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SiO3, Al, Turbidity, Fe, and Chlorophyll-a) were 
the most important variables responsible for spatial 
variations. Using the results we developed a water 
quality index (WQI) using only those parameters 
identified as important. All water quality param-
eters were below the permissible limits except for 
turbidity according to the World Health Organi-
zation standards, BOD and COD according to the 
Egyptian regulations. The calculated WQI values 
ranged between 12.73 and 33.73. According to 
these values, the Nile River Damietta branch rep-
resents a good to an excellent source of drinking 
water for entering secondary treatment.

Keywords  Water quality ·  Temporal and spatial 
variations · Nile River  · Multivariate statistical 
techniques · Water quality index

Introduction

Egypt is presently undergoing rapid urbanization to sat-
isfy the country’s population growth that has increased 
dramatically from 35 million in 1970 to about 100 mil-
lion in 2017 (Mahmoud & Gan,  2018). The increased 
population and associated socio-economic activities 
have resulted in increased water demand and the release 
of untreated, or poorly treated, effluent that affects water 
quality (Wahaab et al., 2019).

The Nile ecosystem has changed chemically, 
physically, and biologically after building the Aswan 

Abstract  Temporal/spatial variations of surface 
water quality were examined for the Nile River in 
the Damietta region where it serves as the major 
source of water for the inhabitants of Damietta 
Governorate. A total of 32 water quality parameters 
were monitored at six sampling sites for 12 months 
from February 2016 to January 2017. Higher val-
ues of chemical oxygen demand (COD), biological 
oxygen demand (BOD), heavy metals, and nutri-
ents were observed upstream. About ~  70% of the 
total variance in observations was explained by five 
main influences using factor analysis. The first fac-
tor (24.6% of the variance) was indicative of the 
mixed sources of natural and anthropogenic inputs. 
The second (nutritional) and the third (organic) fac-
tors were mainly controlled by the discharges from 
agricultural and domestic sources, respectively. 
Human activities and natural processes controlled 
the fourth and fifth factors. Only 11 parameters (K, 
temperature, COD, HPC, total hardness, DO, NO2, 
Na, TDS, Cl, and EC) were necessary for distin-
guishing temporal variations according to Discrimi-
nant analysis (DA). Seven parameters (BOD, PO4, 
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Dam in 1964 to control the Nile flood (Ismail & 
Ramadan,  1995). The Damietta branch of the Nile 
River now extends for 220 km from the Delta barrage 
to the Farskour dam that controls the river’s flow 
regime and protects riverine freshwater from the 
invasion of the Mediterranean seawater entering 
through the Damietta estuary (El-Tohamy et al., 2018). 
Despite the great benefit of this dam in the preservation 
of water supplies, its environmental costs are becoming 
apparent. By reducing water flow and interrupting the 
transportation of pollutants, dams ultimately influence 
the river’s water quality (Wei et al., 2009).

The vital importance of the Nile River in Damietta 
is manifested in numerous ways. Foremost, it is 
the only source of drinking water, thereby directly 
influencing people’s health. Additionally, it is of 
high economic benefit through major activities such 
as agriculture, fishing, transportation, and numerous 
other lesser purposes. All these uses have raised 
concerns about the river water quality. The monitoring 
of water quality and an understanding of the various 
associated physicochemical variables can determine 
the environmental stress along the river. These have 
been attributed to both natural processes and human 
activities, such as climate change, agricultural land 
use, municipal, and industrial discharges (Abdel-
Satar, 2005). During the current decade, water quality 
in Damietta has improved greatly, especially after 
July 2010 when the Drainage of Al-Serw discharges 
switched from the River Nile to Manzalla Lake. This 
drain was receiving approximately 1900 m3/day of 
untreated domestic wastewater (Shaban et al., 2010), 
which was compromising the general health and the 
environment in the entire Governorate. Although the 
river is no longer receiving water from municipal 
sewage, Damietta region has riverside-dwellers that 
have allowed small drains to open into the river water, 
influencing the physicochemical and microbiological 
components of the river.

The study area lies entirely within an ecosys-
tem that permits agricultural activities and is found 
within both urban and rural areas, that put it at a sig-
nificant risk from human impact. Many areas along 
the banks of the river are cultivated all year round. 
The associated agricultural wastewater from these 
areas is discharged directly into the river resulting 
in increased levels of nutrient loading. Confluent to 

the main river channel, there are numerous branching 
side channels with small islands between them that 
often exhibit a significant impact on river environ-
mental characters leading to high spatial and tempo-
ral heterogeneity.

Traditionally, to assess surface water quality, a long 
list of physical, chemical, and biological parameters 
is compared with relevant threshold values (guide-
lines). This technique may be effective in identifying 
parameters that could be responsible for water pol-
lution, but it gives a shallow and deficient view into 
the general state of water quality (Soltani et al., 2020). 
Several approaches have been developed to address 
these shortcomings, particularly multivariate statisti-
cal analysis and the determination of a water quality 
index (WQI). According to many scientific sources 
(e.g., Kumarasamy et  al.,  2014; Sharma et  al.,  2015; 
Singh et  al.,  2005; Varol,  2020; Wang et  al.,  2013), 
factor analysis (FA), principal component analysis 
(PCA), and discriminant analysis (DA) can provide 
meaningful information about pollution sources, thus 
facilitating the identification of deleterious factors 
that influence water quality, and offering a valuable 
toolset for consistent management of water resources. 
They are well-suited to identify the most significant 
factors in spatial and temporal variations of surface 
water quality, and thereby reduce the complexity of 
large data sets while optimizing monitoring programs 
by defining a the fewest indicator parameters (Xin 
et al., 2008). Compared with other data-manipulation 
methods, multivariate techniques allow the analysis 
of large datasets without losing original information 
(Luo et al., 2017).

A WQI, on the other hand, synthesizes a wide 
range of variables that are important for both scien-
tists and authorities into a single value that is easy to 
express and understand (Kükrer & Mutlu, 2019). This 
method, first described by Horton (1965), is consid-
ered one of the most successful techniques to assess 
water quality (Akter et al., 2016). Depending on the 
goal of water quality monitoring, many WQIs com-
prised of different variables have been applied all 
over the world (Koçer & Sevgili 2014). The first step 
in the development of a WQI is parameter selection. 
Although the location and sampling periodicity of a 
water body is essential for that selection, expert opin-
ions are also required for accurate variables selection 
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and assigning their relative importance based on their 
potential impact on water quality (Lumb et al., 2011). 
Consequently, the final score of WQI can be highly 
variable due to the differences in expert opinions. 
Therefore, a preferable method of variables selec-
tion would be one that does not depend mainly on 
expert opinions and does not prejudice the effective-
ness of WQI final results. According to Kachroud 
et  al. (2019), the robustness of WQI results can 
be increased through the application of multivari-
ate analysis techniques in variable selection. Coletti 
et  al. (2010) used the results of Factor Analysis for 
variables selection, whereas Tripathi and Singal 
(2019) used principal component analysis. Moreover, 
the current study showed a significant difference in 
parameter selection, which is one of the major steps 
of WQI development, and therefore, the Discrimi-
nant Analysis (DA) was used in this study. The dis-
criminant analysis performs a multivariate test on 
the explanatory variables of different groups, and, if 
statistically significant, proceeds to find linear com-
binations of variables that best discriminate between 
groups, then it constructs the discriminant func-
tions based on these combinations (Correa-Metrio 
et  al.,  2010). DA is next used to identify the most 
important indicator parameters that are responsi-
ble for large variations in water quality (Shrestha & 
Kazama, 2007).

In this study, we used these approaches to (1) 
reveal the spatial and temporal variabilities of water 
quality parameters and to identify the main pollu-
tion sources influencing water quality, (2) determine 
which parameters should be employed in assessing 
spatial or temporal variations in river water quality, 
and (3) determine the surface water contamination 
levels using the World Health Organization’s (WHO) 
standards, Egyptian regulations of Governmental 
Decree No. 92/2013, and the newly derived water 
quality index. This aims to provide tools for mak-
ing better decisions about river water assessment to 
ensure efficient management, helping to understand 
contamination sources, and providing insight for the 
redesign of sampling strategies by focusing on the 
most effective water quality parameters.

Material and methods

Area of study

In Damietta Governorate, about 2 million people are 
served with the drinking water produced from the 
Damietta branch of the Nile River. Water from the river 
basin is transported directly to the six main water treat-
ment plants (WTP). The sampling points were selected 
to be close to the intakes of these plants and cover a 
length of about  35 km from Al-Adlya, a small village 
located 2.5 km upstream of Damietta city, to the vil-
lage of Al-Maysrah, 10 km downstream of Shirbin city 
(Fig. 1; Table 1).

Samples collection and analysis

Water samples were collected monthly from Febru-
ary 2016 to January 2017 at six sampling  sites  along 
the Nile River Damietta Branch (Fig.  1). The samples 
were collected and manipulated according to the estab-
lished protocols (American Public Health Association 
(APHA), (APHA,  2005)) for 32 parameters. Tem-
perature (°C), pH, dissolved oxygen (DO), electrical 

Fig. 1   Map of the study area showing the sampling locations

128Page 3 of 18



Environ Monit Assess   ( 2  0  2 1) 193: 128	

1 3

conductivity (EC), and total dissolved solids (TDS) 
were measured in the field using portable water quality 
analyzers. In the laboratory, the determination of tur-
bidity (NTU), alkalinity (CaCO3), total hardness, nitrite 
(NO2‾), ammonium (NH4

+), and phosphate (PO4
3−) was 

done based on APHA procedures. Sulphate (SO4
2−) was 

measured using the turbidimetric method of Sheen et. 
al. (1935). The cations (sodium (Na+), potassium (K+), 
and calcium (Ca2+)) and anions (fluorides (F−) and chlo-
rides (Cl−)) were measured using ion chromatography 
(Dionex model: ICS-3000). The heavy metals (Al, Fe, 
Mn, Cd, Cu, Ni, Pb, and Zn) were estimated by atomic 
absorption spectroscopy (Varian SpectrAA) follow-
ing the standard acid digestion technique as described 
by APHA (2005). Also, by following APHA protocols 
(2005), water organic pollution was investigated using 
5-day biological oxygen demand (BOD), chemical oxy-
gen demand (COD), and total organic carbon (TOC). 
The phytoplankton biomass (Chlorophyll-a) was deter-
mined spectrophotometrically (Wetzel & Likens, 2013). 
The abundance of heterotrophic bacteria was determined 
according to APHA methods, with 100 ml of each seri-
ally diluted water sample transferred to sterilized agar 
plates in duplicate and incubated at 37 °C for 24–48 h.

Statistical analysis

All data were checked for normality prior to analysis, 
and non-normal parameters were transformed using 
log(x  +  1). The data transformation and the statistical 

analyses were performed using SPSS version 20 (SPSS 
Inc., Chicago, IL, USA) and StatSoft Statistica 8.0 soft-
ware packages. Variations across the sampling sites were 
analyzed by one-way analysis of variance (ANOVA) 
with Tukey’s-b technique. Pearson’s correlation was 
used to describe the relationship between parameters.

Factor analysis (FA) was used to suggest how many 
factors are important to explain the variations in water 
quality (Ouyang et  al.,  2006). Principal components 
analysis (PCA) was used for axis extraction (Najafpour 
et al., 2008). Kaiser–Meyer–Olkin (KMO) and Bartlett’s 
sphericity tests were applied to examine the suitability of 
the data for the analysis (Bu et al., 2010). Discriminant 
analysis (DA) was performed on the original datasets to 
identify the processes that controlled temporal or spatial 
variations in surface river water chemistry (Bouguerne 
et  al.,  2017), construct linear discriminant functions 
of the several variables that were used to describe or 
clarify the differences between groups, and identify the 
relative contribution of all variables to the separation of 
the groups (Najafpour et  al.,  2008). The DA included 
the determination of a linear equation that will predict 
to which group the variable belongs (Bouguerne 
et al., 2017).

Water quality index calculation

The weighted arithmetic index method (Brown 
et  al.,  1970) was used for the calculation of WQI 

Table 1   Details of sampling locations in the study area (WTP = Water treatment plant)

Sites Names Description

I Al-Adliya Located close to Al-Adliya WTP Intake, on the eastern bank of the river
Downstream: Farskour Dam (2 km). Average depth: 5.5 m

II Al-Bostan Located close to Al-Bostan WTP Intake, on the eastern bank of the river. Upstream: Damietta Electric 
Power Station (2 km). Downstream: Al-Bostan village (500 m). Average depth: 5.2 m

III Kafr
Soliman

Located close to Kafr Soliman WTP Intake, on the western bank of the river. Upstream: Kafr Soliman 
city on the western bank (4 km).Downstream: Damietta Electric Power Station (1.7 km). Average depth: 
4.3 m

IV Kafr Al-Shennawy Located in front of Al-Shenawy WTP Intake, on the eastern bank of the river
Upstream: the river island of Sharabas (4 km), an area with intensive agricultural activities. Downstream: 

Kafr Al-Shennawy village (1 km). Average depth: 4.7 m
V Daqahla Located close to Daqahla (2) WTP Intake, on the eastern bank of the river. Downstream: Daqahla village 

(500 m). The station is close to Al-Serow town and Daqahla villages with numerous agricultural and 
fishing activities in this section. Average depth: 6.6 m

VI Kafr Al-Mayasra Located close to Al-Mayasra WTP Intake, on the eastern bank of the river. Downstream: The river island 
of Al-Mayasra (1 km), with heavy agricultural activities. Average depth: 3.1 m
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in this study. The mathematical formula of this 
method is given by

where Qi is the quality rating scale of the ith water 
quality parameters, Wi  is the unit weight for the ith 
parameters, and n is the number of parameters.

Calculating of Qi value as

WQI =

n
∑

i=1

QiWi

�

n
∑

i=1

Wi

Qi = 100
[

(Vi − Vo)∕(Si − Vo)
]

where Vi is the measured value of ith parameter, Si is 
the standard permissible value of ith parameter assigned 
by Egyptian Governmental guidelines (2013), and Vo is 
the ideal value of ith parameter in pure water.

Calculation of Wi value, as

where K =
1

∑n

i=1
1

si

.

Wi is the unit weight for ith parameter and k is 
proportionality constant for various water quality 
characteristics.

Wi = K∕Si,

Table 2   Mean and 
standard deviation of water 
parameters compared with 
guidelines

Parameters Mean ± SD WHO (2017) Egyptian 
guidelines (No 
92/2013)

Temperature (○C) 25.98 ± 6.16
pH (pH) 8.23 ± 0.22 6.5–8.5 range (7–8.5)
Turbidity (N.T.U) 4.68 ± 1.88 4.0
TDS (mg/L) 278.07 ± 42.12 1000 500
EC (μs/Cm) 426.22 ± 64.83
Cl−1 (mg/L) 36.42 ± 9.65 250
T. Hardness (mg/L) 169.00 ± 5.00 200
Ca2+ (mg/L) 39.99 ± 0.86
Mg2+ (mg/L) 16.57 ± 1.23
Alkalinity (mg/L) 139.17 ± 18.07 150
Na+ (mg/L) 39.11 ± 5.60 50
K+ (mg/L) 5.72 ± 0.29
DO (mg/L) 8.05 ± 1.57 Minimum: 5 mg/L Minimum: 6 mg/L
COD (mg/L) 48.77 ± 36.77 10
BOD (mg/L) 6.52 ± 3.46 6
NH4

+-N (µg/L) 308.82 ± 131.14 1500 500
NO2

−-N (µg/L) 21.17 ± 3.05 3000 200
PO4

3−-P (µg/L) 145.28 ± 21.09 2000
SiO3

2−(µg/L) 1174.72 ± 43.18
TOC (mg/L) 5.62 ± 1.03
SO4

2− (mg/L) 30.14 ± 2.07 250 200
F− (µg/L) 373.93 ± 13.75 1500 500
Al (µg/L) 57.64 ± 55.98 900
Fe (µg/L) 48.44 ± 40.71 300 500
Mn (µg/L) 28.29 ± 19.98 400 500
Cd (µg/L) 0.070 ± 0.149 3.0 10
Cu (µg/L) 1.14 ± 2.89 2000 1000
Ni (µg/L) 0.89 ± 1.44 70 20
Pb (µg/L) 0.53 ± 1.16 10 50
Zn (µg/L) 2.49 ± 4.37 4000 1000
Chlorophyll-a (µg/L) 6.61 ± 3.29
HPC (U/1 ml) 635.42 ± 464.88
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The suitability of WQI values for human use is 
rated from excellent to water unfit for use. Accord-
ingly, WQI values are arranged in such a way that 
0–25 (Excellent), 26–50 (Good), 51–75 (Bad), 
76–100 (Very Bad), and above 100 (Unfit).

Results and discussion

General water quality evaluation

The mean values (±  SD) of physio-chemical param-
eters at various sampling locations were first compared 
with drinking water guidelines from WHO (2017) 
and Egyptian guidelines (Table  2). Except for COD 
and BOD, the measured values of all parameters were 
within the specifications of the Egyptian standards. 
According to WHO standards, only turbidity values (in 
about 66% of all samples) were higher than the accept-
able levels for drinking water, but only slightly so.

In general, spatial variability (Fig. 2) was less than 
temporal variability (Fig. 3) for most of our 32 vari-
ables. One-way ANOVA showed significant tempo-
ral variability (p < 0.05) except for BOD, PO4, SiO3, 
SO4, Al, Fe, Cd, Pb, and Ni. On the other hand, only 
turbidity, BOD, PO4, and SiO3 displayed significant 
spatial differences.

The overall range of temperature variations reached 
its minimum in January and maximum in August, 
following the normal seasonal cycles reported in 
Egypt. The pH values were on the alkaline side 
(7.7–8.7), with high seasonal variations, that ranged 
from a minimum average in March to a maximum 
in August. The higher values of pH during summer 
could be due to the photosynthetic activity of the 
phytoplankton (He et  al.,  2017), consistent with the 
high levels of chlorophyll-a during summer months. 
Also, the positive correlations of pH with temperature 
(r = 0.37 and P < 0.01) and chlorophyll-a (r = 0.47 
and P < 0.001) support this suggestion.

Total dissolved salts (TDS) showed limited spa-
tial variability but high seasonality with an average of 

278 mg/L. It was closely tracked by conductivity (EC) 
values that are usually sensitive to the TDS variations. 
Chlorides showed the same seasonality with summer-
time minima that averaged of 36.4 mg/L over the year 
being low compared with that of El-Tohamy et  al. 
(2018) (average 163 mg/L), and indicate a considerable 
decrease in industrial effluents that are rich in chloride 
since 2013. Calcium and magnesium values ranged 
between 36.8–41.6 and 14.4–19.2  mg/L, respec-
tively, with high temporal variations (P < 0.001). The 
observed low levels of calcium and magnesium during 
some hot months (Fig. 3) could be attributed to adsorp-
tion onto clay elements and deposition to the bottom 
during temperature elevations (Goher et  al.,  2014). 
Water hardness showed a downward trend from April 
to September, then began to increase during winter, 
with maximum value (177 ± 1.1  mg/L) reached in 
February. Total alkalinity exhibited nearly the same 
trend as hardness (Fig. 3). The levels of calcium and 
magnesium salts that regulated water body hardness 
are generally associated with carbonates that are the 
main source of alkalinity (Wruts,  2002). The similar 
distribution pattern and significant positive correla-
tions between total hardness, magnesium (r = 0.91 and 
P < 0.001), and alkalinity (r = 0.61 and P < 0.001) 
revealed the strong association between these param-
eters. On the other side, the decrease of alkalinity 
values in the water during hot months likely resulted 
from the release of hydronium ions from bicarbonate at 
high temperatures (Thakur & Bais, 1987). The strong 
negative correlation between temperature and alkalin-
ity (r = − 0.727 and P < 0.001) support the previous 
argument.

Sodium and potassium values varied in the range, 
34–53 and 5.24–6.28 mg/L, respectively. The recorded 
low values of these ions were likely due to their resist-
ance to disintegration by weathering effects after their 
arrival with the agricultural effluents from fertilizers 
(Bouguerne et al., 2017).

DO, BOD, and COD varied in the ranges, 
5.10–11.33, 0.7–17.08, and 3.48–177.7 mg/L, respec-
tively. DO values were higher during the winter 
months and decreased with increasing temperature 
at most sites. The low DO values with increasing 
water temperature were likely due to a combination 
of decreased solubility of oxygen at warmer tempera-
tures and increasing microbial activities that consume 
oxygen during the decay of organic matter (Varol 
et  al.,  2012). Inversely to DO values, BOD reached 

Fig. 2   Boxplot graph for variables at different sites  of the 
study area. (circle and star denote outliers with 1.5 IQR and 3 
IQR, respectively). The letters indicate significant differences 
(F is the F-statistic value of ANOVA with Tukey’s-b post hoc 
test)

◂
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its highest levels in late spring, summer, and early 
autumn at sites III and VI, and then fell to its mini-
mum during winter at the site I. The previous observa-
tions are supported by temperature’s negative correla-
tion to DO (r = − 0.55 and P < 0.001) and positive 
correlation to BOD (r  =  0.32 and P  <  0.01). About 
56% of surface water samples, mostly at sites III and 
VI, during summer and spring, exceeded the permis-
sible BOD maximum of 6 based on the Egyptian Gov-
ernmental Decree (No 92/2013). The highest COD 
values were found at site VI, which showed the high-
est values of BOD and the lowest DO values, strongly 
indicating that this site was receiving sewage water 
and agricultural runoffs that were rich in organic pol-
lutants. Nearly 96% of recorded COD values in the 
study area exceeded the maximum permissible limit 
of 10 based on Egyptian specifications. The high COD 
values suggested a high load of dissolved organic mat-
ter in the riverine water contributed by domestic and 
agricultural wastes. Elevated levels of COD lower dis-
solved oxygen concentrations, thus worsening water 
quality (Kannel et al., 2007).

For macronutrients, the concentrations of ammonia 
were consistently high except for February and March, 
with an average value of 308.8 ± 131.1 µg/L. Nitrite 
values were found to be in the range of 16 to 28 µg/L. 
It was at relatively low levels in early spring and win-
ter, then increased in May and reached its maximum 
value of 25.5 µg/L in June. Nitrite is an intermediate 
product of the oxidation of ammonia to nitrate, the 
strong positive correlation between nitrite and ammo-
nia (r  =  0.421 and P  <  0.001) provides evidence of 
this process in the study area. The toxicity of nitrate 
for animals and humans is significantly lower com-
pared with those of ammonia and nitrite (Valencia-
Castañeda et  al., 2019). In the present study, concen-
trations of ammonia and nitrite were far below the 
standards of WHO (2017), so they do not pose a health 
risk. Phosphorus is a limiting nutrient for phytoplank-
ton growth in freshwater systems and it plays a crucial 
role in eutrophication (Varol et  al.,  2012). Phosphate 
values varied from 110 to 180 µg/L with a mean value 
of 145.3  ±  21.1. Silicate concentrations fluctuated 

between 1110 and 1260  µg/L. Generally, upstream 
sites (IV, V, and VI) recorded the maximum content of 
nutrients due to the increased discharge of agricultural 
and domestic effluents.

TOC concentrations ranged between 3.84 and 8.97 
with a remarkable seasonal variation (P  <  0.001). 
TOC is directly related to biological factors that are 
represented in this study by only two parameters, 
namely, heterotrophic bacteria (Williams et al., 2015) 
and phytoplankton biomass (Sohrin & Sempéré, 
2005). Also, the significant positive correlation 
between TOC/temperature (r = 0.599 & P < 0.001), 
TOC/BOD (r  =  0.29 and P = 0.012) and the strong 
negative correlation of TOC with DO (r = -0.52 and 
P  <  0.001) suggest the utilization of dissolved oxy-
gen by microbial pollutants in the decomposition 
of organic matter during hot months. Sulfate usu-
ally enters waters from the use of soap and detergent 
(Gupta et al., 2014), and their values varied from 26 
to 37 mg/L without seasonality. Fluoride was found in 
the range of 345 to 409 µg/L and also lacked temporal 
or spatial patterns.

The concentrations of heavy metals were all within 
the permissible limits by WHO (2017) and Egyptian 
standards (2013). Although aluminum values were 
high compared with other metals, aluminum concen-
trations <  1000  µg/L are considered nontoxic (Fipps, 
2003). The heavy metals concentrations increased 
upstream particularly at sites IV and VI presumably 
due to domestic sewage and run-offs from extensively 
farmed areas. Although only Mn, Cu, and Zn showed 
significant temporal variations (P < 0.05), other met-
als showed a remarkable seasonal difference (Fig. 3). 
The maximum concentrations of Fe, Cd, Mn, Cu, Ni, 
and Pb were found during the hot month period (late 
spring, summer, and early autumn) in agreement with 
the results of Ibrahim and Omar (2013) and Goher 
et  al. (2014). The increase of some metals concen-
trations in surface waters during hot months may be 
attributed to high evaporation rates during elevated 
temperatures (Abdel-Satar, 2001), and/or the libera-
tion of some heavy metals from the bottom sediments 
to the topwater from the fermentation of organic mat-
ter at high temperatures (Ali & Abdel-Satar,  2005). 
A few metals such as Al and Zn showed their maxi-
mum values during winter months, which may be 
attributed to soil leaching from rainfall (Wijngaard 
et al., 2017). On the other hand, many previous studies 
(e.g., El-Ameir, 2017; El-Tohamy et al., 2018; Gad & 

Fig. 3   Boxplot graph for variables at different months in the 
study area. (circle and star denote outliers with 1.5 IQR and 3 
IQR, respectively). The letters indicate significant differences 
(F is the F-statistic value of ANOVA with Tukey’s-b post hoc 
test)

◂
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Toufeek, 2010) argued that the fluctuations of effluents 
from agricultural, sewage, and industrial wastes dis-
charged into the river water are among the main rea-
sons for seasonal differences of metals concentrations.

Chlorophyll-a concentrations in the present work 
ranged from 1.2 to 17.3  µg/L with an average of 
6.6  ±  3.3. The elevated levels of chlorophyll-a are 
an indicator of poor water quality (Dorgham et  al. 
2019); values from 1–3  µg/L are mesotrophic, val-
ues from 3–5 µg/L are considered as eutrophic, and 
those above 5 µg/L are polytrophic (Soo et al., 2017). 
Accordingly, most sites were mesotrophic to 
eutrophic during late autumn and winter months, 
while during spring and early autumn months, 
eutrophic conditions occurred frequently, and the 
polytrophic levels were reported persistently at all 
sampling sites during summer months. This intensive 
phytoplankton production during summer is attrib-
uted to the enrichment of nutrients from land runoffs 
with intensive agricultural activities. This could be 
clearly deduced from the significant positive correla-
tion of chlorophyll-a with temperature (r = 0.574 and 
P < 0.001) in the present investigation.

Heterotrophic bacteria naturally inhabit the bodies 
of humans and animals (Amanidaz et al., 2015). They 
may comprise up to 90% of all aquatic bacteria detected 
in surface water (Rheinheimer et  al.,  1992). In the 

current study area, the abundance of heterotrophic bac-
teria was slightly higher at sites IV and VI than other 
sites (Fig.  2). Temporally, strong seasonal differences 
were observed (P  <  0.001); the highest mean values 
were found in summer months, whereas the minimum 
appeared in winter (Fig.  3). According to Cliver and 
Newman (1987), seasonal temperature variations and 
sewage effluent into the water system are considered 
powerful effects that affect the dominance and profiles 
of bacteria at any given time. The heterotrophic bacteria 
showed a positive correlation with some of the nutrients 
as NO2-N (r = 0.27 and P = 0.03) and NH4-N (r = 0.37 
and P < 0.01), indicating potential microbial contami-
nations from sewage.

Factor analysis

Factor analysis (FA) of the 32 variables found struc-
ture within the data (KMO and Bartlett’s sphericity 
tests were 0.665 and 2541.1 (df = 703, P < 0.001), 
respectively), confirming that FA could be an appro-
priate and useful tool to provide a significant reduc-
tion in data dimensionality (Zhou et  al.,  2007). The 
analysis extracted 10 rotated factors but only the first 
five factors (Fig.  4) had Eigenvalues greater than 1 
(Bu et al., 2010) and together explained 69.6% of the 
total variance (Table 3).

Fig. 4   Score plot of Eigen-
values along with the per-
centage of variance against 
factors affecting water 
quality in the study area
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Factor-1, accounting for 24.6% of the total vari-
ance, was positively correlated with some major phys-
icochemical sources (EC, TDS, Cl−1, alkalinity, total 
hardness, and magnesium); temperature (natural) and 
biological parameters (chlorophyll-a and HPC) were 
negatively correlated with factor 1. These variables 
encompassed a seasonal fluctuations factor, repre-
senting the changes in total salts concentration along 
with other chemical changes that provided insight on 
biological parameters changes in relation to seasonal 
changes, anthropogenic activities, and temperature 
variations (LeChevallier, 2003).

Factor-2, encompassed nutritional factor, account-
ing for 10.6% of the total variance and reflected the 
level of most macronutrients by a positive correlation 
with NH4

+, NO2
‾, PO4

3−, and potassium. Higher val-
ues of potassium, NH4-N, and PO4-P in the study area 
usually coincided with the local agricultural activi-
ties, when farmers planted rice and potato and used 
nitrogen (e.g., urea), potassium, and phosphate as fer-
tilizers. Such conditions confirm that agricultural pol-
lution from the cultivation reached rivers through soil 
leaching during rainy seasons (Bu et al., 2010) and/or 
surface runoffs that correlated with different agricul-
tural activities.

Factor-3 was associated with oxidative/micro-
bial factors: negative DO and positive BOD, TOC, 
and turbidity, coupled to the processing of organic 
matter but was only 8.2% of the total variance. The 
inverse relationship between BOD and DO with rem-
ineralization of organic matter is well known (Kannel 
et al., 2008). This factor can be interpreted as reflect-
ing influences from organic sources such as domestic 
wastewater discharges.

Factor-4 was associated with metals, having a posi-
tive correlation with Cd, Pb, Ni, and Zn that explained 
7.2% of the total variance. Industrial and agricultural 
effluents dispersed along the study area added heavy 
metals in the riverine water continuously.

Factor-5 was an erosion factor, explaining only 
6.1% of the total variance and was positively corre-
lated with Fe, Mn, and SiO3

2− reflecting the influence 
of soil erosion through surface runoffs and seasonal 
effects on water composition (Ojok et  al.,  2017). It 
is also possible that surface irrigation systems in the 
Nile Delta increased the dissociation rate of heavy 
metals (Shokr et al., 2016) and, accordingly, recycled 
them back into the riverine water through agricultural 
runoffs.

The representation of factor scores (1 and 2) in fac-
tor analysis (Fig. 5) reveals different pollution sources 
in the river system on temporal and spatial scales. For 
the sampling times (Fig.  5a), factor score 1 mostly 
impacted the water quality during most of the spring 
and summer months that are coincident with the 
increase of temperatures and/or agricultural activities. 
Concerning the sampling sites (Fig. 5b), factor score 
2 was most significant to the conditions of sites IV 
and VI that were strongly polluted by agricultural and 
domestic runoffs and reflected the influences of both 
eutrophication and disturbance in the river.

Discriminant analysis

In the present study, the standard discriminant analy-
sis (DA) was applied to the raw data that consisted of 
the 32 parameters to highlight the spatial and tempo-
ral variations in surface water quality across the most 
significant variables. Spatially, two discriminate func-
tions (DFs) were found to statistically separate the six 
sampling sites in the study area (Table 4). Accordingly, 
95.7% of the total variance was explained by the two 
DFs. The first function explained 76.5% of the total 
spatial variance, while the second function explained 
19.2%. Only 7 parameters among 32 were required 
by the two discriminant functions (Table 5). The rela-
tive contribution of each parameter was assumed by 
Eqs. (1) and (2) as the following:

The first function discriminated the key chemical 
parameters (PO4 > SiO3 > Al > Fe—arranged accord-
ing to the relative contribution in water quality) and 
exhibited a strong contribution in discriminating the 
six sampling sites that were attributed to the differ-
ences in exposure to different types of surface runoffs. 
The second function takes into account the parameters 
of organic pollution, according to their contribution to 
discrimination. These parameters can be arranged in 
the order: BOD > turbidity > chlorophyll-a. It is notable 
that the seven parameters each represented a category 
of water quality properties: physical, inorganic chemi-
cal, organic chemical, and biological parameters, and 
heavy metals. BOD and phosphorus showed a stronger 

(1)
DFs1 − spatial = 0.73PO4 + 0.58SiO3 − 0.57Al + 0.55Fe.

(2)
DFs2 − spatial =0.57turbidity + 0.79BOD

+ 0.50chlorophyll − a.
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Fig. 5   Factor scores of sampling times (a) and sampling sites (b) are defined by the first two factors
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contribution to spatial discrimination than other parameters. This can be attributed to the differences 

Table 3   Factor loadings of 
the 32 variables on Varimax 
rotation with Kaiser 
Normalization. Extraction 
Method: Principal 
Component Analysis.

Variables Factors
1 2 3 4 5

Turbidity -0.266 -0.499 0.554 0.139 0.386
pH -0.111 0.312 -0.247 -0.053 0.115
Temperature -0.896 0.002 -0.077 -0.027 0.004
TDS 0.926 -0.006 0.004 -0.029 0.044
EC 0.914 -0.016 0.019 -0.026 0.064
Cl- 0.891 -0.038 -0.034 0.108 -0.015
Alkalinity 0.660 -0.001 -0.136 0.086 -0.135
Hardness 0.924 -0.152 0.049 -0.081 -0.134
Ca2+ 0.168 0.020 -0.348 0.052 0.173
Mg2+ 0.873 -0.130 -0.078 -0.123 0.071
NH4

+ -0.254 0.894 0.107 0.105 0.053
NO2

- -0.173 0.536 0.217 0.044 -0.404
Al 0.051 0.009 -0.053 -0.014 -0.026
PO4

3- 0.046 0.711 0.144 -0.042 0.083
SiO3

2- 0.056 0.152 0.447 -0.003 0.557
Cd 0.045 0.154 0.058 0.631 0.021
Fe -0.057 0.060 0.187 0.289 0.747
Ni -0.082 -0.290 -0.289 0.515 0.040
Pb -0.096 0.025 -0.005 0.701 0.103
SO4

2- -0.019 0.053 0.366 -0.072 0.003
F 0.076 0.105 -0.005 0.338 -0.456
DO 0.472 0.003 -0.541 -0.340 -0.110
Mn -0.454 0.136 0.035 -0.101 0.524
Zn 0.069 0.251 -0.116 0.538 -0.293
Na+ 0.396 -0.836 -0.003 -0.088 -0.095
K+ 0.158 0.874 0.041 0.082 -0.084
Cu -0.100 0.095 0.078 0.014 -0.105
COD 0.043 -0.049 0.125 0.020 -0.009
BOD -0.352 -0.027 0.511 -0.245 0.204
TOC -0.498 -0.227 0.668 -0.291 -0.206
HPC -0.531 0.200 0.059 0.174 -0.044
Chlorophyll-a -0.522 -0.055 -0.104 -0.016 -0.158

Table 4   Eigenvalues of the first two DFs for both spatial (a) and temporal (b) variation of water quality parameters

Function Eigenvalue % Variance Cumulative % Wilk’s Lambda Chi-square P-level

(a)
  1 2.89 76.5 76.5 0.137 130.1 < 0.001
  2 0.822 19.2 95.7 0.332 53.61 0.02

(b)
  1 15.9 56.4 56.4 0.001 419.1 < 0.001
  2 8.6 30.3 86.6 0.002 240.8 < 0.001
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in the exposure to the runoffs of phosphate fertilizers 
from the agricultural activities between the six sam-
pling sites. Also, the organic pollution that is expressed 
by BOD may have come from many other sources such 
as anaerobic wastewaters (low dissolved oxygen levels) 
and anthropogenic runoffs containing poorly degraded 
organic wastes.

Temporally, the first two DFs explained 86.6% 
of the total variance (Wilk’s Lambda test) and were 

also statistically significant (Table  4). The first DF 
explained 56.5% of the total temporal variance, while 
the second DF explained 30.3%. A total of 11 among 
32 parameters were encompassed by the two func-
tions (Table 5) and the relative contribution of each 
parameter was given by Eqs. (3) and (4) as follows:

The 11 parameters selected by the temporal DFs 
can be arranged according to their contribution in 
the order K > temperature > COD > HPC > total hard-
ness > DO > NO2 > Na > TDS > Cl > EC. Thus, the 
temporal DA results suggested that K, temperature, 
COD, and live heterotrophic bacteria were the most 
significant parameters discriminating the variances 
between months, with these four variables accounting 
for most of the observed temporal variations in the 
river’s surface water quality.

Water quality index

For calculating the WQI index, the results of discri-
minant analysis led to the reduction of the number of 
parameters from 32 to 18 indicator parameters that 
were responsible for large variations in water quality. 
Since the limits of the Egyptian Decree No 92/2013 
were used in the calculation of the WQI scores, eleven 
parameters were not considered, namely temperature, 
EC, hardness, Cl, Al, Na, HPC, K, SiO3, turbidity, and 
chlorophyll-a, where their limits were not established 
within the Egyptian guidelines (Table  2). Therefore, 
the final shortlisted 7 parameters were DO, BOD, 
COD, PO4, Fe, NO2, and TDS.

WQI values in the study area were found to be 
between 12.7 and 33.7 with an annual mean value of 
18.9 ± 3.9. According to these values, the Nile River 
Damietta branch is classified as having a good to 
excellent water quality in terms of its WQI. Therefore, 
the Damietta branch can be safely used for drinking 

(3)

DFs1 − temporal = − 0.59TDS − 0.51EC − 0.53Cl

+ 0.62Na + 0.75 K − 0.65DO

+ 0.69COD.

(4)
DFs2 − temporal =0.72temperature + 0.66 hardness

+ 0.63NO2 + 0.67 HPC.

Table 5   Discriminant function coefficients of spatial and tem-
poral variation of variables

Parameters Spatial Temporal

Function 1 Function 2 Function 1 Function 2

Temp 0.05 0.36 0.37 0.66
pH − 0.09 0.11 0.22 0.05
Turb 0.03 0.57 0.08 − 0.28
TDS 0.13 − 0.34 − 0.59 0.46
EC 0.13 − 0.31 − 0.51 0.25
Cl− 0.02 − 0.39 − 0.53 0.26
Hardness 0.04 − 0.30 0.13 0.76
Alkalinity − 0.06 − 0.31 − 0.24 0.20
Ca2+ 0.05 0.08 − 0.01 0.03
Mg2+ − 0.02 − 0.27 − 0.48 − 0.84
Na+ 0.03 − 0.03 0.68 0.45
K+ 0.17 − 0.24 0.75 0.52
DO 0.09 − 0.23 − 0.65 − 0.26
COD − 0.02 − 0.18 0.67 0.13
BOD 0.09 0.79 0.13 0.31
NH4

+ 0.00 0.03 0.16 − 0.11
NO2

− 0.00 0.01 − 0.18 0.62
PO4

3− 0.73 − 0.15 0.04 0.07
SiO3

2− 0.58 − 0.23 − 0.02 − 0.01
TOC − 0.03 0.30 0.21 − 0.19
SO4

2− 0.04 0.11 0.13 0.05
F 0.09 0.24 0.05 − 0.12
Al 0.58 0.45 − 0.17 − 0.11
Fe 0.55 0.32 0.05 − 0.17
Mn 0.00 0.33 0.17 − 0.23
Cd − 0.05 − 0.02 0.04 − 0.01
Cu − 0.06 0.11 0.12 − 0.08
Ni − 0.05 0.04 − 0.01 − 0.10
Pb 0.01 0.09 0.18 0.00
Zn − 0.08 − 0.12 − 0.23 − 0.15
Chl-a − 0.03 0.50 0.12 − 0.10
HPC 0.03 0.24 0.34 0.69

Fig. 6   Temporal (a) and spatial (b) variations of WQI calcu-
lated values. The letters indicate significant differences (F is 
the F-statistic value of ANOVA with Tukey’s-b post hoc test)

◂
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and irrigation purposes after suitable secondary 
treatment. The values of WQI showed temporal and 
spatial significant differences (Fig.  6). The high-
est value was determined at site VI in May, whereas 
the smallest value was determined at site III in Janu-
ary. Compared with El-Ezaby et al. (2010) and Badr 
et al. (2013), the WQI results suggest improvement in 
the Nile water quality at the study area over the last 
10  years (El-Ezaby et  al.,  2010; Badr et  al.,  2013) 
during which time Al-Serow drain discharge switched 
to Manzalla lake (Shaban et al., 2010) and fish cages 
were removed from the river.

Conclusion

In this study, the spatial and temporal variations in sur-
face water quality were evaluated using multivariate 
statistical techniques. COD and BOD at most sampling 
sites exceeded the guidelines of the Egyptian regula-
tions, leading to the concern that organic pollution may 
threaten the water quality in the Nile River. Temporal 
variability was significantly greater than spatial variabil-
ity for most variables. Seasonal fluctuations, nutritious 
(agricultural discharge), and organic pollution (domes-
tic wastewater) were the main factors influencing the 
water quality in the Nile River. Spatially, only 7 param-
eters were required to discriminate between the six sam-
pling sites (BOD > PO4 > SiO3 > Al > Turbidity > Fe > 
 chlorophyll-a—arranged according to their relative con-
tribution in water quality) affording 96% correct assigna-
tions in spatial variations in comparison to 11 parameters 
(K > temperature > COD > HPC > hardness > DO > NO 
2 > Na > TDS > Cl > EC—also, arranged by contribu-
tion) affording 87% correct assignations in temporal 
analysis over the year-round. Consequently, a few indi-
cator parameters responsible for most variations in water 
quality can be used for the environmental monitoring 
policies in this river. We used this reduction approach to 
develop a novel water quality index for the Nile River 
in Egypt. The use of DA led to the reduction of the 32 
parameters to 18 that were further reduced to 7 param-
eters. This simplification will reduce the time, effort, 
and cost required to conduct water quality monitor-
ing. Except for the above limit turbidity, water qual-
ity parameters did not exceed the international (WHO) 
limits during the study period and Damietta branch has, 
thus, good water conditions. However, the effects of the 
anthropogenic activities were determined along the river 

course, particularly at upstream sites. The upstream site 
VI is far from the other sites in factor scores analysis and 
showed the highest WQI values. In general, for the long-
term improvement and protection of the current status of 
water quality in the Nile River Damietta branch, a par-
ticipatory approach that includes all groups of society 
should be built. The overuse of fertilizers in Egypt might 
be reduced through the education of farmers on fertilizer 
application. The domestic and agricultural wastes must 
be prevented from being discharged to the river from its 
banks and adjacent areas through tighter regulatory con-
trol. Together these actions will facilitate complement 
with the recommended standards of effluent discharge 
set in Egyptian laws for the protection of the Nile River 
against pollution.
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