 
et al. claim that in recent years in South Asia: “51% 
of forest grid cells were affected by fires.” Tropical 
moist deciduous forest and tropical dry deciduous for-
est have the highest incidences of forest fires (Reddy 
et  al., 2019). Vadrevu et  al. concluded that in South 
Asia, India had the highest number of annual fires fol-
lowed by Pakistan and others. They also found that 
Nepal (82.84%) and Bhutan (75.56%) had the highest 
percentage of human-initiated forest fires (Vadrevu 
et al., 2019).

Many studies on fire hazards have been con-
ducted. For example, Sakellariou et  al. explored 
the variability of fire hazard in the Greek island of 
Skiathos and performed a spatiotemporal analy-
sis (Sakellariou et  al., 2020). Marin et  al. stud-
ied the behavior of these forest fires in Mexico by 
using “georeferenced fire records” for the period of 
2005–2015. The spatial and temporal relationships 
were examined with a “multiscalar drought index, 
the Standardized Precipitation-Evapotranspiration 
Index (SPEI)” (Marin et  al., 2018). Su et  al. used 
a geostatistical approach integrated with machine 
learning. It was used to improve the mapping accu-
racies of aboveground biomass in the northern 
Guangdong Province of China (Su et  al., 2020). 
Eskandari et al. assessed quantitative temporal rela-
tionships using correlation and regression analyses. 
Statistically significant relationships are identified 
and described using climatic data from the Golestan 
Meteorological Administration and Fire Statis-
tics, Iran. Spatial relationships between climatic 
variables and fire occurrence are also determined 
(Eskandari et al., 2020).

Statistics is an evidence-based and data-based 
approach to handling an issue. These issues can come 
from diverse fields. Today’s world is the world of big 
data. Satellite data are also a source of big data. Sta-
tistical methods have a scope of vast interdisciplinary 
applications. For example, Johanna et  al. have dem-
onstrated benefits of integrating geostatistical covari-
ance structure and ANOVA structure to linear mixed 

modeling framework. Examples from soil sciences 
are taken to demonstrate their findings (Johanna et al., 
2020). Similarly, Bhunia et al. have used geostatisti-
cal models to study the spatial variability of lateritic 
soils. Soil nitrogen, pH, electrical conductivity, phos-
phorus, potassium, and organic carbon were meas-
ured. Surface maps of soil properties were prepared 
using the semivariogram model through Kriging 
techniques (Bhunia et al., 2018). Similarly, multivari-
ate geostatistics has been used at the bus stop level on 
public transportation demand modeling (Marques & 
Pitombo, 2021). And non-linear geostatistical models 
are seen to be ideal in identification of geological and 
geometrical complexity of gold deposits (Afonseca & 
Costa, 2021).

This paper tries to fill the knowledge gap through 
a detailed statistical study of intensity of vegetation 
fire. Intensity of fire, also called fire energy output, is 
measured by fire radiative power (FRP). This inten-
sity is also represented by brightness. Geostatistical 
analysis using variograms is also conducted here. 
Here, spatial correlation is estimated and modeled. 
In addition to this, this paper also aims to understand 
and predict the behavior of active fire in South Asia 
with the help of multivariate statistics. It also delves 
into the structural relationship between the variables. 
Bhutan, Nepal, and Sri Lanka are taken as exam-
ples from this region. Using active fire 1-year satel-
lite data, it analyzes the country-wise behavior with 
respect to FRP and brightness. It also tries to explain 
the variogram of FRP with a mathematical model. 
Then, it predicts FRP of unsampled areas of vegeta-
tion using this model. This helps in projection of FRP 
of vegetation in unsampled areas if they caught fire.

The arrangement of this paper is in the following 
manner. This section is followed by the “Materials 
and methods” section, then by the section “Results 
and discussion.” This is followed by the “Conclu-
sions” section.

Materials and methods

Data

This study is based on active fire satellite data for 
three countries. These three countries are Bhu-
tan, Nepal, and Sri Lanka. These are observations 
made by NASA’s Moderate Resolution Imaging 
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Spectroradiometer (MODIS) satellite, from 18 Sep-
tember 2019 to 17 September 2020. This satellite 
noted 189, 982, and 441 cases of active fires in Bhu-
tan, Nepal, and Sri Lanka, respectively, during this 
1-year period.

Aboard Terra and Aqua satellites, MODIS is 
the main instrument. Terra orbits the earth around 
morning by passing north to south across the equa-
tor. Aqua orbits in the afternoon. “Terra MODIS and 
Aqua MODIS are viewing entire earth surface every 
1 to 2 days. They acquire data in 36 spectral bands or 
groups of wave lengths” (NASA, 2021).

“NASA’s FIRMS give the global fire locations 
(hotspots).” NASA’s FIRMS is an active fire loca-
tions data which represent the midpoint pixel measur-
ing 1 km × 1 km. It extracts from the MODIS Image 
using the thermal anomalies algorithms. FIRMS is 
part of NASA’s Earth Observing System Data and 
Information System (EOSDIS). EOSDIS and twelve 
other Distributed Active Archive Centers (DAACs) 
provide access to data from NASA’s Earth Science 
Missions (Fithria A & Ani A, 2017).

A comparison between data collected through a 
field survey of the Korea Forest Service (KFS) and 
satellite active fire data of MODIS was done by Lim 
et  al. Examination of the spatial autocorrelation and 
related factors by fire source indicated that MODIS 
data had higher spatial autocorrelation. These results 
were found to be highly significant with respect to cli-
mate factors. KFS data were collected from post-fire 
surveys; they resulted in low spatial autocorrelation 
and reduced model accuracy owing to the wide distri-
bution of data (Lim et al., 2019).

In this paper, the following statistical methods are 
used.

Spatial statistics

An important concern in here is to examine spatial 
patterning and spatial dependence among variables 
of interest. This means that values close together in 
space tend to be more familiar than those that are fur-
ther apart (Lloyd, 2010).

Spatial autocorrelation

A key tool for the analysis of spatial autocorrela-
tion is Moran’s I coefficient. It measures spatial 

autocorrelation with neighbors of observations that 
are classified into various contiguity schemes.

Regression

An assumption of standard ordinary least squares 
regression is the independence of observations. But 
this assumption rarely holds true for spatial data. 
Spatial autoregressive models provide a means for 
accounting the spatial structure of the data. The dif-
ferent autoregressive models are namely (a) Spatially 
Lagged X model, (b) Spatial Error model, (c) Spatial 
Durban Error model, (d) Spatially Lagged Y model, 
(e) Spatial Durban model, (f) Manski All Inclusive 
model, and (g) Kelegian Prucha model.

Variogram

It is used to measure the spatial correlation. Here, the 
word variogram is synonymous with semivariogram. 
It plots a semivariogram as a function of distance. 
Here, a semivariogram is defined mathematically as 
follows (Bivand et al., 2013):

where, under the assumption of intrinsic stationarity,

Here, Z(s) is the observation of a variable at location 
s.

Under the assumption that a semivariogram can be 
estimated from Nh sample data pairs Z

(
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arbitrarily chosen sample locations, measurements 
on Z are available and prediction (interpolation) is 
required at non-observed locations s0 . So, here in 
variogram modeling, the variogram is often used for 
spatial prediction (interpolation) or simulation of the 
observed process based on point observations.

Inverse distance weighted (IDW) interpolation is 
a non-geostatistical method of spatial prediction. The 
local influence of each measured point diminishing 
with distance is the main assumption of this method. 
Here, exponent (p) controls the distance. The lower 
the exponent, the more uniformly are the neighbor 
values incorporated in this interpolation. “If p = 0, 
the weights do not decrease with the distance and the 
estimated values at unsampled locations are equal 
to the mean of all the measured values; the value 
p = 2 is typically set by default in most applications, 
meaning that the importance of each measured loca-
tion in determining a predicted value diminishes as a 
function of squared distance” (Gomez-Losada et  al., 
2019). Interpolation can also be done using a geosta-
tistical model such as ordinary kriging (OK). In OK 
interpolation, the function determining the weights is 
called a variogram model. This model is a function 
fitted to the (empirical) variogram. The autocorre-
lation structure of the observed pattern is described 

by this variogram. OK plays a critical role in spatial 
estimation. The interpolated estimates from IDW are 
always within the range of the observed values at 
sample locations. This differentiates IDW from OK 
(Bivand et al., 2013).

The methodology used in this paper is represented 
by the flowchart given in Fig. 1.

Results and discussion

An overview of incidence of active fire in the three 
countries of South Asia is given in Fig. 2. Here, the 
entire region is divided into grids. The incidences of 
active fire in these three countries are shown against 
this backdrop. The FRP of these fires is also given in 
figures on the right side of Fig. 2. The shades are from 
light to dark. Here, the darkest color indicates FRP 
of the lowest intensity. And the lightest color indi-
cates FRP of the highest intensity. FRP can be used 
to quantify burned biomass, as it measures radiant 
energy released per unit time by burning vegetation 
(Costa & Fonesca, 2017). It can be seen from the map 
of Bhutan that the incidence of active fire is in the 
border areas, which adjoin the Indian states of West 
Bengal and Assam. The incidences of active fire in 

Cleaning of active fire data

Study the behavior of this data

Study FRP and brightness in detail

Representation of data for Nepal, Bhutan and Sri Lanka – Box plot and Histogram

Descriptive Statistics Fitting Spatial Models Fitting and Prediction using 

Variogram Models

Fig. 1   Statistical methodologies used in the analysis of active fire data
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Bhutan

Nepal

Sri Lanka

Fig. 2   Active fire and its FRP in Bhutan, Nepal, and Sri Lanka from 18 Sept. 2019 to 17 Sept. 2020
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Nepal are in the border areas, which adjoin the Indian 
states of Uttar Pradesh and Bihar. There are also inci-
dences of fire in the hilly regions of Nepal. As seen 
from Fig. 2, the incidences of active fire are higher in 
the eastern and southern coasts of Sri Lanka.

The behavior of these fires is described in detail in 
Table 1 and Table 2. As seen from Table 1, in Bhu-
tan, out of 189 observations of active fire, 176 took 
place in daytime and 13 during nighttime. Also, 188 
of these were presumed vegetation fires, and 1 was 
due to other static land sources. In Sri Lanka, out 
of 441 incidences, 422 incidences of active fire took 
place during the daytime and 19 during the nighttime. 
Here, 420 were presumed vegetation fires, 4 were due 
to other static land sources, and 17 were offshore. 
In Nepal, out of 982 incidences of active fire, 913 
occurred during daytime and 69 during nighttime. 
Presumed vegetation fires were sources of 981 fires 
and other static land sources generated 1 fire.

The variables closely related to the behavior of 
active fire are brightness and FRP. The behavior of 
these variables in three countries is summarized in 
Table  2, in terms of descriptive statistics. It is seen 
that although Bhutan had 189 incidences of fire in 
1 year, it had the highest mean FRP among the three 
countries. The statistics describing FRP such as the 

quartiles and coefficient of variation (CV) are the 
highest for Bhutan.

This implies that although the incidence of fire 
is the least, in comparison to that of Nepal and Sri 
Lanka, the quantity of biomass burning in these fires 
is the highest. Nepal has the highest incidence of 
active fires with 982. But the average FRP is much 
lower than that of Bhutan. The median FRP for Nepal 
is the lowest. Sri Lanka has the most consistent type 
of active fire. The coefficient of variation is the lowest 
among these three countries. The spread of the varia-
ble brightness of active fire is only 2.7% of the mean. 
The spread of FRP is 68% of the mean. This indicates 
that Sri Lanka is most consistent with respect to the 
intensity of fire. This pattern is also reflected in box 
plots shown in Fig. 3 and Fig. 4. It can be seen from 
these figures that Bhutan has many outlier values on 
the higher range of the data. This means that although 
the number of such fires was the least, the intensity 
of these fires in terms of brightness and FRP was the 
highest. The box plot of Sri Lanka is the most consist-
ent with the minimum number of outliers. The histo-
gram of the behavior of brightness and FRP is given 
in Fig. 5 and Fig. 6. The brightness of active fire takes 
a nearly symmetrical shape in Sri Lanka. The FRP 
of most of active fires is between 0 and 20 MW for 

Table 1   Details of active 
fire from 18 September 
2019 to 17 September 2020

Country Total number Types of fire

Time Place

Daytime Nighttime Presumed 
vegetation fires

Static land 
source

Offshore

Bhutan 189 176 13 188 1 0
Sri Lanka 441 422 19 420 4 17
Nepal 982 913 69 981 1 0

Table 2   Descriptive 
statistics for active fire data 
for Bhutan, Nepal, and Sri 
Lanka

Sr. No Country Min Max Mean Median SD Q1 Q3 CV

Brightness in Kelvin
1
2
3

Bhutan
Nepal
Sri Lanka

300.5
300
3000

398.7
370.3
354.8

318.2
317.7
320.6

315.8
317.7
320.1

14.691
9.874
7.279

309.1
310.6
316.1

323.5
323.4
320.6

4.617
3.108
2.27

Fire radiative power (FRP) in MW
1
2
3

Bhutan
Nepal
Sri Lanka

3.50
2.4
3.3

417.60
287.10
88.1

26.75
18.42
16.12

14.30
12.2
12.4

44.277
22.152
10.915

9.20
8.1
9.0

27.30
19.98
19.8

165.496
120.23
67.715
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Nepal and Sri Lanka. This is also validated by the 
Q3 values of Table  2. But for Bhutan, although the 
incidences of such fires are very low in comparison 
with those of the Nepal and Sri Lanka, the intensity 
in terms of FRP is the highest.

The residuals obtained from simple linear regres-
sion are tested for spatial dependence using Moran’s 
I. It is a test under the null hypothesis that the data 
are not spatially correlated. A significant value 
of Moran’s I standard deviation indicates that the 

regression residuals are spatially correlated. This is 
based on a simple non-spatial regression model of 
brightness on scan, FRP, and brightness_T31 that 
is constructed. The dependent variable brightness 
is channel 21/22 brightness temperature of the fire 
pixel measured in Kelvin. The independent variable 
scan represents 1-km fire pixel and is representative 
of actual pixel size. The independent variable FRP 
represents fire radiative power measured in mega-
watts. And brightness_T31 is channel 31 brightness 

Bhutan Nepal Sri Lanka
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Fig. 3   Box plot of brightness of active fire in the three countries
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Fig. 4   Box plot of FRP of active fire in the three countries
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temperature of the fire pixel measured in Kelvin. For 
autoregressive models, the neighbor file is based on 
5 nearest neighbors contiguity scheme. These 5 near-
est neighbors are identified using great circle dis-
tances. In these autoregressive models, brightness is 
regressed on scan, FRP, and brightness_T31.

Among the six autoregressive spatial models 
tested for all the three countries, the one with maxi-
mum pseudo R2 is selected. These autoregressive 
models are namely (a) Spatially Lagged X model, 
(b) Spatial Error model, (c) Spatial Durban Error 
model, (d) Spatially Lagged Y model, (e) Spatial 
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Fig. 5   Histogram of brightness of active fire in the three countries
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Fig. 6   Histogram of FRP of active fire in the three countries
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Durban model, (f) Manski All Inclusive model, and 
(g) Kelegian Prucha model.

Spatially Lagged X model (Local Spatial Model) 
given below in Eq.  (5) is the most suitable model 
for Bhutan:

This is also seen in Table  3. This model 
explains how neighboring explanatory variables 
behave. The behavior of incidence of active fire 

(5)y = X� +WXT + e

Table 3   Parameters of the spatial models for three countries

Sr. No Country Model Model parameters Accuracy
(Pseudo R2)

Remarks

1 Bhutan Spatially Lagged X model (Local)
Y = X� +WXT + e

�0 = 86.006 ∗,

�1 = −5.631 ∗

�2 = 0.636 ∗

�3 = 0.255 ∗

(lag coefficients)
W1 = 3.269

W2 = 0.14

W3 = 0.004

0.842 Best model

SEM Spatial Error (Global), Y = X 
� + u, u = �Wu + e

�0 = 113.231 ∗,

�1 = −5.255 ∗

�2 = 0.697 ∗

�3 = 0.258 ∗

(spatially lagged error multiplier)
λ = 0.144

0.839 Second-best model

2 Sri Lanka Spatial Durban Error model (Local)
Y = X� +WX� + u,

u = �Wu + e

�0 = 174.398 ∗,

�1 = −8.712 ∗

�2 = 0.429 ∗

�3 = 0.581 ∗

(lag coefficients)
W1 = −0.395

W2 = 0.067

W3 = 0.093*
(spatially lagged error multiplier)
λ = 0.312*

0.808 Best model

SEM Spatial Error (Global),
Y = X � + u, u = �Wu + e

�0 = 197.073 ∗,

�1 = −8.621 ∗

�2 = 0.423 ∗

�3 = 0.571 ∗

(spatially lagged error multiplier)
λ = 0.342*

0.806 Second-best model

3 Nepal Spatial Durban Error model (Local)
y = X� +WX� + u,

u = �Wu + e

�0 = 91.7403 ∗,

�1 = −6.038 ∗

�2 = 0.897 ∗

�3 = 0.315 ∗

(lag coefficients)
W1 = −0.479

W2 = −0.13 ∗

W3 = 0.01

(spatially lagged error multiplier)
λ = 0.407*

0.771 Best model

SEM Spatial Error (Global),
Y = X � + u, u = �Wu + e

�0 = 59.168 ∗,

�1 = −6.02 ∗

�2 = 0.874 ∗

�3 = 0.316 ∗

(spatially lagged error multiplier)
λ = 0.411*

0.769 Second-best model
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in neighboring area affects the behavior of active 
fire in that area. Here, the X values of neighbor-
ing areas affect the incidence of active fire in that 
area. But there is no global spillover effect. Active 
fire data of Bhutan shows just significant spatial 
correlation at α = 0.05, and Moran’s I standard 
deviation of the residual of the non-spatial simple 
linear model is 1.6883. This implies that the inci-
dence of active fire in the neighboring area signifi-
cantly affects active fire in that area with a p value 
of 0.04568. But here, the sign of the independent 
variables, namely scan, brightness_T31, and FRP, 
does not change when the coefficients of the lag 
variables are considered. These lag variables repre-
sent neighboring areas.

The Spatial Error Model (Global) is also studied as 
the second-best model. It is explained by Eqs. (6) and (7):

Here, λ is a spatially lagged error multiplier. In a 
global model, the impact of one region spills over to 
the other, even when they are not specified as neigh-
bors. So the behavior of global model in explaining 
the incidence of active fire is also studied. As seen 
from Table 3, the accuracy of these models, explained 
by pseudo R2, takes the values 0.842 and 0.839 
respectively.

(6)Y = X� + u

(7)u = �Wu + e

Table 4   Variogram modeling of 1-year FRP data

Sr. No Country Variogram model Parameters Sum of squares between 
variogram model and sample 
variance

RMSE
(IDW-cross 
validation)

RMSE
(OK)

1 Bhutan Matern Sill = 1680.89, range = 772.077, 
kappa = 0.05

211,896,984 37.678 39.639

2 Nepal Matern Sill = 64.868, range = 407.119, 
kappa = 0.05

58,591,690 19.099 20.829

3 Sri Lanka Matern Sill = 29.243, range = 200.762, 
kappa = 0.05

179,552 11.094 10.656

20
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10
0

12
0

Fig. 7   Spatially interpolated FRP for Bhutan with white dots as observed values of 1-year FRP data
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As seen from Table  3, for Sri Lanka, the Spatial 
Durban Error model represented by Eqs. (8) and (9) 
is the most suitable model:

It is a local model. It has lag coefficients that study 
the impact of the neighboring area on the explana-
tory variables. But here, the sign of the independent 
variables, namely brightness_T31 and FRP, does not 
change when the coefficients of the lag variables are 
considered. Moran’s I statistics standard deviation 
takes a value of 6.2236 and shows a high significant 
spatial correlation with a p value of 2.43E–10. This 
implies that the incidence of active fire in Sri Lanka 
shows a very high spatial correlation.

But Spatial Error Model (Global) is also studied 
as the second best-model. It is explained by Eqs.  6 
and 7 given below. Here, λ is a spatially lagged error 
multiplier. In a global model, the impact of one 
region spills over to the other, even when they are 
not specified as neighbors. The pseudo R2 values for 
the first and the second models are 0.808 and 0.806, 
respectively.

For Nepal, active fire data is highly spatially cor-
related. Here, Moran’s I statistics standard deviation 
takes a value of 11.239 with a p value < 2.2E–16. 
Among the three countries, Nepal’s data shows 

(8)Y = X� +WX� + u

(9)u = �Wu + e

the highest spatial correlation. Bhutan’s active fire 
data shows the least spatial correlation. At α = 0.01, 

10
20

30
40

50

Fig. 8   Spatially interpolated FRP for Nepal with white dots as observed values of 1-year FRP data
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Fig. 9   Spatially interpolated FRP for Sri Lanka with white 
dots as observed values of 1-year FRP data
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Moran’s I statistics is not significant for Bhutan, but 
they are very highly significant for Sri Lanka and 
Nepal.

Similar to Sri Lanka, Spatial Durban Error 
model, given in Eqs. (8) and (9), is the most suit-
able model.

Here, the independent variables scan and brightness_
T31 change the sign for the lag variables. This is related 
to neighboring areas. But for the other independent vari-
able (FRP), no change in sign is seen.

But the Spatial Error Model (Global) is also stud-
ied as the second-best model. It is explained by Eqs. 
(6) and (7). The pseudo R2 values for the first and the 
second models are 0.771 and 0.769 respectively.

Values with asterisks (*) are statistically 
significant.

The results of variogram modeling are given in 
Table  4. It has been used in quantifying the vari-
ability of vegetation FRP. Four variogram models 
(Matern, Spherical, Exponential, and Gaussian) were 
tested. Matern function with the smallest root mean 
square error seems to be the most suitable model in 
explaining the variogram of sample FRP of the three 
countries. Matern function has been successful in 
variogram modeling in other situations. Mianasny 
and McBratney have highlighted the importance of 
(semi) variogram as keystone to geostatistics and 
the flexibility of Matern function in explaining the 
variogram of soil variability (Minasny & McBratney 
2005). Matern function is a special case of expo-
nential function and fits the soil parameters’ vari-
ogram close to the origin (Shaheen & Iqbal 2018). 

Fig. 10   Residuals from the 
ordinary kriging of 1-year 
FRP data for Bhutan

Fig. 11   Residuals from the 
ordinary kriging of 1-year 
FRP data for Nepal

Environ Monit Assess (2021) 193: 608608   Page 12 of 14



1 3

The FRP of the burning potential of the biomass at 
the unsampled area is predicted using IDW and OK. 
The results of interpolation FRP using IDW for the 
unsampled areas of Bhutan, Nepal, and Sri Lanka 
are given in Fig.  7, Fig.  8, and Fig.  9. The darker 
the color, the lower is the interpolated value of FRP 
for the unsampled areas. IDW is a non-geostatistical 
model, and here p = 2.

The residuals obtained from the OK of the 
Matern model given in Table  3 are given in 
Fig. 10, Fig. 11, and Fig. 12. We see that the resid-
uals take the highest value for Bhutan and the low-
est value for Sri Lanka. As seen from Table 4, the 
root mean square error (RMSE) for Sri Lanka is 
the lowest for predictions made by IDW and OK. 
This is because of the consistent nature of FRP 
data. Here, RMSE are the prediction errors from 
IDW and kriging. We see that predictions from 
OK have higher RMSE than those from IDW for 
Bhutan and Nepal.

Conclusions

Forest fires wreak havoc to the environment and dam-
age the flora and fauna of that region. These fires in 
South Asia are either natural or manmade. In this 
paper, the intensity of these fires is statistically ana-
lyzed. FRP and brightness data are used. Three coun-
tries from South Asia namely Bhutan, Nepal, and Sri 
Lanka are taken as a model in this study of active 
fires.

Bhutan had minimum occurrences of active fire in 
the 1-year period of Sept. 2019 to Sept. 2020. This 
was in contrast to Nepal, which had the highest inci-
dence. But some of these fires in Bhutan were of very 
high intensity. These fires are mainly vegetation fires 
in all the three countries. The coefficient of variation 
of brightness and FRP was highest in Bhutan, in com-
parison to Nepal and Sri Lanka. This indicates that 
the highest variance is Bhutan in contrast to the low-
est in Sri Lanka. The distribution of these values for 
Sri Lanka is also symmetrical, as reflected by the box 
plots of brightness and FRP. The p value of Moran’s I 
standardized variate for the residuals of a non-spatial 
simple linear model is 0.04568 for Bhutan, in contrast 
to 2.43E–10 for Sri Lanka and < 2.2E–16 for Nepal. 
This implies that unlike Nepal and Sri Lanka, the 
behavior of active fire is universal throughout Bhutan 
and does not depend on its geographical coordinates. 
This is done at the 1% level of significance.

Among several autoregressive spatial models 
tested, Spatially Lagged X model (local), Spatial Dur-
ban Error model (local), and Spatial Durban Error 
model (local) were the best in explaining the bright-
ness of these active fires for Bhutan, Nepal, and Sri 
Lanka respectively. The coefficients of determination 
pseudo R2 are 0.842, 0.771, and 0.808.

The variogram of FRP was best explained by the 
Matern function for all the three countries. The spa-
tial variability of FRP has been quantified with vari-
ogram analysis here. The FRP of burning potential of 
vegetation in unsampled areas was predicted by IDW 
and OK. These models have best explained the active 
fire for Sri Lanka, as the RMSE took minimum values 
here. Symmetric and consistent nature FRP values are 
the main reasons.

Here, statistics is used to offer critical insights 
in understanding the behavior of vegetation fires. 
Such studies can provide important guidelines for 

Fig. 12   Residuals from the ordinary kriging of 1-year FRP 
data for Sri Lanka
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strengthening management of such fires in South 
Asia. In addition to this, through this detailed sta-
tistical study of FRP and brightness, many variables 
closely related to the incidence of fire can be indi-
rectly assessed. This is especially useful for countries 
in the developing world that have knowledge gap due 
to scarce data.
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