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Abstract The upper catchment of the Miyun reservoir
is an important drinking water source in Beijing. In
recent years, researchers have used the soil conservation
service curve number (SCS-CN) model to calculate
surface runoff for the district. Although the runoff fore-
casting accuracy was unsatisfactory, the lack of under-
standing of rainfall processes and their influence on
runoff may explain the observed deviations. Our study
sought to optimize and assess the SCS-CN model sim-
ulation accuracy for the district by proposing an SCS-
CN calculation method for each runoff event (CNt)
based on observation data for 253 rainfall and runoff
events from 7 plots in the Miyun Shixia watershed. This
study elucidated a significant positive correlation be-
tween the ratio of CNt and the average SCS-CN
(CN1), as well as the ratio of the maximum X-minute
rainfall amount (PX) to the total rainfall amount for each
rainfall event (P). Furthermore, a calculation method
involving power function equations between CNt/CN1

and PX/P was proposed for CNt. When X = 5 min and

the initial abstraction ratio (λ) = 0.01, the simulation
performance of the optimized model was the highest,
with a Nash-Sutcliffe efficiency coefficient of 0.791,
which was significantly higher than that of the non-
optimized SCS-CN model. The simulation performance
for bare and cultivated land was higher than that of other
land uses, with Ef values of 0.831 and 0.828, respective-
ly. Future research should focus on improving the pre-
diction accuracy of runoff events resulting from high-
intensity and short-duration rainfall events.

Keywords Surface runoff . Soil conservation service
curve number . Model improvement . Land use .Miyun

Introduction

Water balance is the basis for the analysis of hydrolog-
ical phenomena and hydrological processes. Accurate
prediction of surface runoff is crucial for the simulation
of hydrologic processes, sediment yields, and pollutant
fate and transport. Currently, mechanistic and empirical
models have been developed to simulate surface runoff.
In particular, mechanistic models typically employ cal-
culation methods such as the Green–Ampt infiltration
curve (Viji et al. 2015), Philip infiltration curve (Wang
et al. 2016), and Horton infiltration curve (Fadadu et al.
2018), among others. However, these methods involve
many parameters that are difficult to obtain, which limits
their implementation. In contrast, empirical models are
relatively simple and require less data input, which
makes them more suitable for runoff estimation for the
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district that lack of observation data. In particular, the
soil conservation service curve number (SCS-CN, 1972)
model, which was developed by the United States De-
partment of Agriculture (USDA) based on climate char-
acteristics and hydrological runoff data from the USA,
has a simple structure and fewer required parameters
and is thus widely used to predict rainfall surface runoff
(Li et al. 2015).

The SCS-CN model has two important parameters:
(1) the initial loss rate λ before the appearance of surface
runoff, including ground filling, intercepting, and per-
meation and (2) the SCS-CN, which comprehensively
reflects different indicators of surface runoff capacity of
different land uses and land cover combinations. Studies
have shown that CN (i.e., curve number) is the most
sensitive parameter in the SCS-CN model, as a 10%
change in this parameter may result in a 45 to 55% error
in the simulation results (Boughton 1989). Because CN
is affected by many factors such as land use and man-
agement, soil characteristics, slope, and pre-existing
water content, CN often varies widely between different
runoff events with the same land use and land cover
conditions (Nigam et al. 2017).

When the SCS-CNmodel manual was first published
in 1972, it was divided into four types (A, B, C, and D)
according to soil infiltration capacity. Moreover, CN
values could be obtained from a table in the model
manual, according to different land use and land cover
values for each soil type. Furthermore, the antecedent
moisture condition (AMC) was divided into three con-
ditions based on the rainfall in 5 days prior to the surface
runoff: “dry” (AMC I), “average” (AMC II), and “wet”
(AMC III). Researchers have since carried out many
studies on the effect of slope, soil characteristics, and
soil water content on CN value; analyzed the influence
of these factors on CN; and proposed equations to
calculate CN using slope and AMC (Sharpley and
Williams 1990; Huang et al. 2007; Ajmal et al. 2016;
Lal et al. 2017; Choi et al. 2019). The latest version of
the SCS-CN model manual indicates that these factors
are uniformly attributed to preexisting conditions
(NRCS 2009). However, current research has focused
on the effects of surface features on CN values (Hosseini
and Mahjouri 2018). The effect of rainfall processes on
runoff events has also been found to be very significant.
For example, runoff could be significantly different for
two rainfall events with the same rainfall amount
(30 mm) but different durations (1 and 24 h). Since the
publication of the SCS-CN model, only one parameter

(CN) reflected rainfall characteristics, and the character-
istics of the rainfall process could not be reflected by it,
which may lead to simulation deviations.

In the 1990s, researchers began to simulate runoff
events in China with the SCS-CN model. Importantly
(Mu 1992; Wei and Xie 1992), the model’s λ and CN
values were revised and optimized to improve its
simulation accuracy, and the soil characteristics of
China were considered based on observed rainfall and
runoff data. For instance, Fu et al. (2011) optimized the
λ value for the Loess Plateau, Shi et al. (2009) calculated
the variation range of λ in the Three Gorges Reservoir
Region of the Yangtze River, and Chen et al. (2014)
revised the λ value for sloped croplands with purple soil.
Regarding the CN value, Luo et al. (2002) calculated
this parameter for different surfaces of the Loess Pla-
teau, Huang et al. (2006, 2007) analyzed the influence of
slope and soil moisture content of different soil layer
depths on the CN value, and Fu et al. (2013) assigned
calculated CN values to different hydro-soil groups and
land uses in Beijing. These studies mainly employed
observation data to revise the key SCS-CN model pa-
rameters; however, verification and systematic improve-
ment methods for the model are scarce due to a lack of
long time series observation data.

The mountainous area of Beijing is an important
source of surface drinking water in the region. Although
the city government has made great progress in ecolog-
ical construction and environmental protection, in some
areas, soil erosion is still very prominent due to the
concentration of agricultural production and infrastruc-
ture activities, especially in steep slopes (Li et al. 2013),
which directly threatens the quality of surface drinking
water sources such as the Miyun Reservoir (Jiao et al.
2015). Thus, accurate simulation of runoff is very im-
portant for the analysis of sediment and water-pollutant
transport. In recent years, researchers have attempted to
use the SCS-CN model to predict the surface runoff in
this area. Fu et al. (2013) calculated the CN values of
different hydro-soil groups and under surface coverage
by analyzing rainfall–runoff data from 64 slope runoff
areas. However, the SCS-CN model has not been opti-
mized to calculate surface runoff in this area. Moreover,
although measured rainfall–runoff data were used to
decrease the variation of CN value, the SCS-CN for
each runoff event (CNt) still varied widely (i.e., the
maximum value could be more than three times higher
than the minimum) even in the same community land-
use management mode. These deviations were largely
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attributed to the implementation of a total CN average
value for all the runoff events in the simulations, instead
of accounting for individual rainfall event variations.
Surface runoff is not only affected by rainfall amount
but also by rain intensity, rain patterns, and other factors.
The mountainous area of Beijing exhibits large terrain
fluctuation, as well as strong local convection and fron-
tal activity, which are the primary drivers of rainstorms.
Thus, if the influence of rainfall process on runoff is not
considered, model prediction error may increase. In
view of this, on the basis of taking account of the effect
of rainfall process and characteristics on surface runoff,
especially the variation of rainfall intensity, our study
accounted for the effect of rainfall processes and char-
acteristics on surface runoff and flow by proposing an
SCS-CN calculation method for each runoff event
(CNt), making the model suitable to characterize drink-
ing water dynamics in Beijing.

Materials and methods

Overview of the study area

The Shixia watershed inMiyun County is located north-
east of the Miyun Reservoir, approximately between
and 47° 32′ N–47° 38′ N and 117° 01′ E–117° 07′ E;
it has a drainage area of 33 km2 and is located in the
lower reaches of the Chaohe River Basin (Fig. 1a). The
watershed is a shallow rocky/hilly terrain with an alti-
tude of 160 to 353m. Themain rock and soil types in the
basin are gneiss and brown soil, respectively, and the
region exhibits a warm temperate monsoon climate. The
average annual precipitation is 660 mm, and the rainfall
from June to September accounts for approximately
75% of the annual rainfall.

Observation data and methods

To optimize and evaluate the SCS-CN model, 253 rain-
fall and runoff event data weremeasured in seven sloped
runoff plots (Table 1) in the Shixia watershed. Rainfall
was measured with a bucket rain gauge with a 0.1-mm
resolution. The basic information and soil properties of
each plot are summarized in Table 1. The seven plots
were chosen because their land use and management
practices have remained unchanged for at least 10 years.
Among them, the land use and management mode of
plots 1, 2, 3, 4, and 7 remained unchanged from 1994 to

2015, and those of plots 5 and 6 remained unchanged
from 2003 to 2015. Rainfall and runoff data from
1994 to 2000 were used to improve the SCS-CN in
five plots, including plots 1, 2, 3, 4, and 7. As the
observation of surface runoff began in 2003, data
from rainfall–runoff events from 2003 to 2005 were
used to optimize the SCS-CN model in plots 5 and 6.
Data from 149 rainfall–runoff events were used to
optimize the SCS-CN model in total. The simulation
performance of the improved model was assessed
with data from 104 rainfall–runoff events for all of
the plots from 2013 to 2015.

This studymeasured the surface soil moisture content
of plots 1, 2, 3, 4, and 5 in 2015. A soil moisture
conductivity sensor (HydraProbe II SDI-12, Stevens
Water) was used to measure the soil moisture content
at a 10- and 30-cm depth, and the average value of the
two is the moisture content of the soil surface at 30 cm
(volume ratio, dimensionless). The measurements were
taken at 30-min intervals. Therefore, the moisture con-
tent in the top 30 cm of soil was obtained 30 min before
the rainfall (θ0), during the rainfall, and 30 min after the
rainfall (θt). Moreover, the maximum moisture content
during the rainfall (θmax) was identified.

Optimized SCS-CN method

Overview

The SCS-CN method (US Department of Agriculture
1972) is based on the principle of water balance (Eq. 1)
and two basic assumptions. The first assumption is that
the ratio of direct runoff to maximum potential runoff
is equal to the ratio of infiltration to potential maxi-
mum hold (Eq. 2); the second assumption is that the
initial loss is proportional to the potential maximum
hold (Eq. 3):

P ¼ Ia þ F þ Q ð1Þ

Q= P−Iað Þ ¼ F=S ð2Þ

Ia ¼ λ � S ð3Þ
In the equations above, P represents rainfall (mm), Ia

is the initial loss (mm), F is the observed holding
amount (mm), Q is the surface runoff (mm), S is the
potential water storage capacity (mm), and λ is the



initial loss rate. Equations (1) to (3) can then be com-
bined with Q to obtain Eq. (4):

Q ¼ P−λSð Þ2
P þ 1−λð ÞS ; P > λSð Þ
Q ¼ 0; P≤λSð Þ

ð4Þ

For practicality, S can be calculated using CN as
follows:

S ¼ 25400=CN−254; 0 < CN≤100 ð5Þ
Using observation data, the values of P and Q can be

obtained with Eq. (6), which is inversely deduced from
Eqs. (4) and (5). The CN value is then determined with
Eq. (7):

S ¼
2λP þ 1−λð ÞQ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4QPλ2 þ 1−λð Þ2Q2 þ 4λ 1−λð ÞQP
q

2λ2

ð6Þ

CN ¼ 25400= 254þ Sð Þ ð7Þ
The CN value is first determined according to hydro-

logical soil groups; the SCS manual is then used to
obtain the CN2 values under different land-use condi-
tions. According to cumulative precipitation over 5 days
prior to the surface runoff, the AMC is sub-classified

(Table 2) into AMC I, AMC II, AMC III to describe dry,
average, and wet conditions, respectively. CN1 and CN3

can be calculated based on the equations provided by
CN2 using the SCS manual. The US Soil Conservation
Service divides soil into four major types (A, B, C, and
D), according to soil infiltration capacity in the decreas-
ing order (USDA 1972). The main hydrologic soil
group in the mountainous area of Beijing is class B,
and the soil AMC in the region is mostly dry. In order to
make the results more practical, the runoff curve value
under AMC I (i.e., CN1) was adopted as the runoff
prediction parameter in our study.

SCS-CN calculation method for each runoff event (CNt)

During the rainfall process, the concentration of rainfall
events over time has an important impact on the surface
runoff and soil erosion process (Wischmeier and Smith
1978; Wilken et al. 2018; Wu et al. 2018). Thus, our
study sought to use the ratio of the maximum rainfall for
a certain duration (Xmin) to the total rainfall amount for
the event (PX/P) to reflect the rainfall intensity over
time, where X is the duration (min) corresponding to
the maximum rainfall, and X = 5, 10, 15, 20, 30, 40, 50,
and 60 min. Based on previous research findings (Shi
et al. 2009; Fu et al. 2011; Xiao et al. 2011; Lal et al.
2017), the λ parameter in the SCS-CNmodel developed

China Miyun County Shixia Watershed experimental field

(a)

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7

(b)

Fig. 1 Location of the experimental field and distribution of the plots (a) and photographs for the plots (b)
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herein was assigned a value range from 0 to 0.30 at 0.01
intervals. When combined with the observed rainfall
and runoff data from runoff events, a SCS-CN can be
calculated for each runoff event (CNt) and for each plot
with Eqs. (6) and (7), with CN1 being the average value
of the curve number for each runoff event. Afterward,
the functional relationship between the ratio of CNt to
CN1 (CNt/CN1) and PX/P for rainfall events was ana-
lyzed with Eq. (8). Then, the method to calculate CNt

with the rainfall intensity degree over time was applied
to the improved SCS-CN model:

CNt=CN1ð Þ ¼ f PX =Pð Þ ð8Þ
In the equation, PX and P are the maximum rainfall

(Xmin) and the total rainfall amount (in mm) during the
rainfall, respectively.

Determination of initial loss ratio and assessment
of the simulation performance of the optimized model

The simulation performance of the model was compared
at different λ and X values, after which optimal λ and X
values were selected. The Nash model efficiency coef-
ficient Ef (Nash and Sutcliffe 1970), correlation coeffi-
cient (r), and mean relative error (MRE) were used to
compare the predicted and observed runoff depth and to
test the simulation performance of the optimized model.
These values were calculated as follows:

E f ¼ 1−
∑n

i¼1 Qob−Qcalð Þ2
∑n

i¼1 Qob−Qobað Þ2 ð9Þ

MRE ¼ ∑n
i¼1 Qcal−Qobð Þ
∑n

i¼1Qob
ð10Þ

where Qob is the observed runoff depth (mm), Qcal is
the predicted runoff depth (mm), Qoba is the average of

Table 2 Classification of antecedent soil moisture condition
(AMC)

AMC Cumulative precipitation over 5 days (mm)

Dormant season Growing season

I <12.7 <35.6

II 12.7~27.9 35.6~53.3

III >27.9 >53.3
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all observed runoff depths (mm), and n is the number of
total runoff events.

Results

Calculated CNt values and their variations

Figure 2 illustrates the ratio of the maximum and mini-
mum CNt values and its variation coefficient (Cv) under
different λ values for each runoff plot. It can be observed
that even in the plots where land use and management
methods remain unchanged throughout the year, the
range between CNt values from different runoff events
is still very significant. Although the maximum to min-
imum CNt value ratio and Cv gradually decreased as λ
increased, even when the value of λ is 0.3 (i.e., the
maximum assigned λ value in this study), the maximum
to minimum CNt value ratio for arboreal land (Plot 2),
shrubland (Plot 4), and low-slope farmland (Plot 7) was
still > 2.0, while the ratio for other land uses was > 1.5.
Moreover, when λ ≤ 0.05, the ratio for arboreal land,
shrubland, and low-slope farmland was > 4.5, and that
of other plots was > 2.5 (Fig. 2a). Cv value changes
followed a similar trend to those observed for the maxi-
mum to minimum CNt value ratio (Fig. 2b). The varia-
tion between CNt values for different runoff events was
more significant in plots with high vegetation coverage.
Studies have shown that a 10% change in CN value may
result in a 45% to 55% error in the calculation results
(Boughton 1989). Here, substantial simulation errors
were observed if the various SCS-CN values for different

rainfall and runoff events were not taken into account
(i.e., if only a global average was used) when simulating
runoff in the mountainous area of Beijing.

Influence of rainfall characteristics on CNt

According to the observed rainfall–runoff data, there is a
significant positive correlation between CNt/CN1 and
PX/P that is significant at the 0.01 level (Table 3). When
X = 20 min, the correlation coefficient rwas the highest,
and r varied between 0.636 and 0.686 at different λ
values, with an average of 0.679. When X = 15 min
and X = 30 min, r varied narrowly between 0.621 and
0.677 at different λ values, with an average of 0.668.
When X = 10 min and X = 40 min, r varied between
0.611 and 0.658 under at λ values, with an average of
0.651. When X = 50 min and X = 60 min, r varied be-
tween 0.585 and 0.634 at different λ values, with an
average of 0.627. When X = 5, the correlation coeffi-
cient was lowest, and r varied from 0.549 to 0.611 at
different λ values, with an average of 0.602. TheX value
changes between 5 and 60 had no significant effect on
the correlation between CNt /CN1 and PX/P (Table 3).
Moreover, CN1 remained unchanged in surfaces with
the same land use and management mode, and CNt

increased accordingly with PX/P, indicating that the
rainfall concentration degree over time has a significant
impact on CNt.

Based on the aforementioned analysis, our study
proposes an equation to calculate CNt, whereby PX/P
is the independent variable. However, CNt may be more
than 100 if Px/P > 95%, for the linear equation;

(a) (b)
Fig. 2 Maximum to minimum CNt value ratio for each plot (a) and its variation coefficient (b)
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therefore, a power function equation was adopted to
calculate CNt (Eq. 11):

CNt ¼ CN1 � a � PX =Pð Þb;CNt ≤100 ð11Þ

Optimized SCS-CN model simulation performance

In this study, the runoff depth predicted by the improved
SCS-CN model was compared with the observed runoff
volume under different λ and X values. The efficiency

factor of the improved model (Ef) decreased as λ in-
creased (Fig. 3a), and the best simulation performance
was achieved when λ equaled 0.01 or 0.02, at a fixed X
value. In terms of maximum rainfall periods, when λ ≥
0.10, Ef was the lowest when X = 60 min or 50 min,
followed by Ef when X = 40 min. Ef then increased
significantly when X ≤ 30, and differences between X
values had little effect on Ef in this range. Moreover, Ef
was highest when λ < 0.10 and X = 5 min. The correla-
tion coefficient (r) trend between observed and predict-
ed values was similar to the Ef trend (figure not shown),

Table 3 Correlation coefficient (r) between CNt/CN1 and Px/P

λ Xmin for PX/P

5 10 15 20 30 40 50 60

0.01 0.549 0.618 0.625 0.636 0.621 0.611 0.589 0.585

0.02 0.565 0.631 0.639 0.651 0.638 0.626 0.603 0.600

0.03 0.576 0.641 0.650 0.663 0.650 0.636 0.614 0.611

0.04 0.584 0.648 0.656 0.670 0.657 0.643 0.620 0.618

0.05 0.590 0.649 0.660 0.674 0.662 0.646 0.623 0.621

0.06 0.594 0.652 0.664 0.677 0.666 0.649 0.626 0.625

0.07 0.598 0.654 0.666 0.680 0.669 0.651 0.628 0.627

0.08 0.601 0.656 0.668 0.682 0.671 0.653 0.630 0.629

0.09 0.603 0.657 0.670 0.683 0.673 0.655 0.631 0.631

0.10 0.605 0.658 0.671 0.685 0.675 0.655 0.632 0.632

0.11 0.606 0.658 0.671 0.685 0.676 0.656 0.632 0.633

0.12 0.608 0.658 0.672 0.686 0.676 0.656 0.633 0.633

0.13 0.609 0.658 0.672 0.686 0.677 0.657 0.633 0.634

0.14 0.609 0.658 0.672 0.686 0.677 0.657 0.633 0.634

0.15 0.610 0.658 0.672 0.686 0.677 0.657 0.633 0.634

0.16 0.610 0.658 0.672 0.686 0.677 0.656 0.633 0.634

0.17 0.611 0.658 0.672 0.686 0.677 0.656 0.632 0.634

0.18 0.611 0.657 0.671 0.685 0.677 0.656 0.632 0.634

0.19 0.611 0.657 0.671 0.685 0.677 0.655 0.632 0.633

0.20 0.611 0.656 0.671 0.685 0.677 0.655 0.631 0.633

0.21 0.611 0.656 0.670 0.684 0.676 0.654 0.631 0.633

0.22 0.611 0.655 0.670 0.684 0.676 0.654 0.630 0.632

0.23 0.611 0.655 0.669 0.683 0.676 0.653 0.630 0.632

0.24 0.611 0.654 0.668 0.682 0.675 0.653 0.629 0.631

0.25 0.610 0.653 0.668 0.682 0.675 0.652 0.629 0.631

0.26 0.610 0.653 0.667 0.681 0.674 0.652 0.628 0.630

0.27 0.610 0.652 0.667 0.681 0.674 0.651 0.627 0.630

0.28 0.610 0.651 0.666 0.680 0.673 0.650 0.627 0.629

0.29 0.609 0.651 0.665 0.679 0.673 0.650 0.626 0.629

0.30 0.609 0.650 0.665 0.679 0.672 0.649 0.626 0.628

Positive correlations are all significant at the 0.01 level
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a b

Fig. 3 Ef (a) and mean relative error (MRE) (b) for the improved SCS-CN model
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and MRE increased accordingly with λ increases in the
improved SCS-CN model (Fig. 3b); MRE only varied
between − 10 and 10% when λ ≤ 0.05.

For plots 1, 2, 5, and 7, Ef and r reached maximum
values (i.e., optimal simulation results) when λ = 0.01
and X = 5 min (Table 4). The total number of the runoff
events for the four plots accounted for 64.4% of all
runoff events and 68.9% of the total runoff amount.
The runoff simulation performance for plots 3 and 6
was optimal when λ = 0.01 and X = 10 min, and runoff
simulation for plot 4 was optimal when λ = 0.03 and
X = 20 min.

For practicality, constant values were assigned to λ
and X in the improved SCS-CN model. Overall, the
improved model simulation performance was ideal
when λ was equal to 0.01 and 0.02. When λ = 0.01
and X = 5 min, Ef and r reached the maximum values
of 0.791 and 0.895, respectively. At this point, the MRE
was only − 5.09%. Therefore, λ was assigned the value
of 0.01 in the improved model to maximize Ef, and P5/P
was selected as the variable to describe the degree of
rainfall concentration over time. Furthermore, the opti-
mal λ and X values were not significantly different from
those of each plot (Table 4), and the unified value of Ef
was found to be only 0.02 less than that of each cell.
Values of CN1, a, and b for each runoff plot are sum-
marized in Table 5.

The SCS manual suggests using a λ value of 0.20
when applying the CSC-CN model, because this value
results in a more uniformly distributed rainfall simula-
tion throughout the year (Wilson et al. 2017), account-
ing for approximately 70% of rainfall infiltration into
the soil. However, regions with monsoon climate exhib-
it abrupt seasonal rainfall changes, with heavy rain
events, and significantly lower soil infiltration.

Therefore, λ was assigned a value of no more than
0.05 in our study (Ajmal et al. 2016).

In this study, the observed runoff was compared with
the runoff predicted by the model prior to optimization
(Fig. 4). A significant difference in simulation accuracy
was observed between the optimized and non-optimized
models. Particularly, the maximum Ef value was only
0.05 in the non-optimized model, and Ef was less than 0
when λ was 0.02; r was also significantly reduced.
Figure 4 illustrates the comparison between the predict-
ed and observed values of the optimized (Fig. 4a) and
non-optimized (Fig. 4b) models when λ = 0.01. Overall,
the values predicted by the non-optimized model nota-
bly deviate from the 1:1 line indicated in red in Fig. 4.
This illustrates that significant prediction errors occur
when the influence of rainfall characteristics and inten-
sity are not considered in the study region.

Effect of different factors on the simulation performance
of the optimized CSC-CN model

Antecedent soil moisture conditions

This study analyzed the simulation performance of the
improved CSC-CN model for runoff events at different
soil AMCs. AMC I, AMC II, and AMC III conditions
during 2013–2015 were observed in 66%, 28%, and 6%
of all runoff events, respectively. Notably, AMC I
accounted for most of the soil moisture conditions in
the studied period, and high-slope yield flow during
AMC I conditions was mainly attributed to over-
seepage; rainfall intensity is also an important factor
mediating runoff volume. The optimized model
accounted for the effect of maximum rain intensity
periods on runoff generation but did not directly use



the rainfall intensity as a model variable. Thus, the
accuracy of the runoff simulation under AMC I condi-
tions decreased (Ef = 0.649; r = 0.817; MRE = 9.12%:
Fig. 5a). However, the improved model has relatively
high accuracy for runoff simulation under AMC II and
III conditions (Ef = 0.883; r = 0.942; MRE = 5.6%). Un-
der these conditions, the soil moisture content was rel-
atively higher. Soil moisture content during runoff is
more likely to approach or reach field water capacity,
and both over-infiltration runoff and stored-full runoff
may occur. Moreover, rainfall has a more significant
impact on runoff amount when the soil moisture content
is low.

Land use

This study also analyzed the accuracy of the optimized
model to simulate runoff events when accounting for
different land use types (Fig. 5b); the selected parame-
ters are summarized in Table 5. The simulation results of
this model were satisfactory (Ef = 0.831; r = 0.922;
MRE = 13.67%) for bare land (plot 3) and cultivated
land plots (plots 1, 5, and 7; Ef = 0.828; r = 0.916;
MRE = 6.50%). Rills are easily created on exposed sur-
faces during rainfall events and become narrow ditches
or grooves with repeated rainfall. However, corn culti-
vation management practices such as weed control re-
sult in large bare areas, which accelerates rill erosion.
Moreover, increases in slope bare surface result in re-
duced brown soil, and increases in the number, length,
and width of fine grooves facilitate the formation of a
more stable convection path.

The simulation accuracy of the optimized model was
lower for grassland runoff (Ef = 0.439; r = 0.808;
MRE = 19.31%). Even during the rainy season, the veg-
etation cover of grasslands varies greatly. At the begin-
ning of the rainy season, weeds begin to grow. At this
time, the ground vegetation coverage is only approxi-
mately 5% and reaches its highest values (40–50%) in
mid- to late-August. The optimized model did not illus-
trate the effect of vegetation cover on CNt over short
time periods, thus reducing its simulation accuracy.

The production of grass surface crust also has an
impact on the runoff process. If P10/P is used as a
variable to simulate runoff depth and λ is still equal to
0.01, the predicted values exhibit an Ef, r, and MRE of
0.603, 0.852, and 15.26%, respectively (Table 4), and
the simulation performance is significantly improved.
The splashing effect of raindrops requires some time toT
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erode the decomposing crust; therefore, assuming
slightly longer periods of maximum rainfall could allow
for more effective monitoring of the effect of rainfall on
surface flow production.

The optimized model is not ideal for the simulation
of flow production on arboreal land. From 2013 to 2015,
arboreal (plot 2) and shrub lands (plot 4) produced
runoff on 12 occasions, and the Ef predicted by the
model was only − 3.03. Thus, these plots only
accounted for 11.5% of all yield events. Moreover, the
averaged runoff depth was only 3.68 mm, which is
47.0% of the average value of other plots. Therefore,
the simulation error of arboreal and shrub land plots had
no significant influence on the overall simulation per-
formance of all runoff events. It should be noted that this
study used rainfall–runoff data from 1994 to 2000 to

optimize the model and assessed its simulation perfor-
mance with rainfall–runoff data from 2013 to 2015;
however, the runoff coefficients in these two periods
are significantly different. Plot 2 decreased from 0.057
in 1994–2000 to 0.032 in 2013–2015, and plot 5 in-
creased from 0.058 to 0.140 in the same periods. The
growth and development of plant roots and the forma-
tion and decomposition of the litter layer contribute to
the gradual improvement of soil physical and chemical
properties. Furthermore, the content of organic matter
and humus, as well as root activity, can increase soil
porosity and improve permeability. Additionally, the
interannual variation of plant canopy characteristics is
also an important factor affecting surface runoff changes
(i.e., less vegetation cover leads to more surface runoff).
The runoff mechanisms in arboreal land are relatively

Table 5 Parameters for the optimized SCS-CN model

Plot label Land use Land use Parameter values

λ
Initial abstraction ratio

CN1

Average curve number
a
a for Eq. 11

b
b for Eq. 11

1 Cultivated land Steep-slope corn 0.01 60.15 1.861 0.304

2 Arboreal land Chestnut trees 0.01 32.41 2.047 0.430

3 Bare land Vegetation cover <5% 0.01 54.33 2.007 0.398

4 Shrub land Vegetation cover 45–60% 0.01 27.15 2.206 0.446

5 Cultivated land Steep-slope corn 0.01 52.53 2.834 0.527

6 Grassland Vegetation cover 30% 0.01 46.31 2.164 0.416

7 Cultivated land Low-slope corn 0.01 50.56 2.769 0.561

a b 

Fig. 4 Comparison between observed runoff and predicted runoff simulated by the optimized and non-optimized SCS-CN models. a
Optimized SCS-CN model. b Non-optimized SCS-CN model. Note: The dotted line in the figure represents the data point linear trend
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complex, as over-infiltration and over-holding may oc-
cur under specific rainfall conditions. Therefore, the
model parameter optimization method described herein
should be developed further to allow for an in-depth
analysis of the mechanisms of runoff and yield.

Discussion

Effect of soil moisture content on CNt

Table 6 summarizes the moisture content variation
range in the soil surface layer (i.e., 30 cm depth) during
runoff events with different rainfall duration. Overall,
with increased rainfall duration, the ratio of θmax to θ0
(θmax/θ0) gradually increased as well. For runoff pro-
duction events that lasted less than 4 h, the soil moisture
content during rainfall increased by only 29% at the
highest level and by 8% on average. The surface flow

production caused by short-term rainfall was notably in
the form of over-permeability; in other words, surface
flow production occurred when the runoff generation
rate was greater than the infiltration rate. For example,
during the rainfall of August 28, 2015 (Fig. 6a), the total
rainfall amount was 27.8 mm, the rainfall duration was
1.63 h, and the maximum 5- and 30-min rainfall inten-
sity was 136.8 and 51.2 mm/h, respectively. During this
rainfall event, only the soil surface moisture content of
forest trees increased significantly, and there was no
significant increase in soil surface moisture content in
plots with other land uses. The runoff coefficient of
arboreal land was only 7.1%, while the runoff coeffi-
cient of other land uses varied between 23.4 and 64.0%,
with an average of 48.6%, indicating that surface runoff
could occur even if the soil surface moisture content did
not reach saturation. When rainfall lasted more than 4 h,
the soil moisture content increased significantly, with an
average of 49% and a maximum of 210% compared

Fig. 5 Comparison between observed and predicted runoff calculated bywith the optimized SCS-CNmodel under different AMCs and land
use scenarios. a Different AMC. b Different land use. Note: The dotted line in the figure represents the data point linear trend

Table 6 Soil surface moisture content in runoff events with different rainfall durations and simulation performance of the optimized SCS-
CN model

Rainfall
duration (h)

Number
of runoffs

Average runoff
coefficient

Ranges of moisture content in the soil surface layer Simulation effect of improved runoff
curve number model

θ0 θmax θt θmax/θ0 Ef r MRE (%)

<2 25 0.355 0.057–0.106 0.059–0.110 0.052–0.110 1.00–1.09 0.532 0.890 −35.70
2≤ t<4 25 0.249 0.107–0.182 0.121–0.195 0.122–0.190 1.01–1.29 0.780 0.885 1.32

4≤ t<6 22 0.228 0.087–0.117 0.088–0.176 0.079–0.170 1.01–1.56 0.894 0.952 −9.70
≥6 32 0.152 0.048–0.172 0.059–0.369 0.049–0.267 1.02–3.10 0.811 0.928 13.60



with the soil moisture before the rainfall. The occurrence
of full flow production and stored-full runoff is also
significantly increased in runoff events caused by long
periods of rainfall. In contrast, during the rainfall of
July 19, 2015 (Fig. 6b), the total rainfall amount was
108.2 mm, the rainfall duration was 14.48 h, and the
maximum 5- and 30-min rainfall intensity was 93.6 and
42.0 mm/h, respectively. During the rainfall event, the
surface soil moisture content of each plot increased
rapidly after the accumulated rainfall exceeded 20 mm
and gradually decreased after the rainfall intensity was
lower than 5 mm/h. This significant increase in soil
moisture supply and infiltration resulted in a decrease
in the runoff coefficient, and the runoff coefficient of
different land-use modes shifted to 2.9–26.5%, with an
average of only 16.3%, which was significantly lower
than the runoff events on August 28th.

The effect of soil surface moisture content on CNt

before, during, and after rainfall was also analyzed.
There was no significant correlation between θ0 and
CNt/CN1 (Fig. 7a). Moreover, θmax and CNt/CN1 exhib-
ited a significant decrease in power function (Eq. 12); θt
and (CNt/CN1) also exhibited a significant decrease in

power function (Eq. 13). The ratio between θmax and θ0
(θmax/θ0) and CNt/CN1 presented a more significant
power function decline relationship (Fig. 7b; Eq. 14):

CNt=CN1ð Þ ¼ 0:539θmax
−0:372; r2 ¼ 0:333; p < 0:005 ð12Þ

CNt=CN1ð Þ ¼ 0:530θt
−0:369; r2 ¼ 0:270; p

< 0:005 ð13Þ

CNt=CN1ð Þ ¼ 1:352 θmax=θ0ð Þ−0:705; r2

¼ 0:491; p < 0:001 ð14Þ

The parameters of Eq. (12) and power function (13)
are very similar, indicating that both the soil surface
moisture content during and after rainfall events can
reflect the effect of rainfall on surface soil moisture
recharge, which has a significant impact on the surface
runoff volume. Under constant rainfall conditions, in-
creased soil water replenishment through rainfall results
in less surface runoff, which is manifested as a decrease
in CNt.

a b

Fig. 6 Changes in surface soil moisture content in typical rainfall–runoff events. a August 28, 2015. b July 19, 2015

a b 
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Fig. 7 Effects of soil surface moisture content on CNt/CN1. aRelationship between water content in the first 30 cm of topsoil and CNt/CN1.
b Relationship between changes in soil moisture content before and during rainfall and CNt/CN1



CNt difference at different slopes

The equations to calculate CN in steep slopes proposed
by Sharpley and Williams (1990) and Huang et al.
(2006) were used as a reference to analyze plot 7 (CN =
6.6%), which had a nearly 5% slope. The annual aver-
age runoff curves for steep slope arable land areas
represented by plots 1 and 5 (i.e., CN1(1) and CN1(5))
were also calculated. As illustrated in Fig. 8, the CN1(5)

calculated by Sharpley and Williams equations was
closer to the measured value, but the calculated CN1(1)

was significantly lower than the measured value. This
disagreement could be due to the fact that the equation is
derived from the natural geographical conditions of the
USA and thus may not be suitable to accurately describe
the mountainous region of Beijing. On the other hand,
the CN1(1) and CN1(5) calculated by the equations pro-
posed by Huang et al. were significantly higher than the
measured values. Studies have shown that surface run-
off increases with increased slope when other conditions
are kept constant (Deshmukh et al. 2013; Lal et al.
2019); however, the equations proposed by Huang
et al. do not account for possible differences in the
physical properties of surface soil. The soil erosion of
steep-sloped arable land was found to be severe, and the
average annual soil erosion for plots 1 and 5 was 7.01-
and 6.20-fold higher than that of plot 7, resulting in soil
particle coarsening. Furthermore, the proportion of soil
particles (0.25-2 mm) in plot 1 was 20.98% higher than
that of plot 7, with large amounts of gravel appearing on
the surface. Soil coarseness can increase the gap be-
tween particles and surface infiltration while according-
ly decreasing surface runoff. In this study, the measured

value of CN1 was found to be significantly lower than
the model calculation value.

It should be noted that although there are significant
differences in cultivated land CN1 at different slopes,
there is a significant linear association between the CNt

values for plots 1, 5, and 7. Therefore, the CNt (7) value
of plot 7 was assigned as an independent variable, and
CNt(1) and CNt(5) for plots 1 and 5 were assigned as
dependent variables to fit a linear equation (Fig. 9).

Between 1994 and 2000, the relationship was:

CNt 1ð Þ ¼ 0:629CNt 7ð Þ þ 26:29; r2 ¼ 0:471; p

< 0:001 ð15Þ
Moreover, the relationships between 2013 and 2015

were:

CNt 1ð Þ ¼ 0:648CNt 7ð Þ þ 30:29; r2 ¼ 0:703; p

< 0:001 ð16Þ

CNt 5ð Þ ¼ 0:891CNt 7ð Þ þ 11:26; r2 ¼ 0:868; p

< 0:001 ð17Þ
As observed above, there was a significant correla-

tion between CNt in farmlands with different slopes, and
with increased cultivated land planting time, the rela-
tionship between the two became more significant.
Compared with Eq. (15), r2 increased significantly in
Eq. (16), which demonstrates that the similarity between
the runoff processes increased after rill and inter-rill
erosion in steep-sloped farmlands, as described above.

Fig. 8 Comparison between the
measured and calculated CN1

values for steep-sloped farmlands
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In the future, the influence of slope change on CN1 in
the study region should be clarified to provide a basis for
CNt calculation in steep-sloped areas.

Effect of rainfall duration on the simulation performance
of the optimized SCS-CN model

According to the measured rainfall–runoff data, there is
a significant power function decreasing relationship be-
tween CNt/CN1 and rainfall duration (t; Fig. 10). When
λ = 0.01, the relationship is:

CNt=CN1 ¼ 1:539t−0:332; r2 ¼ 0:324; p < 0:001 ð18Þ

However, the determination coefficient of the func-
tion equation between themwas significantly lower than

the fitting effect between CNt/CN1 and PX/P and was
thus not used as a variable in the improved runoff curve
number equation. However, t may represent the charac-
teristics of different types of rainfall, as discussed below.

The types of rainfall that cause surface runoff in the
mountainous regions of Beijing can be divided into
three categories: short duration and high-intensity rain-
storms caused by local strong convection conditions,
from frontal rainfalls and local thunderstorms of medi-
um duration, medium-intensity rainstorms, and long
duration and low-intensity rainstorm caused by frontal
rainfalls. For runoff events lasting t ≥ 2 h, the simulation
performance of the optimized SCS-CN model was sig-
nificantly improved (Table 6). The runoff coefficient of
runoff production events lasting t < 2 h was significantly
higher (Table 6), indicating that the proportion of initial

Fig. 9 Relationship between CNt

for croplands of different slopes

Fig. 10 Relationship between
(CNt/CN1) and rainfall duration
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Conclusions

To optimize the soil conservation service curve number
(SCS-CN) model to better predict runoff events in the
mountainous region of Beijing, our study demonstrated
that substantial prediction errors occur if the variation of
the runoff curve number of individual runoff events is
not taken into account (i.e., if only an averaged value is
implemented). Our study accounted for the effect of
rainfall processes and characteristics on surface runoff
by proposing an SCS-CN calculation method for each
runoff event (CNt). Moreover, the proposed method
achieved satisfactory prediction accuracy. Therefore,
our findings could provide technical support for the
evaluation of water and soil resources and water conser-
vation in this area.

1. When implementing the SCS-CNmodel to simulate
runoff in the mountainous area of Beijing, a large
simulation deviation may be observed if the varia-
tion of the runoff curve number of individual runoff
events is not taken into account (i.e., if only an
averaged value is implemented). To improve the
SCS-CN model, the effect of rainfall on surface
runoff was considered, and the PX/P ratio (i.e., the
ratio between the maximum X-minute rainfall (PX)
and the total rainfall amount for each rainfall event
(P)) was used to reflect the degree of temporal
rainfall distribution. There was a significant positive
correlation between the CNt/CN1 and PX/P ratios.
Therefore, our study proposed a power function
equation to calculate CNt and provided the CN1, a,
and b values for said equation under different land
use types.

2. The efficiency coefficient (Ef), correlation coeffi-
cient (r), and mean relative error (MRE) of the Nash
model were used to compare the predicted runoff
depth with the observed runoff depth to assess the
simulation performance of the optimized SCS-CN

model at different X and λ values. The model sim-
ulation was optimal (Ef = 0.791; r = 0.895; MRE =
− 5.09%) when X = 5 min and λ = 0.01, whereas the
non-optimized SCS-CN model exhibited an Ef val-
ue below 0.05, demonstrating that the simulation
accuracy of the optimized model was significant.
When predicting surface runoff in the mountainous
areas of Beijing, large prediction errors are likely to
be observed if rainfall characteristics and the effects
of high-intensity rainfall are not taken into account.

3. The optimized model had a satisfactory simulation
performance for runoff events in average and wet
conditions (Ef = 0.883; r = 0.942; MRE = 0.56%).
In both cases, the soil moisture content was relative-
ly higher and was close to or equal to the field water
holding during the production and flow processes.
The optimized model had a relatively good simula-
tion performance for runoff generation in bare land
and cultivated land (Ef = 0.831; r = 0.922; MRE =
13.67%). Moreover, the simulation performance for
grassland exhibited Ef, r, and MRE values of 0.603,
0.852, and 15.26%; however, the model was found
to be unsuitable for runoff simulation in arboreal
sand shrub land. The production and flow mecha-
nisms in arboreal land are more complex and may
arise from over-infiltration and over-holding pro-
cesses under certain rainfall conditions. After opti-
mization, the model exhibited a satisfactory simula-
tion performance for production and flow events
with rainfall duration t ≥ 2 h; however, the initial
loss prediction was overestimated for runoff events
with t < 2 h, resulting in low predicted runoff depth.
Therefore, future research should aim to develop a λ
value optimization method and improve the predic-
tion accuracy of runoff resulting from short-
duration and high-intensity rainstorms.

4. Soil surface moisture during and after the rainfall
can reflect the surface soil water content attributable
to rainfall, and there is a significant power function
decreasing relationship between said parameters
and CNt/CN1. Under constant rainfall conditions,
surface runoff decreases as water is replenished into
the soil, which is reflected by a decrease in CNt.
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rainfall loss was relatively low. The λ value for the
optimizedmodel was constant, which was likely to have
a substantial effect on the prediction of said initial
rainfall loss, resulting in a low predicted runoff depth
and an MRE of up to − 35.7%. Future research should
focus on developing a λ value optimization method and
improve the prediction accuracy of short-duration and
high-intensity rainstorm events.
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