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based on statistical indicators. The result suggests 
that the mean temperature of the basin could rise by 
4.98 °C by the end of the century. The annual aver-
age precipitation in the basin is likely to increase in 
the future, especially due to high monsoon rainfall, 
but winter precipitation could decline. The annual 
river discharge is projected to upsurge significantly 
due to increased precipitation and snowmelt, and no 
shift in hydrograph is expected in the future. Among 
three ML models, the LSTM model performed better 
than GRU and RNN models. In summary, this study 
depicts severe future climate change in the region 
and quantifies its effect on river discharge. Further-
more, the study demonstrates the suitability of the 
LSTM model in streamflow prediction in the data-
scarce HKH region. The outcomes of this study will 
be useful for water resource managers and planners in 
developing strategies to harness the positive impacts 
and offset the negative effects of climate change in 
the basin.

Abstract The Hindu Kush Himalaya (HKH) is one 
of the major sources of fresh water on Earth and is 
currently under serious threat of climate change. This 
study investigates the future water availability in the 
Langtang basin, Central Himalayas, Nepal under cli-
mate change scenarios using state-of-the-art machine 
learning (ML) techniques. The daily snow area for 
the region was derived from MODIS images. The 
outputs of climate models were used to project the 
temperature and precipitation until 2100. Three ML 
models, including Gated recurrent unit (GRU), Long 
short-term memory (LSTM), and Recurrent neural 
network (RNN), were developed for snowmelt run-
off prediction, and their performance was compared 
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Introduction

Earth’s climate has been changing throughout history; 
however, the rate of change is alarming in the last few 
decades. The increase in anthropogenic emission of 
greenhouse gases is indeed the primary cause of global 
warming (IPCC, 2014). The rise in temperature causes 
an increase in evaporation and air moisture content, 
resulting in changes in precipitation pattern and intensity. 
Increased temperature and varying precipitation have a 
substantial effect on the hydrological cycle, which fur-
ther affects water availability on the local, regional, and 
global scale (Oo et al., 2019). The Hindu Kush Hima-
laya (HKH) region, also known as “The third pole,” 
contains the biggest reserve of snow beside the polar 
region, and is currently under threat of climate change 
(Singh et  al., 2011). The snow-fed rivers originating 
from the HKH, which serves food, water, and hydroelec-
tricity to the billions of people living downstream of this 
region, are also significantly affected. Increased runoff 
in these rivers due to high precipitation and rapid ice/
snow depletion during monsoon has triggered mountain 
hazards, such as floods and landslides in recent years 
(Ahluwalia et al., 2016; Dimri et al., 2016). On the other 
hand, reduced runoff during dry seasons may cause 
water scarcity for household, industrial, hydroelectricity, 
and agricultural irrigation purposes (Jain et  al., 2010). 
Despite its significance, the number of studies conducted 
in the HKH region is very few when compared to other 
regions. Therefore, hydrological modeling and climate 
change impact assessment are necessary for sustainable 
watershed management and preparing adaptation poli-
cies to cope with future climate change impacts on water 
resources in the HKH region.

In the HKH region, the impact of climate change 
is prominent. Even if global warming is restricted to 
1.5 °C by the end of this century, the average tempera-
ture in the HKH region is expected to be 0.3 °C higher 
(Wester et al., 2019). The rise in temperature may cause 
significant glacier retreat (Shea et al., 2015) and snow/
ice depletion (Thapa et  al., 2020a), affecting biodiver-
sity and the overall cryospheric environment. Various 
researchers have attempted to assess climate change’s 

impact on hydrological regimes in the HKH region on 
the local and regional scale (Bajracharya et  al., 2018; 
Immerzeel et al., 2012, 2013; Lutz et al., 2014; Shrestha 
et al., 2017). Most of these studies projected an increase 
in discharge in the future, while some studies (e.g., 
Bhatta et al., 2019) projected a decrease in the future dis-
charge due to climate change. Though the effect of cli-
mate change is evident in the HKH region, the direction 
and magnitude of change are not uniform throughout the 
region (Pandey et al., 2020). Hence, for effective water 
resource management, it is pertinent to investigate cli-
mate change’s impact on future water availability at the 
basin or sub-basin level.

Most of the studies on hydrological modeling 
have employed either conceptual degree-day mod-
els or physical energy-balance models (Immerzeel 
et al., 2013; Shrestha et al., 2017; Singh & Saravanan, 
2020). Both physical-based models and conceptual 
models need detailed knowledge of hydrological pro-
cesses and catchment properties. Unlike these con-
ventional models, data-driven (DD) models, such as 
Machine learning (ML), can mimic complex non-
linear systems by learning the association between 
input and output even without understanding the 
physical processes involved (ASCE, 2000). In recent 
years, due to innovations in computer technology, 
particularly graphical processing units (GPUs) and 
the availability of remote sensing data, DD mod-
els have become a popular modeling tool worldwide 
(Ateeq-ur-Rauf et  al., 2018; Fenu & Malloci, 2020; 
Thapa et  al., 2020b; Uysal et  al., 2016; Yang et  al., 
2020; Yazdani & Rassafi, 2019; Zeydalinejad et  al., 
2020). Many studies have reported the superior-
ity of ML models over conventional hydrological  
models, including SRM (Uysal et  al., 2016), SWAT 
(Pradhan et  al., 2020), WEAP, and GR2M (Farfán 
et  al., 2020). The result of these studies proves that 
ANN models are suitable alternatives to conventional 
models for hydrological modeling. Although tradi-
tional ANNs, such as feedforward neural networks, 
were extensively used in the past (ASCE, 2000), they 
could not retain time-dependent information. Recur-
rent neural networks (RNN) were developed to over-
come these shortcomings. Though RNNs are better 
than simple ANNs for time series problems, such as 
hydrological modeling, they are affected by vanishing 
gradient issues (Hochreiter & Schmidhuber, 1997). 
Deep learning (DL)-based networks can overcome 
challenges encountered by simple RNNs and have 

393   Page 2 of 17 Environ Monit Assess (2021) 193: 393



1 3

demonstrated superior performance over other tradi-
tional ML models in various research areas (Thapa 
et al., 2020b; Zhang et al., 2018). However, to the best 
of the authors’ knowledge, studies on climate change 
impact on streamflow in the snow-dominated basins 
using the DL approach have not been conducted. In 
this study, the state-of-the-art DL models, namely, 
Gated recurrent unit (GRU) and Long short-term 
memory (LSTM), are employed for assessing climate 
change’s impact on river discharge in the Langtang 
basin, Nepal.

A previous study by Immerzeel et  al. (2013) 
reported that the streamflow in the Langtang basin 
will increase in the future and no shift in hydrograph 
will occur. On the contrary, Pradhananga et al. (2014) 
stated that the river discharge will not show any sig-
nificant trend in the future; moreover, the shift in 
hydrograph was predicted. This inconsistency in the 
result might be due to different modeling approaches 
and/or data sources. In previous studies, Immerzeel 
et  al. (2013) developed a cryospheric hydrological 
model, whereas Pradhananga et  al. (2014) applied a 
positive degree-day model for snowmelt runoff mod-
eling. Instead of conventional hydrological models, 
in this study, we propose DL-based models for snow-
melt runoff modeling in the Langtang basin. The 
outcomes of the hydrological modeling and climate 
change studies heavily rely on the accuracy of the 
climate data (Lutz et al., 2016; Thanh, 2019). There-
fore, the selection of the data source, i.e., global and 
regional climate models (GCMs/RCMs), is crucial 
for climate change impact studies. However, previ-
ous studies in the basin used the climate models with-
out any prior assessment to check their suitability for 
the region. In a study by Lutz et  al. (2016), several 
climate models were analyzed based on envelope 
approach and past performance, and the result sug-
gested that two climate models, namely, CMCC-CMS 
and inmcm4, were suitable for the HKH region under 
representative concentration pathways (RCPs) 4.5 and 
8.5. Therefore, in this study, the future climate of the 
basin was projected based on outputs from CMCC-
CMS and inmcm4 climate models.

This research aims to (1) investigate the future cli-
matic condition of Langtang basin, Nepal using out-
puts of climate models; (2) develop three ML models, 
including LSTM, GRU, and RNN, for snowmelt run-
off prediction and compare their performance; and (3) 

quantify the climate change impact on snowmelt run-
off by DL approach. Gamma test (GT) was applied 
to determine the suitable input for the models. This 
approach is potentially applicable to any mountain-
ous basin with adequate historical streamflow data. 
This paper is organized into six sections. Section  1, 
the introduction, highlights the significance of the 
research. Section  2, study area, describes the study 
area. Section 3, materials and method, describes the 
data collection and research methodology. Section 4, 
results, presents the significant results of the study. 
Section  5, discussion, presents the interpretation of 
the results. The final section, the conclusion, summa-
rizes the implications of the findings.

Study area

The study area, the Langtang basin (Fig. 1), is located 
in Central Himalayas, around 60  km north of Kath-
mandu, Nepal. It is a typical snow-dominated Himala-
yan basin. Due to ease of access as compared to other 
Himalayan catchments and data availability, this site 
is a suitable location for snow-related water resource 
and climate change impact studies. The total area of 
the basin is 354  km2, including 110-km2 glacier area. 
The glacier area is obtained from the RGI-GLIMS 
version 6.0 dataset (RGI Consortium, 2017). The alti-
tude of the catchment ranges from 3647 to 7213  m 
above sea level. In the Langtang catchment, the major 
contributor to the total runoff is snowmelt, followed 
by rainfall and ice melt (Ragettli et al., 2015).

Materials and method

The local hydrometeorological data for the reference 
period (2002–2010) is provided by the Department 
of Hydrology and Meteorology (DHM), Nepal. The 
future climate data from RCMs is obtained from the 
International Centre for Integrated Mountain Devel-
opment (ICIMOD) regional database system. The 
digital elevation model (DEM) of spatial resolu-
tion 30  m × 30  m from ASTER is used to delineate 
the basin boundary. Moderate Resolution Imaging 
Spectroradiometer (MODIS) images were processed 
to extract the snow-covered area (SCA) of the basin. 
The methodology adopted in this research is shown in 

Page 3 of 17    393Environ Monit Assess (2021) 193: 393



 

1 3

Fig. 2. A brief description of datasets and methods is 
presented below.

Hydrometeorological data

The daily mean temperature, precipitation, and 
streamflow data were provided by the DHM, Nepal 
for the reference period (2002–2010). In this study, 
streamflow data from the Kyangjing hydrological sta-
tion at latitude 28.22°, longitude 85.55°, and eleva-
tion 3800 m above sea level and meteorological data 
from the Kyangjing meteorological station at latitude 
28.22°, longitude 85.61°, and elevation 3920 m above 
sea level were used.

Snow cover

We used MOD10A2 8-day maximum snow extent 
(Hall & Riggs, 2016) for snow cover mapping. Vari-
ous scholars have confirmed the validation of the 
MODIS dataset with ground observation (Hall & 
Riggs, 2007; Stigter et  al., 2017). In a recent study, 
Stigter et  al. (2017) validated MODIS images with 
snow observation in Langtang with an accuracy 
of 83%. For this study, 406 MODIS images were 
downloaded and processed to obtain the SCA of the 
catchment. The MODIS images were projected to 
World Geodetic System 1984, Universal Transverse 
Mercator Zone 45. The snow cover for the deline-
ated basin was calculated from MOD10A2 datasets. 

Fig. 1  Location of the Langtang basin
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Snow cover images exceeding 10% cloud cover were 
removed. Thus acquired 8-day snow area was interpo-
lated into a daily scale by the cubical spline method. 
MOD10A2 snow products can be downloaded from 
https:// nsidc. org/ data/ mod10 a2.

Future climate data

The Intergovernmental Panel on Climate Change has 
described four representative concentrative pathways 
(RCPs), namely, RCP 2.6, RCP 4.5, RCP 6.0, and 
RCP 8.5, as a basis of climate modeling experiment 

(van Vuuren et  al., 2011). The bias-corrected future 
daily mean temperature and precipitation data of 
spatial resolution 10  km × 10  km from two RCMs, 
inmcm4_r1i1p1 and CMCC-CMS_r1i1p1, for 
RCP4.5 and RCP8.5, was obtained from ICIMOD 
regional database system (ICIMOD, 2016). Out of 
several climate models, these models are selected 
based on past performance and envelope-based 
approach as described in Lutz et  al. (2016). In this 
study, future time periods are divided as follows: 
2021–2030 (2020s), 2041–2050 (2040s), 2071–2080 
(2070s), and 2091–2100 (2090s).

RNN

RNNs are developments over traditional ANNs. 
Unlike simple ANNs, they can retain temporal infor-
mation, therefore suitable for sequential data such as 
hydrological time series. A simple unfolded recurrent 
neural network is shown in Fig.  3. Various studies 
have reported better performance of RNNs over ANN 
models (Nagesh Kumar et al., 2004). The architecture 
of the RNN cell is shown in Fig. 4a.

GRU 

GRU is a special kind of RNN, which can retain tem-
poral information as well as address exploding and 
vanishing gradient problems (Cho et al., 2014). GRU 
has two types of gates that control adding or remov-
ing the information in the cell. The update gate regu-
lates the amount of information to pass to the future. 
The reset gate decides the amount of previous infor-
mation to forget. The equations related to GRU are as 
follows:

Fig. 2  Research methodology

Fig. 3  An unfolded recur-
rent neural network
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(1)Update gate ∶ zt = �
(
Wzxt + Uzht−1 + bz

)

(2)Update gate ∶ rt = �
(
Wrxt + Urht−1 + br

)

(3)ht = (1 − zt)⊙ ht−1 + zt ⊙
∼

ht

(4)
∼

ht = tanh
(
Whxt + Uh

(
rt ⊙ ht−1

)
+ bh

)

where z and r are the vectors representing Update 
gate and reset gate, respectively, and ht,

∼

ht are the vec-
tors for the hidden states and candidate values. A typ-
ical GRU cell is shown in Fig. 4b.

LSTM

Though LSTM was first proposed in the 1990s 
(Hochreiter & Schmidhuber, 1997), its true potential 
has been noticed recently. The LSTM is a specialized 
RNN capable of preserving long-term dependencies 

Fig. 4  The architecture of ML models (a) RNN cell, (b) 
GRU cell, and (c) LSTM cell, where X is the input vector, h 
is the hidden state, tanh denotes a hyperbolic tangent function, 
σ denotes sigmoidal function, r denotes reset gate, z denotes 

update gate, i denotes input gate, f denotes forget gate, o indi-
cates output gate, c indicates cell state, and t stands for the 
time step
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(Kratzert et al., 2018). The presence of a memory cell 
makes LSTM distinct from other RNNs. LSTM has 
three gates, i.e., Forget, Input, and Output gates, to 
control the information flow in the cell. Forget gate 
governs the information to be removed from the pre-
vious cell state. The input gate controls the informa-
tion to be introduced in the cell. Using the notations 
from Thapa et  al. (2020b), equations related to the 
LSTM are presented below.

where i, f, and o are the vectors for activation values 
and 

∼
ct and ct are the vectors for the cell states and 

candidate values. Notations used in the equations are 
described in Table 1. A typical LSTM architecture is 
presented in Fig. 4c.

The learning skill of the ML models during train-
ing is affected by a large range of values in the data-
set. Therefore, for effective learning, the dataset is 
normalized and transformed to supervised learning. 
Input data is then converted to a three-dimensional 
format. For the final discharge prediction, the output 
is transformed to the original scale. The model per-
formance is also affected by the choice of hyperpa-
rameters, such as the number of layers, hidden units, 
loss function, optimizer, batch size, learning rate, and 
dropout rate. The process of finding an appropriate 

(5)Forget gate ∶ ft = �
(
Wf xt + Uf ht−1 + bf

)

(6)Input gate ∶ it = �
(
Wixt + Uiht−1 + bi

)

(7)
Potential update vector ∶

∼
ct = tanh

(
W∼

c
xt + U∼

c
ht−1 + b∼

c

)

(8)Cell state ∶ ct = ft ⊙ ct−1 + it ⊙
∼
ct

(9)Output gate ∶ Ot = �
(
Woxt + Uoht−1 + bo

)

(10)Hidden state ∶ ht = tanh
(
ct
)
⊙ ot

(11)Output layer ∶ y = Wdhn + bd

(12)Sigmoid function ∶ �(x) =
1

1 + e−x

(13)Tanh function ∶ tanh(x) =
ex − e−x

ex + e−x

set of hyperparameters is called hyperparameter opti-
mization. In this study, hyperparameter optimization 
was done by the grid search method using the HPar-
ams dashboard in Tensorboard.

Gamma test

The selection of input is an important step in model 
development. The winGamma™ application (Durrant, 
2001) was employed for GT to find out the best input. 
GT is a nonparametric method to determine suitable 
input for a nonlinear model (Stefánsson et al., 1997). 
The variance of the noise related to the output is esti-
mated by the Gamma test. Input combination with 
minimum Gamma and V-ratio values is considered as 
the best-input combination for the model.

Performance evaluation

The model performance is evaluated by various sta-
tistical error measures, such as Nash–Sutcliffe effi-
ciency (NSE), coefficient of determination ( R2 ), mean 
square error (MSE), and mean absolute error (MAE). 
NSE is the widely used statistical metric for evalu-
ating the goodness of fit of hydrological models. Its 
value ranges from − ∞ to 1, where 1 denotes a per-
fect model and negative values indicate that the mean 
of the observed data is the better predictor than the 
model (Nash & Sutcliffe, 1970). The R2 measures the 
strength of the linear association between observed 
and simulated flows. Its value ranges from 0 to 1, 
closer to 0 represents a lower correlation while closer 
to 1 denotes a higher correlation. The MSE measures 
the average square of the errors. A lower MSE value 
indicates a better fit. MAE is the absolute value of the 

Table 1  Notations used for LSTM and GRU models

Notation Description

xt Input vector (subscript t 
denotes timestep)

ht Hidden state vector
ct Cell state vector
W,U Parameter matrices
⊙ Element-wise multiplication
� Sigmoid function
tanh Hyperbolic tangent function
b Bias
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difference between observed and simulated values. 
Lower MAE values denote the lower error.

where Q’
t
 and Qt are the simulated and observed 

discharge at time t and 
−

Q’ and 
−

Q denote the 

(14)
NSE = 1 −

∑n

t=1

�
Qt − Q’

t

�2

∑n

t=1

�
Qt−

−

Q

�2

(15)

R2 =

⎡⎢⎢⎢⎢⎢⎣

∑n

t=1

�
Q’

t
−

−

Q’

��
Qt−

−

Q

�

�
∑n

t=1

�
Q’

t−
−

Q’

�2
�

∑n

t=1

�
Qt−

−

Q

�2

⎤⎥⎥⎥⎥⎥⎦

2

(16)MSE =

∑n

t=1

�
Q’

t
− Qt

�2
n

(17)MAE =

∑n

t=1
��Qt − Q’

t
��

n

average simulated and average observed discharge, 
respectively.

Results

The daily precipitation (P), mean air temperature (T), 
and SCA data are provided as input to the ML mod-
els for the river flow prediction. SCA was processed 
from MOD10A2 images for the research period 
(2002–2010). The monthly SCA in the Langtang 
catchment is shown in Fig. 5. The dataset is split into 
a training set (5 years), a validation set (2 years), and 
a testing set (2 years). Out of three ML models, the 
best model is employed to predict river runoff under 
future climate scenarios.

Climate change analysis

The bias-corrected future temperature and precipi-
tation data from two RCMs (inmcm4_r1i1p1 and 
CMCC-CMS_r1i1p1) under RCP 4.5 and RCP 8.5 
are analyzed. As shown in Fig. 6, both RCMs under 

Fig. 5  Snow cover area in 
the Langtang basin
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both RCPs show increase in temperature. Among 
two climate models, CMCC-CMS shows an increase 
in average temperature by 1.86  °C in the 2070s and 
1.68  °C by 2090s under RCP 4.5, whereas, under 
RCP 8.5, the temperature continues to increase by up 
to 4.98 °C by 2090s. On the seasonal scale, the tem-
perature rises constantly up to 2.6 °C by 2090s dur-
ing winter whereas, for other seasons, the temperature 
reaches its peak by 2070s and then slightly decreases 
by 2090s under the RCP 4.5 scenario. Under the RCP 
8.5 scenario, there is a maximum rise in temperature 
during pre-monsoon (+ 5.8  °C), followed by winter 
(+ 5.6  °C), post-monsoon (+ 4.6  °C), and monsoon 
(+ 4 °C), respectively.

Temperature from the inmcm4 model decreases 
slightly by 2020s under both RCPs but then increases 
until 2090s by 0.72  °C and 2.3  °C under RCP 4.5 
and RCP8.5, respectively. On the seasonal scale, 
the temperature rise is maximum during monsoon 
(+ 0.94  °C) followed by pre-monsoon (+ 0.89  °C), 
winter (+ 0.43  °C), and post-monsoon (+ 0.38  °C), 
respectively, by 2090s under RCP4.5. Under RCP8.5, 
the temperature rise is maximum by the 2090s dur-
ing pre-monsoon (+ 2.79  °C), followed by mon-
soon (+ 2.5  °C), winter (+ 2  °C), and post-monsoon 
(+ 1.65 °C), respectively.

The ensemble average temperature of the two cli-
mate models shows an increase of 1.2° to 3.65 °C by 
2090s for RCP4.5 and RCP8.5, respectively. On the 
seasonal scale, a relative increase in temperature is 
maximum during winter (+ 1.53  °C), followed by 
pre-monsoon (+ 1.51  °C), monsoon (+ 0.99  °C), 
and post-monsoon (+ 0.62  °C), respectively, under 
the RCP4.5 scenario. Whereas, under the RCP8.5 
scenario, the temperature rise is maximum dur-
ing pre-monsoon (+ 4.31  °C), followed by winter 
(+ 3.82 °C), monsoon (+ 3.26 °C), and post-monsoon 
(+ 3.13 °C), respectively.

The bias-corrected future precipitation data from 
the inmcm4 model shows the constant increase in 
annual average precipitation until the 2090s by up 
to 427  mm and 817  mm under RCP4.5 and RCP 
8.5, respectively (Fig.  7). On the seasonal scale, 
precipitation will decrease in winter (− 8  mm) but 
increases significantly during monsoon (+ 284 mm) 
and post-monsoon (+ 115 mm), and slightly during 
pre-monsoon (+ 36  mm) by 2090s under RCP4.5. 
Under RCP8.5, precipitation will decrease during 
winter (− 51 mm) and post-monsoon (− 13 mm) but 
increases significantly during monsoon (+ 841 mm) 
and slightly during pre-monsoon (+ 41 mm) by the 
2090s.

Fig. 6  Change in average annual temperature for different 
future periods compared to reference period under (a) RCP4.5 
and (b) RCP8.5 scenarios

Fig. 7  Changes in annual precipitation for different future 
periods compared to reference period under (a) RCP4.5 and 
(b) RCP 8.5 scenarios
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The outputs from the CMCC-CMS model show 
a decrease in annual precipitation in the 2020s 
(− 119  mm) and 2070s (− 56  mm) and an increase 
in the 2040s (+ 158  mm) and 2090s (+ 242  mm) 
under RCP4.5 (Fig.  6). Under RCP8.5, precipitation 
is likely to increase in the 2020s (+ 108 mm), 2040s 
(+ 122 mm), and 2100s (+ 83 mm) but will decrease 
in the 2070s (− 115 mm). On the seasonal scale, pre-
cipitation will decrease during winter (− 33  mm) 
and post-monsoon (− 16  mm) but increase signifi-
cantly during monsoon (+ 216 mm) and pre-monsoon 
(+ 74 mm) by 2090s for the RCP4.5 scenario. For the 
RCP8.5 scenario, precipitation will increase signifi-
cantly during monsoon (+ 223 mm) but decrease dur-
ing winter (− 50 mm), pre-monsoon (− 78 mm), and 
post-monsoon (− 11 mm) by the 2090s.

Based on the two models, a large variation in pre-
cipitation is projected in the future. The ensemble 
annual precipitation will increase by 16.9% to 22.7% 
by 2090s for RCP4.5 and RCP8.5, respectively. 
On a seasonal scale, precipitation may increase by 
16% to 34% during monsoon but decrease by 24% 
to 60% during winter under RCP4.5 and RCP8.5, 
respectively. Precipitation is projected to increase 
by 20% during pre-monsoon under RCP4.5 but 
decreases by 7% under RCP8.5. Similarly, precipi-
tation could increase by 62.8% under RCP4.5 but 
decreases by 15.3% under RCP8.5 by the 2090s dur-
ing post-monsoon.

Model development

Input selection

GT was applied to various combinations of SCA, 
T, and P. Out of seven combinations, M7 achieved 
the minimum Gamma and V-ratio value as shown 
in Table  2. Therefore, Model M7 was preferred for 
further study. From Table  2, it is noted that V-ratio 
and Gamma values of M1 are lower than that 
of M2, which implies that river discharge in the 

snow-dominated region, such as Langtang, is more 
influenced by temperature than precipitation.

Model optimization

Hyperparameter tuning is crucial for the best model 
performance. In this study, we applied a grid search 
using the HParams dashboard in Tensorboard to 
find suitable hyperparameters for ML models. HPar-
ams dashboard offers various tools to find the most 
promising set of hyperparameters. Previous studies 
have reported that models with one hidden layer are 
sufficient for hydrological modeling (Thapa et  al., 
2020b); therefore, we considered a single hidden 
layer followed by a dense layer. Different values for 
window size (1, 7, 15, 30, 60, 90) were tested and a 
window size of 30 is considered for this study as per 
trial and error. Several combinations of hyperparame-
ters and the best result obtained as per the grid search 
are presented in Table  3. The fine-tuned models are 
employed for hydrological modeling, and the perfor-
mance of models is compared.

Comparison of ML models

The quantitative assessment of the models is based 
on four metrics: NSE,  R2, MSE, and MAE. The 
LSTM model (NSE = 0.887,  R2 = 0.98, MAE = 0.28, 

Table 2  Results of the Gamma test for different input combi-
nations

Model Input Target Gamma V-ratio

M1 T Q 7.466698 0.253187
M2 P Q 14.56497 0.493882
M3 SCA Q 27.50929 0.932809
M4 SCA,P Q 15.04273 0.510082
M5 SCA,T Q 6.628566 0.224767
M6 P,T Q 6.492624 0.220158
M7 SCA,P,T Q 5.950137 0.201763

Table 3  Hyperparameter 
tuning of LSTM, GRU, and 
RNN models

S.N Parameters Combination LSTM GRU RNN

1 Hidden units 10,20,30,40,50,60,70,80 50 40 20
2 Optimizer Adam, Adamax, SGD, RMSprop Adamax Adamax -
3 Epochs 20,40,60,80 40 60 40
4 Batch size 32,64 32 64 32
5 Dropout rate 0.05, 0.1, 0.2 0.1 0.1 0.1
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MSE = 0.105) showed the better performance 
than GRU (NSE = 0.84,  R2 = 0.975, MAE = 0.31, 
MSE = 0.17) and RNN (NSE = 0.763,  R2 = 0.96, 
MAE = 0.6, MSE = 0.52) model. The performance of 
ML models during training, validation, and testing 
are presented in Table 4.

The box plot displaying the median, mean, and 
percentiles  (25th and  75th) of residuals of model 
prediction is shown in Fig.  8. The mean and 
median of the residuals for a good model should 
be close to zero. The median value of the residu-
als for LSTM, GRU, and RNN models is 0.975, 
1.004, and 1.189, respectively. Similarly, the mean 
value of residuals for LSTM, GRU, and RNN mod-
els is 1.497, 1.733, and 1.802, respectively. The 
mean and median of the residuals of ML models 
are greater than zero, which indicates that the ML 
models underestimated the river discharge. Based 
on the quantitative and qualitative assessment of 
the three ML models, it can be noted that the per-
formance of the LSTM model is better than that of 
the GRU and RNN models.

Climate change impact on streamflow

After evaluating the performance of the RNN, GRU, 
and LSTM models, the best model (LSTM) was 
employed for predicting future snowmelt runoff 
until 2100. A previous study by Thapa et al. (2020a) 
reported that SCA in the Langtang basin is depleting 
at the rate of 0.22% per year. Considering the snow 
depletion rate of 0.22% per year, SCA was projected 
up to 2100. Future climate data (temperature, precipi-
tation, and SCA) was provided as input to the trained 
LSTM model to predict future river discharge until 
2100. Finally, the relative change in river discharge 
with respect to the baseline discharge is calculated 
as shown in Table 5. The result shows that the river 
discharge during Nov–Apr except Dec in the 2020s, 
and Mar–Apr in the 2040s, is likely to decrease as 
compared to that during the reference period for the 
RCP4.5 scenario. Similarly, it is observed that the 
discharge during Feb, Mar, Apr, and Nov in the 2020s 
and Mar in the 2040s are likely to decrease as com-
pared to that during the reference period under the 
RCP8.5 scenario. The decrease in river discharge 
might affect water availability for households, as well 
as for agricultural irrigation and hydroelectricity gen-
eration. In the 2070s and 2090s, river discharge would 
increase for all months for both scenarios. The mag-
nitude of the increase in river discharge for RCP8.5 
is higher than that for RCP4.5. From the hydrographs 
(Fig. 9), it is well noticed that there will be a signifi-
cant rise in river discharge in the future; however, the 
shape of the hydrographs are similar.

The seasonal analysis reveals that river discharge 
is likely to decrease during winter (− 3.3%) and pre-
monsoon (− 4.0%), whereas increases during mon-
soon (+ 10.5%) and post-monsoon (+ 7.9%) by 2020s 
under RCP4.5. River discharge continues to increase 
in all seasons by the 2040s, 2070s, and 2090s for 
RCP4.5 (Fig.  10a). Under RCP8.5, river discharge 
decreases during pre-monsoon (− 3.1%) and increases 
during winter (+ 3.8%), monsoon (+ 11.8%), and 

Table 4  Evaluation of ML 
models

Training Validation Testing

S.N Model MAE MSE MAE MSE MAE MSE

1 LSTM 0.084 0.013 0.083 0.0143 0.28 0.105
2 GRU 0.0873 0.0132 0.0899 0.0169 0.31 0.17
3 RNN 0.106 0.031 0.12 0.035 0.6 0.52

Fig. 8  Boxplot of residuals of ML models
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post-monsoon (+ 4.7%) by 2020s. River discharge 
will increase significantly in all seasons by the 2040s, 
2070s, and 2090s under the RCP8.5 (Fig. 10b). During 
the baseline period, river discharge is maximum dur-
ing monsoon (Jun–Sep), followed by post-monsoon 
(Oct–Nov), pre-monsoon (Mar–May), and winter 
(Dec–Feb), respectively. There is a large variation in 
future discharge in the seasonal scale, i.e., winter (− 3 
to 111%), pre-monsoon (− 4 to 96%), monsoon (10 
to 58%), and post-monsoon (4 to 84%), but no shift 
in hydrograph is anticipated. The average annual dis-
charge is likely to increase by 6.2%, 17.1%, 35.5%, and 
46.5% by 2020s, 2040s, 2070s, and 2090s, respectively, 

under RCP4.5. Similarly, the average annual discharge 
will increase by 6.9%, 22.2%, 48.6%, and 76.1% by 
2020s, 2040s, 2070s, and 2090s, respectively, for the 
RCP8.5. From these results, it can be noted that the 
magnitude of change in the river discharge depends on 
time and RCP scenario.

Discussion

The climate in the Himalayas is changing rapidly 
and is expected to further change significantly in the 
future. The future climatic condition of Langtang 

Table 5  Relative change in monthly river discharge under RCP 4.5 and RCP 8.5

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Baseline 
discharge 
 (m3/s)

2.26 2.64 3.14 4.51 7.08 12.94 16.56 16.03 13.48 8.95 4.90 3.50

% change in river discharge under RCP4.5
2020s  − 1.02  − 12.95  − 22.17  − 13.03 9.80 13.57 7.81 10.46 11.16 13.85  − 2.82 2.41
2040s 13.15 0.90  − 9.85  − 1.41 25.86 25.86 17.86 19.15 20.21 20.39 10.71 19.61
2070s 30.88 19.86 10.47 20.92 54.90 41.11 29.01 30.67 36.77 43.80 34.34 43.65
2090s 62.75 48.18 31.21 43.47 70.56 49.77 32.46 37.35 39.95 52.08 47.79 70.31
% change in river discharge under RCP8.5
2020s 7.79  − 3.69  − 16.64  − 14.20 9.88 13.37 10.84 10.46 13.49 7.97  − 1.09 7.03
2040s 19.68 12.17  − 0.91 5.45 31.53 29.66 19.60 21.65 25.11 22.32 18.71 43.09
2070s 53.98 40.42 32.49 42.30 65.66 51.20 40.09 38.56 45.05 56.63 58.38 56.21
2090s 129.26 94.67 84.53 85.59 108.22 72.40 52.18 52.32 60.91 80.28 93.26 111.82

Fig. 9  Projected monthly streamflow under (a) RCP4.5 and (b) RCP8.5
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basin, Nepal was projected up to 2100 using outputs 
of RCMs. The study revealed that the average temper-
ature in the basin could increase by 4.98 °C by 2090s, 
which is approximately equivalent to 0.058  °C/year. 
The historical analysis of the temperature data in the 
Langtang basin during 1980–2015 showed a constant 
rise in temperature at the rate of 0.04 to 0.068  °C/
year (Thapa et  al., 2020a). From these studies, it is 
well noticed that the average temperature shows a 
rising trend since the 1980s, and a similar trend will 
continue until 2100. Similar to the findings of the 
current study, previous studies in the Kaligandaki 
basin (Bajracharya et al., 2018) and the Tamor basin 
(Bhatta et al., 2019) also reported an increase in the 
average temperature by over 4 °C by 2090.

Precipitation shows a large variation in the future. 
The annual precipitation in the Langtang basin would 
increase by 16.9% to 22.7% by the 2090s for RCP4.5 
and RCP8.5 scenarios, respectively. Immerzeel et al. 
(2013) also reported an increase in future precipita-
tion in the Langtang basin, whereas Pradhananga 
et  al. (2014) predicted a decline in future precipita-
tion. In a previous study by Bajracharya et al. (2018), 
it was found that the annual precipitation in the Kali-
gandaki basin could increase by 26% by 2100, which 
is similar to the results of our study.

In this study, river discharge was found to increase 
by 17.1% and 46.5% by the 2040s and 2090s, respec-
tively, under RCP4.5. Similarly, river discharge could 
increase by 22.2% and 76.1% by the 2040s and 2090s, 
respectively, for the RCP8.5 scenario. River discharge 

was found to be maximum during monsoon during 
the baseline period and would increase significantly 
in the future up to 58%, which is mainly due to an 
increase in monsoon rainfall and snowmelt. Whereas 
during winter, though the total precipitation (snowfall 
and rainfall) is expected to decrease, the discharge is 
increasing as there will be more precipitation in form 
of rain due to temperature rise. The increase in river 
discharge along with high precipitation may trigger 
mountain hazards, such as floods and landslides dur-
ing the monsoon season. Whereas, the decrease in 
discharge during the pre-monsoon in the 2020s indi-
cates a problem with water availability. These results 
are comparable to findings by Immerzeel et al. (2013), 
which reported that river discharge will increase sig-
nificantly due to the increase in precipitation and 
snowmelt in the Langtang basin, while contradicts 
the results of Pradhananga et al. (2014), which stated 
that no significant increase in discharge would occur 
until 2050. Such a result of Pradhananga et al. (2014) 
is perhaps due to future climate projections from 
NORESM GCM, which projected a decrease in future 
precipitation. However, they stated that if temperature 
and precipitation would increase by 2  °C and 20%, 
respectively, the discharge would upsurge by 43.9%, 
which is comparable to the result of our study. The 
result of our study is in line with the result of stud-
ies in the Kaligandaki basin (Bajracharya et al., 2018) 
and the Indrawati river basin (Shrestha et al., 2017), 
which also reported that increase in discharge due to 
high precipitation and snowmelt.

Fig. 10  Relative change in future streamflow for (a) RCP4.5 and (b) RCP8.5
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Uncertainty in the future discharge projection may 
arise due to the spread in future climate projections 
obtained from GCM/RCMs. In this study, to mini-
mize the uncertainty, high-resolution RCMs, namely, 
CMCC-CMS and inmcm4, were selected carefully 
based on envelope approach and past performance 
as described by Lutz et  al. (2016). Even so, there is 
a considerable difference between climate data pro-
jected by CMCC-CMS and inmcm4 climate mod-
els. The temperature projection of CMCC-CMS was 
higher than that of inmcm4. Whereas for precipitation 
data, inmcm4 projection was higher than CMCC-
CMS projection and they exhibited a different trend. 
The future climate projected in this study contradicts 
the findings by Pradhananga et al. (2014), which pro-
jected a decrease in future precipitation by 1.9 mm/
year and an increase in temperature by 0.015 °C/year 
based on NORESM GCM. Therefore, while prepar-
ing mitigation and adaptation policies, the choice of 
climate models should be taken into consideration.

The selection of input is an important step in 
model development. In this study, the suitable input 
combination for ML models was determined by GT. 
From GT, it is observed that river discharge in the 
snow-dominated region is more sensitive to tem-
perature than precipitation. In cold regions, such as 
the Himalayas, temperature determines whether pre-
cipitation is in the form of snow or rain. Therefore, 
river discharge in the snow-dominated region, which 
depends on snow accumulation and ablation process, 
is more affected by the temperature.

Although ML techniques, including DL, are 
recently gaining huge popularity in various research 
areas, they are not widely used in hydrological mod-
eling and climate change impact assessment. This 
study verifies the suitability of ML models for snow-
melt runoff prediction (NSE > 76%). Unlike sophisti-
cated conventional hydrological models, ML models 
do not require various parameters related to hydrolog-
ical process and topographical condition. Therefore, 
ML models are appropriate for hydrological modeling 
in the data-scarce HKH region.

The rise in temperature and varying precipita-
tion will have a significant effect on the overall cry-
ospheric environment in the Langtang basin; how-
ever, this study is only focused on climate change’s 
impact on river discharge. Land use and land cover 
(LULC) can have a substantial influence on the 
hydrology of watersheds (Tankpa et  al., 2020). For 

accurate assessment of future water availability in 
the region, the combined effect of climate change and 
LULC alteration should be assessed.

Conclusion

In this study, we analyzed the future climate change in 
the Langtang basin, Central Himalayas, Nepal based 
on the outputs from two RCMs, namely, CMCC-CMS 
and inmcm4, under RCP 4.5 and RCP 8.5 scenarios, 
and quantified its impact on the river discharge using 
advanced DL approach. We developed three ML-
based models, including RNN, GRU, and LSTM 
model, for river discharge prediction, and evaluated 
their performance based on statistical indicators. The 
input combination for the models was chosen based 
on GT. The hyperparameters of the models were opti-
mized by the grid search method. Among three ML 
models, the best performing model was employed for 
future discharge prediction using climate forcing data 
up to 2100.

The average temperature in the Langtang basin 
could increase by 1.68 °C to 4.98 °C by 2100 under 
RCP4.5 and RCP8.5 scenarios, respectively. The 
highest temperature rise is projected in pre-monsoon 
(5.8  °C) followed by winter (5.6  °C), post-monsoon 
(4.6  °C), and monsoon (4  °C), respectively, by the 
end of the century. Annual precipitation will increase 
by 16.9% to 22.7% by 2100 for RCP4.5 and RCP8.5, 
respectively. On the seasonal scale, precipitation 
increases during monsoon by 16–34% and decreases 
during winter by 24–60%; however, for other sea-
sons there is a large variation and no definite trend is 
observed. The annual river discharge is projected to 
upsurge by 46% to 76% by 2100 under RCP4.5 and 
RCP8.5 scenarios, respectively. The magnitude of 
change in river discharge depends on time and RCP 
scenario. The seasonal analysis reveals that there will 
be a significant rise in discharge by up to 58% during 
the monsoon season due to high rainfall and snow-
melt, which may trigger mountain hazards, such as 
floods and landslides. However, the decrease in river 
discharge during the pre-monsoon season in the near 
future might affect water availability for households 
as well as electricity generation and irrigation pur-
poses. All three ML models used in this study per-
formed well (NSE > 76%) but they underestimated 
the high flows. The efficiency of the LSTM model 
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(88.7%) was found to be greater than GRU (84%) and 
RNN (76.3%) models.

The outcomes of this study will be useful for bet-
ter understanding climate change and its impact on 
water resources in the basin. However, the result may 
not be representative of the entire HKH region, and 
therefore, to get a clear picture of climate change’s 
impact on water resources in the HKH region, more 
studies should be carried out in various reference 
basins in the region. To further improve the study, the 
combined impact of climate change and LULC altera-
tion on river discharge should be assessed. This study 
demonstrates the suitability of the LSTM model in 
streamflow prediction in the data-scarce HKH region. 
This approach can be replicated in other basins for 
determining water availability for irrigation, hydro-
power, and water supply projects. Nevertheless, the 
uncertainty in river discharge projection due to the 
choice of climate models should be taken into consid-
eration while developing and implementing the miti-
gation and adaptation strategies.
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