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classical regional-based approaches, a new density-
based regional analysis approach was proposed. 
This study is an innovative one in terms of detecting 
IS and indicating relationships between land cover 
areas and surface temperatures in semi-arid regions. 
Another innovation of the study is related to the 
results produced. The results showed that decreasing 
LST values were observed with increasing IS and 
vegetation cover values and increasing LST values 
were observed with increasing soil areas. The present 
findings may provide significant contributions to the 
literature and will facilitate the development of urban 
planning strategies in semi-arid regions.

Keywords Impervious surface · Land surface 
temperature · NDAISI · SVM · Landsat TM · ETM+ · 
OLI-TIRS · Kayseri

Introduction

According to the United Nations 2014 report, 
54% of the world’s population lives in urban areas 
and such a rate continues to grow and will reach 
66% by the year 2050. This rate is estimated to 
be 73% in Turkey and is expected to reach 84% 
in 2050 (UNPD, 2015). Increasing populations, 
consequently increasing housing, work, and 
transportation areas and the rapid expansion of 
urban areas has become a constantly growing 
phenomenon. This growing phenomenon appears 

Abstract Impervious surfaces are a significant 
issue of both urbanization and environmental 
assessment. However, it is a problem to classify 
impervious surface (IS) and soil areas as separate 
classes in land cover classification. The objectives 
of this study are to obtain impervious surface, 
vegetation, and soil areas clearly of an urban complex 
with a semi-arid climate and to better determine the 
relationships of IS, vegetation, and soil areas with 
land surface temperatures (LSTs). For this purpose, 
IS, vegetation, and soil areas in a semi-arid city 
of Turkey-Kayseri city were identified by using 
Normalized Difference Anthropogenic Impervious 
Surface Index (NDAISI) data and support vector 
machine (SVM) method together in the classification 
of different areas. Landsat 5, 7, and 8 satellite images 
of 1987, 2000, and 2013 were used, respectively, in 
this study. Afterward, the effects of these areas on 
LSTs were analyzed. Regression analysis was used 
to determine the relationships between land cover 
areas and surface temperatures. To better demonstrate 
these relationships, besides common pixel-based and 
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as the concept of urbanization (Kalnay & Cai, 
2003). Urbanization causes rapid urban growth 
(Kaufmann et  al., 2007). This situation concludes 
with changes in land use, regional ecosystem, 
and energy consumption due to anthropogenic 
influences such as buildings, construction zones, 
and roads with man-made features (Ma et  al., 
2012; Rashid & Romshoo, 2013; Guan et  al., 
2019). Also, these anthropogenic influences can 
have an impact on settled communities (Bhatti 
et  al., 2019). One of the anthropogenic influences 
is impervious surfaces. Impervious surfaces are 
defined as surfaces such as roofs, sidewalks, 
roads, car parks, etc. consisting of areas built with 
waterproof materials such as asphalt, stone, and 
concrete. The amount of impervious surfaces is also 
one of the most important indicators of urbanization 
degree and environmental quality increase with the 
urbanization (Arnold & Gibbons, 1996; Paul & 
Meyer, 2001). The impact of urbanization on the 
environment is often understood by determining 
the interaction with impervious surfaces. Therefore, 
monitoring and mapping of impervious surfaces are 
very important in preparing adaptation strategies for 
regional climate and ecosystem changes (Bierwagen 
et al., 2010; Lyu et al., 2019). In addition to ground 
measurements, advanced geospatial techniques 
using GPS measurements, photogrammetry, and 
remote sensing images can be used to map the 
impervious surface area (ISA). The remote sensing 
method has advantages over the other methods such 
as the ability to map very large areas at low cost 
and in less time and integration with Geographic 
Information Systems (GIS) (Bauer et al., 2004).

There are many methods for estimating impervious 
surfaces based on spectral or geospatial information 
obtained from remote sensing images. When looking 
at these methods, different approaches can be listed as 
follows: (1) selecting areas to be classified manually 
or semi-automatically, and determining class labels 
as a result of visual interpretation (Jennings et  al., 
2004; Gluch et al., 2006); (2) evaluating data from the 
other data sources, such as vegetation and soil (VIS-
Vegetation-Impervious Surface-Soil model) (Phinn 
et  al., 2002; Okujeni et  al., 2015); (3) using index 
values (Bauer et al., 2004; Yang & Liu, 2005; Wang 
et  al., 2015b); (4) using spectral mixture analysis 
(SMA) (Phinn et  al., 2002; Wu & Murray, 2003; 
Xian & Crane, 2005; Lu & Weng, 2006); (5) using 

decision tree algorithm (Xian et al., 2008; Couturier 
et al., 2011).

Impervious surface areas (ISAs) are complex 
structures having similar reflectance with soil. It is a 
problem to classify impervious surface (IS) and soil 
areas as separate classes in land cover classification 
(Xu et al., 2013). When the studies are examined, it is 
seen that most of the produced approaches were tried 
in the tropic or sub-tropic regions (Zhang et al., 2009; 
Xu et  al., 2013; Acero & González-Asensio, 2018; 
Govil et  al., 2019; Sun et  al., 2019). Besides, the 
relationships among ISA, vegetation, soil classes, and 
corresponding land surface temperatures (LSTs) are 
very limited in semi-arid regions (Çiçek et al., 2013; 
Haashemi et al., 2016). Therefore, this study has two 
major objectives. First, we aim to classify ISA in a 
semi-arid region which was not considered much in 
previous literature. This study is an innovative one 
in terms of performance of ISA analysis with the use 
of the support vector machine (SVM) classification 
method with the aid of Normalized Difference 
Anthropogenic Impervious Surface Index (NDAISI) 
data. The second objective is to analyze the effects 
of ISA, vegetation, and soil on LST in a semi-arid 
region with the development of a new density-based 
regional analysis approach. Therefore, this study will 
have a major contribution to the classification of the 
semi-arid region.

In this sense, ISA was determined for Kayseri 
province of Turkey and the relationships between 
ISA and LST were determined. Initially, Modified 
Normalized Difference Water Index (MNDWI) (Li 
et al., 2014) was used to determine the areas of water 
bodies (Esch et al., 2009). Then, NDAISI, a derivative 
index-based method, was used to calculate ISAs semi-
automatically (Piyoosh & Ghosh, 2017). NDAISI 
operates over the outcomes obtained through different 
index methods and developed for Landsat 8 satellite 
data. Therefore, while using NDAISI, modifications 
were performed in some operational steps to develop 
a new approach as to be commonly used for all three 
of Landsat 5, 7, and 8 satellite images. With the aid of 
the methods used in this classification approach, the 
ranges in which resultant outcomes were intensified 
were taken into consideration and Otsu’s binary 
thresholding method (OT) (Otsu, 1979) or manual 
data thresholding was performed to determine ISAs 
partially. Since index data are alone insufficient for 
ISA determination, they were added as supplementary 
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data to visible, infrared, and thermal region bands 
of the satellite image and original attribute space 
was enriched. This multi-mode attribute space 
was classified with the SVM method and ISA was 
determined. Then, after the radiometric calibration 
of thermal band data of geometrically registered 
Landsat 5, 7, and 8 satellite images to investigate the 
effects of ISA on LST, the surface temperatures of 
the land cover were obtained. Finally, simple linear 
regression analyses were performed to determine the 
relationships among ISA, vegetation, soil classes, and 
corresponding LSTs and statistical tests were used to 
test the significance of regression models.

The remainder of this study is organized as follows. 
The study area and data section comprise descriptive 
information about the data used and the general 
characteristics of the workspace. The methodology 
section includes a detailed methodology containing 
the classification approach used to find out ISAs 
with the aid of NDAISI data and SVM method, the 

procedures for LST generation, and data preparation 
approach for statistical analyses including pixel-
based and density-based zonal analysis. Outcomes of 
accuracy assessment for the classification approach 
and the relationship between ISA, Normalized 
Difference Vegetation Index (NDVI), soil, and LST 
are given and discussed in the results and discussion 
section. Finally, the paper is completed with 
concluding remarks and some implications in the 
conclusion section.

Study area and data

The city center including three central towns of Kayseri 
province was selected as the study area (Fig. 1).

Kayseri province is in the Central Anatolia Region 
of Turkey between 34°56′–36°59′ east longitudes 
and 37° 45′–38° 18′ north latitudes. It is a greater 
city municipality and according to 2016 statistics, 

Fig. 1  Location map of Kayseri study area
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Kayseri is the 14th most crowded city in Turkey. 
Kayseri has quite intensive industrial activities. The 
city is in a rapid urbanization process (Wikipedia, 
2019). Kayseri has a semi-arid climate with hot and 
dry summers and cold and wet winters (Erinc, 1950). 
The greatest temperatures are observed in July and 
August. Steppe areas are dominant over the smooth 
terrains, mountainous, and hilly terrains. There is 
a sparse forest cover at high altitudes, but soils are 
mostly covered with destructed forest and shrub 

covers. There are quite large barren soils in the study 
area. Just because of land cover diversity and rapid 
urbanization, this study area was selected for ISA 
determination and analysis of the relationships with 
land surface temperatures. For quantitative assessment 
of ISA and LST, Landsat 5 TM image taken on 20 
July 1987, Landsat 7 ETM+ image taken on 31 July 
2000, and Landsat 8 LDCM OLI/TIRS image taken 
on 11 July 2013 were used (Fig. 2). Satellite images 
were in Universal Transverse Mercator (UTM) 

Fig. 2  Flowchart of the 
study
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projection coordinate system and World Geodetic 
System 84 (WGS84) datum. Landsat 5 TM satellite 
image of 1987 was selected as a reference image to 

study the borders of the same locations in Landsat 5, 
7, and 8 satellite images belonging to different years, 
and image recording was carried out by resampling 

Fig. 4   a NDAISI, b classification images belonging to 2000

Fig. 5   a NDAISI, b classification images belonging to 2013
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other multi-band images according to the reference 
image. Ground control points with an RMSE value 
below 0.5 pixels were used in the image resampling 
step. Therefore, geometrically registered images were 
obtained.

Methodology

Impervious surfaces

The classification approach used to find out ISAs with 
the aid of NDAISI (Piyoosh & Ghosh, 2017) and 
SVM (Kesikoglu et  al., 2019) methods is presented 
in Fig.  2. Initially, spectral radiance calibration was 
performed by converting digital number (DN) values 
of Landsat satellite images into radiance values. 
Then, spectral radiance values were passed through 
FLAASH atmospheric correction with the aid of 
ENVI5.3 software to eliminate reflected energy 
radiance and dissipation-induced effects. In index-
based methods, accuracy in the determination of ISAs 
decreases when the water areas were not identified 
(Xu, 2010). In the present study, the MNDWI method 
was used to determine water areas. Water areas were 
identified and masked through OT thresholding of 
Landsat 5, Landsat 7, and Landsat 8 index image 
data.

It is necessary to calculate the RAISI method 
to get the NDAISI method. In previous literature 
(Piyoosh & Ghosh, 2017), BCI (Deng & Wu, 2012) 
and Modified Normalized Difference Soil Index 

(MNDSI) (Piyoosh & Ghosh, 2018) methods were 
used to get the RAISI method. MNDSI method uses 
panchromatic band data while making calculations. 
While Landsat 7 and Landsat 8 satellite images used 
in this study had panchromatic band data, Landsat 
5 image did not. Therefore, instead of the MNDSI 
method allowing information retrieval to get the 
RAISI method and soil areas, Ratio Normalized 
Difference Soil Index (RNDSI) method was used to 
have the same methods in the identification of ISAs 
(Deng et al., 2015).

To get desired areas from the index images 
obtained through consecutive use of the above-
mentioned methods, images should pass through 
thresholding. For threshold value, the OT method 
(Otsu, 1979; Li et  al., 2013; Du et  al., 2014) and 
manual thresholding approaches were used. The 
manual thresholding approach in the study is 
based on taking the median of the positive index 
values in the areas of the desired image class. At 
the end of thresholding, while ISAs were able to be 
distinguished in some soil areas, they were not clearly 
identified in some soil areas and some impervious 
surfaces were diagnosed as soil. When the entire 
study area was analyzed, it was observed that the 
use of the method alone was not able to distinguish 
ISAs sufficiently because of high quantities of 
soil areas (Figs.  3a, 4a, and 5a). Since index data 
were not sufficient alone for the identification of 

Table 1   ε values for 
Landsat 5, Landsat 7, and 
Landsat 8 satellites

NDVI thresholds Landsat 5 and Landsat 7 Landsat 8

NDVI < 0.2 0.97 0.966
0.2 ≤ NDVI ≤ 0.5 0.004Pv + 0.986 1.0094 + 0.047ln(NDVI)
NDVI > 0.5 0.99 0.973

Table 2  Classification accuracies of SVM with/without NDAISI

Method 1987 2000 2013

SVM without 
NDAISI

Overall accuracy 
(%)

88.57 91.79 94.07

Kappa (%) 74.00 82.00 87.15
SVM with 

NDAISI
Overall accuracy 

(%)
90.30 92.09 94.87

Kappa (%) 78.20 82.70 89.00

Table 3  Class-based accuracies of SVM with NDAISI for 
1987, 2000, and 2013

Class Producer’s 
accuracy (%)

User’s 
accuracy 
(%)

1987 Impervious surface 74.1 100
Other 100 86.6

2000 Impervious surface 82.54 94.89
Other 97.33 90.28

2013 Impervious surface 90.77 95.33
Other 97.33 94.62
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ISAs, index image was supplemented into visible, 
infrared, and thermal region bands of satellite image 
as supplementary data, and ISAs were determined 
through the classification of satellite image with the 
aid of the SVM method (Kesikoğlu, 2013; Sahu et al., 
2015). Data attribute space was enriched through 
additions of NDAISI method data into satellite image 
bands as supplementary data.

Land surface temperature

LST is determined with the aid of thermal band data 
of satellite images. Landsat 5 and Landsat 7 satellites 
have one thermal band. However, Landsat 8 has 
two thermal bands as Band 10 and Band 11. It is 
recommended that Band 10 should be preferred while 
findings of LST since calibration values are more 
reliable than Band 11 (USGS, 2018). In this study, the 
method developed by Chander and Markham (2003) 
able to make calculations without a need for any 
atmospheric parameters was used in the calculation 
of LST (Chander & Markham, 2003; Weng et  al., 
2004; Nichol, 2005; Estoque et al., 2017). Emissivity 
(ε) value, which varies according to land cover 
types, is used to obtain land surface temperatures. 
In this study, the emissivity values used to get LST 
were calculated by using NDVI thresholding method 
described in Table  1 (Sobrino et  al., 2004; Zhang 
et al., 2009).

Soil (NDVI < 0.2) and vegetation (NDVI > 0.5) 
ε values for Landsat 5 TM and Landsat 7 ETM+ 
satellites were, respectively, taken as 0.97 and 0.99, 
ε values of mixed sections (0.2 ≤ NDVI ≤ 0.5) were 
calculated with the equation of ε = 0.004P

v
 + 0.986 

(Sobrino et  al., 2004). Soil (NDVI < 0.2) and 
vegetation (NDVI > 0.5) ε values for Landsat 8 
TIRS satellite were, respectively, taken as 0.966 
and 0.973 (Wang et  al., 2015a), ε values of mixed 
sections (0.2 ≤ NDVI ≤ 0.5) were calculated with the 
equation of ε = 1.0094 + 0.047ln(NDVI) (Sekertekin 
et  al., 2016). PV refers to the vegetative ratio in 
Table 1.  NDVIsoil and  NDVIvegetation can be described, 
respectively, as 0.2 and 0.5 given in Eq. 1.

(1)Pv =

(

NDVI − NDVIsoil

NDVIvegetation − NDVIsoil

)2

Data preparation

Relationships are assessed in two fashions, either 
pixel-based or zonal-based. Two different assessment 
types are used for better visualization of the 
relationships. In some previous studies (Xu, 2010; 
Xu et al., 2013), it was observed that when the pixels 
were analyzed alone, they were able to present the 
relationships between ISA and LST strongly. In 
some other studies (Yuan & Bauer, 2007; Zhang 
et al., 2009; Li et al., 2011), on the other hand, it was 
indicated that when the pixels were analyzed alone, 
they were not able to set a quantitative relationship 
between ISA and LST or set a weak relationship. Such 
a case hampers the interpretation of the relationships 
between ISA and LST. The resultant weak assessment 
of the relationships between ISA and LST when 
the pixels were analyzed alone was attributed to the 
confusion of IS and soil area with each other during 
the classification (Xu et al., 2013). Thusly, in present 
classifications, IS and soil areas were not able to be 
distinguished in some places. In such cases, instead 
of single-pixel, zonal-based analyses may generate 
more efficient outcomes for the relationships between 
ISA-LST (Xu et  al., 2013). Therefore, in this study, 
two different analysis approaches (pixel and density-
based zonal) were employed in the presentation of 
the relationships between ISA and LST. In this way, 
outcomes of “Pixel-Based Analysis (PBA)” and 
“Density-Based Zonal Analysis (DBZA)” were able 
to be observed. In PBA, attribute space is divided 
into an equal interval based on the minimum and 
maximum values. Average input and output values 
of each interval are calculated and a regression graph 
is drawn (Lu & Weng, 2006; Yuan & Bauer, 2007). 
In DBZA, the density of data within A  ×  A blocks 
is taken into consideration. Density is calculated as 
the ratio of the sum of membership values of pixels 
of input data (ISA, vegetation, or soil) to the sum of 
membership values of all pixels of the block. Then, 
the arithmetic mean of output (LST) values of all 
pixels is calculated. After that, the density values 
in 0–1 interval are divided into n number of sub-
intervals. The average of LST values of the blocks 
with a density falling into the same interval is taken 
and the regression graph is drawn. Considering the 
spatial resolution of the satellite images, in DBZA 
approach, block size was taken as 3 × 3 and number 
of intervals was taken 35. Block size and number 
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of intervals were found to be sufficient at the end of 
works done on data of 3 years.

Results and discussion

Analysis of ISA

With the integrated use of NDAISI and SVM 
methods, an efficient classification approach was 
presented for ISAs. When the ISAs obtained with 
the aid of satellite images of three different years, 
index methods, and classification approach were 
compared, it was observed that ISA determined with 
classification approach yielded better outcomes than 
the ISA obtained with the NDAISI method. The ISA 
class (Figs.  3a, 4a, and 5a, white areas) identified 
with the NDAISI method was mostly confused with 
soil class.

Accuracy assessment

For ISA classification with SVM, pixels belonging 
to different sections of the study area were 
selected on satellite images. For the year 1987, 
pixels for 2000 ISA and 6500 other areas; for the 
year 2000, pixels for 2088 ISA and 7030 other 
areas; for the year 2013, pixels for 2142 ISA and 
8148 other areas were selected and classified 
through training of classification method for 
each year. For accuracy assessment, 1619 
reference points were determined randomly for 
each satellite image. The land cover type of each 
reference point was compared with Google Earth 
satellite images (Estoque et  al., 2012; Estoque & 
Murayama, 2015). Accuracy assessments for SVM 

classification result in cases with and without 
NDAISI data as a supplementary attribute are 
provided in Table  2. Present findings for 3  years 
revealed that the use of NDAISI data improved the 
success of classification.

Because of SVM with NDAISI’s higher accuracy 
in this study, the method was selected for further 
analysis in this study. In addition to the overall 
accuracy and kappa values in Table  2, accuracy 
assessment was also done based on the producer’s 
and user’s accuracies in Table 3.

The producer’s accuracy is calculated by 
proportioning correctly classified pixels of a 
class to the total pixels appointed to that class in 
the reference data. User’s accuracy is calculated 
by proportioning correctly classified pixels of 
a class to the total pixels appointed to that class 
in the classified image. The producer’s accuracy 
measures the success of the classification method. 
The user’s accuracy measures confidence in the 
thematic information produced (Sunar et  al., 
2011). Considering the producer’s accuracies 
for different years (1987, 2000, and 2013), it 
was seen that the impervious surface areas were, 
respectively, classified with lower accuracy (74%, 
82%, and 90% for IS class) than other areas (100%, 
97%, and 97% for other class). This is due to the 
similar pixel reflection characteristics of the 
IS and soil areas (Deng et  al., 2015). The user’s 
accuracies for the IS class (95–100%) were more 
than the other class (87–95%). This is because 
there is only one class type in the IS class and 
more than one class type in the other class. It was 
seen that sufficient accuracy (above mentioned) 
was obtained for two classes considering both the 
producer’s and user’s accuracies.

Fig. 6  ISA-LST scatter graphs, respectively, for 1987, 2000, 2013
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Determination of ISA‑LST relationship

Classifier rule values for ISA class obtained through 
classification are in the range of 0–1. The values 
approaching 1 indicate the increasing possibility of a 
pixel to be an ISA. For a pixel to be classified as ISA, 
the ISA rule value should be greater than 0.5. In this 
study, for analysis of the relationships between LST 
and ISA, the ISA rule and LST values of each pixel 
were taken into consideration. The ISA-LST scatter 
graphs of three different years are presented in Fig. 6.

It is important to determine which regression 
model can be used for each dependent variable. 
Therefore, drawing the data scatter graphs is 
necessary. If the data look like a known mathematical 
function, they can be adapted to the model type. 
Besides, an experience-based model can also be used 
(Alexopoulos, 2010). Since the linear regression 
model was commonly used in literature to model the 
relationships of ISA, vegetation, and soil classes with 
LST (Lu & Weng, 2006; Yuan & Bauer, 2007; Imhoff 
et al., 2010; Rhee et al., 2014), it was preferred also 

Fig. 7  ISA-LST rela-
tionship graphs during 
1987–2013: outcomes of 
density-based zonal analysis 
(a, c, e) and pixel-based 
analysis (b, d, f)
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in this study. Different from most of the previous 
studies, the statistical tests (residual plot, t, and F 
tests) conducted for all regression models of the 
regression analysis were presented in the main text of 
the paper.

At 0.05 significance level, according to the 
graph presenting the relationship between ISA-
LST, R2 = 0.33 and RMSE = 0.57 in DBZA graph 
(Fig.  7a) and R2 = 0.70 and RMSE = 0.39 in PBA 
graph (Fig. 7b) of 1987; R2 = 0.89 and RMSE = 0.27 
in DBZA graph (Fig.  7c) and R2 = 0.33 and 

RMSE = 0.85 in PBA graph (Fig.  7d) of 2000; 
R2 = 0.72 and RMSE = 0.18 in DBZA graph 
(Fig.  7e) and R2 = 0.76 and RMSE = 0.17 in PBA 
graph (Fig. 7f) of 2013.

To test the validity of the linear model, error 
scatter graphs, and hypothesis tests (t and F test) 
can be used. In the present case, despite the low 
R2 values, the linear regression model generated 
with DBZA (Fig.  7a) was found to be statistically 
acceptable (Fig.  8a). In literature (Xu, 2010; Xu 
et  al., 2013), the pixel-based approach with a high 

Fig. 8  ISA-LST error 
graphs during 1987–2013: 
outcomes of density-based 
zonal analysis (a, c, e) and 
pixel-based analysis (b, 
d, f)
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R2 value was common. However, a certain pattern 
of error graphs generated with PBA (Fig.  8b, 
d, f) indicates that the linear regression model 
was not statistically reliable, because errors are 
interdependent and not homoscedastic. Such a case 
was mostly attributed not to take place information, 
a hidden variable (confounding), into account in 
the pixel-based approach. The greater significance 
of DBZA, reflecting place-based neighborhood 
relationship, supports that idea.

Since it was found to be significant, hypothesis 
tests were conducted only for DBZAs. The t test was 
conducted for ISA-LST regression model parameters 
and the F test was conducted to check the overall 
significance of the model. Present tests revealed 
that ISA-LST linear regression model and model 
parameters were significant. Regression analysis 
between ISA-LST of the years 1987, 2000, and 
2013 yielded a reverse (negative) relationship, in 
other words, mean LST decreased with increasing 
possibility of being an ISA.

Determination of NDVI‑LST relationship

The values for resultant vegetation index (NDVI) 
areas were within − 1 and 1 interval. NDVI index 
values approaching 1 express the increasing 
potential of the pixel of being vegetation. In the 
present study, vegetation index data of −  1 and 1 
range was normalized into 0–1 range, and scatter 
graphs were generated for 1987, 2000, and 2013 
data by taking the vegetation ratios of each pixel 
(0–100%) into consideration (Xu et  al., 2013). 
NDVI-LST scatter graphs of 3 years are presented 
in Fig. 9.

In previous literatures, the places with an NDVI 
value of greater than 0.5 were accepted as vegetation 
(Carlson & Ripley, 1997; Sobrino et  al., 2004, 
2008). Therefore, to present the relationship between 
vegetation and LST, the pixels with a NDVI value of 
greater than 0.5 were taken into consideration. At 0.05 
significance level, according to the graph presenting 
the relationship between NDVI-LST, R2 = 0.79 
and RMSE = 0.95 in DBZA graph (Fig.  10a) and 
R2 = 0.98 and RMSE = 0.28 in PBA graph (Fig. 10b) 
of 1987; R2 = 0.87 and RMSE = 0.89 in DBZA graph 
(Fig.  10c) and, R2 = 0.99 and RMSE = 0.25 in PBA 
graph (Fig. 10d) of 2000; R2 = 0.88 and RMSE = 0.74 
in DBZA graph (Fig.  10e) and R2 = 0.89 and 
RMSE = 0.52 in PBA graph (Figs.  10f and 11) of 
2013.

Since it was found to be significant (Fig.  11), 
hypothesis tests were conducted only for the NDVI-
LST regression model and model parameters 
generated with DBZAs. Present F and t tests revealed 
that model and model parameters were significant. 
NDVI-LST analyses of 3  years revealed decreasing 
LST with increasing NDVI values. Such a finding 
complies with the results of previous studies (Lu & 
Weng, 2006; Yuan & Bauer, 2007; Zhang et al., 2009; 
Onishi et al., 2010; Solangi et al., 2019).

Determination of soil‑LST relationship

Soil areas were obtained from NDVI data. For NDVI-
based soil classes, the pixels with index values of 
between 0 and 0.2 were taken into consideration 
(Carlson & Ripley, 1997; Sobrino et al., 2004, 2008). 
Because of difficulty in distinguishing soil and ISA, 
the pixels previously decided as ISA based on the 

Fig. 9  NDVI-LST scatter graphs, respectively, for 1987, 2000, and 2013
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SVM classification method were removed from the 
soil class. In this way, soil class was identified more 
reliably.

NDVI and LST values were taken into consid-
eration to determine the soil-LST relationship. To 
improve comprehension of these values, they were 
normalized into 0–1 range and the soil ratio of each 
pixel (0–100%) was determined (Xu et  al., 2013). 
Soil-LST scatter graphs of three different years are 
presented in Fig. 12.

At 0.05 significance level, according to the 
graph presenting the relationship between soil-
LST, R2 = 0.86 and RMSE = 0.77 in DBZA graph 
(Fig.  13a) and R2 = 0.38 and RMSE = 0.44 in 
PBA graph (Fig.  13b) of 1987; R2 = 0.81 and 
RMSE = 1.02 in DBZA graph (Fig.  13c) and 
R2 = 0.42 and RMSE = 1.68 in PBA graph (Fig. 13d) 
of 2000; R2 = 0.89 and RMSE = 0.73 in DBZA graph 
(Fig.  13e) and R2 = 0.57 and RMSE = 2.11 in PBA 
graph (Fig. 13f) of 2013.

Fig. 10  NDVI-LST 
relationship graphs during 
1987–2013: outcomes of 
density-based zonal analysis 
(a, c, e) and pixel-based 
analysis (b, d, f)
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Since it was found to be significant (Fig.  14), 
hypothesis tests were conducted only for the Soil-LST 
regression model and model parameters generated 
with DBZAs. Present F and t tests revealed that 
model and model parameters were significant. Soil-
LST analyses of 3 years revealed increasing LST with 
increasing soil values (Fig. 14).

In this study, Landsat 5, 7, and 8 satellite images 
for July of 1987, 2000, and 2013 were used and the 
relationships of IS, vegetation, and soil areas with 
LST were investigated and tested statistically. Present 
analyses revealed that

• Average LST decreased with increasing ISA,
• Average LST decreased with increasing vegetation,
• Average LST increased with increasing soil.

Climate, land cover, and remote sensing satellite 
systems played a distinctive role in these results. It 
was observed that the present study area (Fig.  1) was 
mostly composed of different types of soil areas, quite 
slightly of water, and slightly of vegetation areas. 
The present study area, Kayseri province, is a semi-
arid region (Erinc, 1950; Helburn, 1955). Semi-arid 
regions generally have dry soil type and drought 

Fig. 11  NDVI-LST error 
graphs during 1987–2013: 
outcomes of density-based 
zonal analysis (a, c, e) and 
pixel-based analysis (b, 
d, f)
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index (ratio of annual total precipitation to potential 
evapotranspiration) values of between 0.20 and 0.50 
(Lal, 2004; Garcia-Franco et al., 2018). Soils of semi-
arid regions are commonly degraded through various 
land use. Such a case generally ends up with low 
organic carbon content. Erosion through anthropogenic 
activities, salinity, and degradation also exert serious 
threats on soils of semi-arid regions. With these 
processes, a loss is generated in the water storage 
of the soils (Garcia-Franco et  al., 2018). Reduced 
soil moisture contents also reduce evaporation, thus 
increase soil temperature. For a better understanding 
of such a case, a satellite image of 2013 was used, and 
a spectral reflectance profile was generated with the 
aid of atmospherically corrected reflectance values of 
vegetation, IS, and soil areas (Fig. 15).

In the visible region of Fig. 15 (R: Band 4, G: Band 
3, B: Band 2), soil areas had lower reflectance than 
ISAs, in other words, absorbed more solar energy. 
Additionally, soil areas have greater emissivity values 
than ISAs (Wang et al., 2015a). Then, soil areas are 
hotter than ISAs. ISAs reflecting solar energy more 
and thus were cooler than soil areas. The case is 
somehow different in vegetation areas. Vegetation 
uses the energy absorbed in the visible region for 
photosynthesis (Sunar et  al., 2011). Therefore, 
vegetation areas do not get hot as much as IS and soil 
areas.

In LST analyses made with satellite images, 
seasonal conditions at the time of imaging and albedo 
of the materials are quite effective (Yılmaz, 2015). 
Such a case is also related to specific heat, thermal 

diffusion, and conductance of concrete, asphalt, and 
tile-like materials used in buildings constructed in 
ISAs. Since ISAs have high specific heat values, ISAs 
are heated more slowly than soil areas despite the 
same quantity of incoming solar energy to different 
vegetation types.

Present findings on ISA-LST and Soil-LST 
relationships were contradictory with some earlier 
studies (Lu & Weng, 2006; Yuan & Bauer, 2007; 
Onishi et al., 2010), but supporting or parallel with 
some others (Çiçek et  al., 2013; Yılmaz, 2015; 
Haashemi et  al., 2016; Wei & Blaschke, 2018). 
Yılmaz (2015) used Landsat images of summer 
months and reported greater LST values for dry 
farming lands (soil) than for urban areas. Wei and 
Blaschke (2018) conducted a study in Guangzhou, 
a rapidly growing province of China, and reported 
that the majority of high LST values belonged 
to places with low ISA values. Haashemi et  al. 
(2016) reported that in day-time satellite image data 
(Landsat 8), the temperature of soil areas was greater 
than the temperatures of IS, vegetation, and water 
areas throughout the year. However, in night data 
(MODIS), greater temperatures were reported for 
ISAs than for soil areas. Çiçek et al. (2013) reported 
seasonal differences in characteristics of heat island 
obtained from Landsat images of Ankara province 
and such a difference varied based on the time of 
the day. It was reported that at the time of satellite 
imaging (10.00 o’clock), there was a negative heat 
island impact in all months of the year; in other 
words, soil areas were hotter than urban areas.

Fig. 12  Soil-LST scatter graphs, respectively, for 1987, 2000, 2013
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Fig. 13  Soil-LST rela-
tionship graphs during 
1987–2013: outcomes of 
density-based zonal analysis 
(a, c, e) and pixel-based 
analysis (b, d, f)
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Fig. 14  Soil-LST error 
graphs during 1987–2013: 
outcomes of density-based 
zonal analysis (a, c, e) and 
pixel-based analysis (b, 
d, f)
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Conclusion

This study was conducted to analyze the relationships 
of impervious surface, vegetation, and soil areas with 
land surface temperatures in urban and rural sections 
of Kayseri province with a semi-arid climate. Initially, 
impervious surfaces were determined with the aid of 
the SVM supervised classification method; then, the 
other classes were determined with the use of NDVI 
data and impervious surface class information. It 
was observed that NDAISI data improved SVM 
classification results (overall accuracies ≥ 90.30% 
and kappa ≥ 78.20%) in the detection of impervious 
surfaces hard to distinguish from the soil. In the 
practice of SVM, visible, near-infrared, short wave 
infrared, and thermal region bands of satellite images 
in attribute space and NDAISI data were used. It was 
observed in this study that NDAISI data were not 
efficient alone in the detection of impervious surfaces. 
The relationships between land cover classes and land 
surface temperatures were analyzed with the aid of 
simple linear regression models. To generate input 
and output data required for regression models to be 
set up, besides common pixel-based and classical 
regional-based approaches, a specific DBZA approach 
was developed in this study. It was observed that this 

original approach yielded better statistical outcomes 
than the other approaches. Strong negative linear 
relationships between NDVI and mean land surface 
temperatures were demonstrated with R2 more than 
0.8. ISAs and soil areas of the present study area had 
inverse relationships with land surface temperatures. 
In other words, mean land surface temperatures 
decreased with increasing ISAs (R2 = 0.33, R2 = 0.89, 
and R2 = 0.72) and increased with increasing soil 
surface areas (R2 = 0.86, R2 = 0.81, and R2 = 0.89), 
respectively, for 1987, 2000, and 2013. Such findings 
were attributed to the climate and land cover of the 
study area. The present study area has a semi-arid 
climate. In semi-arid regions, quite low soil moisture 
levels reduce thermal capacity and heat conductance 
of soils, then soil areas are heated more rapidly than 
the ISAs complying with sensing time of satellite 
images (10:00 am local mean time). Besides, in semi-
arid regions, newly constructed impervious surfaces 
reduce mean land surface temperatures since such 
areas are mostly constructed over soils with low 
vegetation. This study presents useful information in 
terms of the performance of ISA analysis with the 
use of the SVM classification method with the aid 
of NDAISI index data for semi-arid regions. The use 
of a new density-based regional analysis approach 

Fig. 15  Spectral reflec-
tance profile for vegetation 
(green), IS (red), and soil 
(brown) of 2013 data
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developed in this study can provide better-reflected 
relationships between two different land cover classes 
in a future study. Besides, the use of more satellite 
images with higher spatial resolution such as ASTER 
satellite and covering different regional areas in 
different climatic zones is suggested to enhance the 
quantitative assessment of impervious surfaces. Thus, 
it can be possible to better detect the impacts of 
urbanization on thermal environments.
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