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Abstract Particle swarm optimization (PSO) is a sto-
chastic population-based optimization algorithm in-
spired by the interactions of individuals in a social
world. This algorithm is widely applied in different
fields of water resources problems. This paper presents
a comprehensive overview of the basic PSO algorithm
search strategy and PSO’s applications and performance
analysis in water resources engineering optimization
problems. Our literature review revealed 22 different
varieties of the PSO algorithm. The characteristics of
each PSO variety together with their applications in
different fields of water resources engineering (e.g.,
reservoir operation, rainfall–runoff modeling, water
quality modeling, and groundwater modeling) are
highlighted. The performances of different PSO variants
were compared with other evolutionary algorithms
(EAs) and mathematical optimization methods. The re-
view evaluates the capability and comparative perfor-
mance of PSO variants over conventional EAs (e.g.,

simulated annealing, differential evolution, genetic al-
gorithm, and shark algorithm) and mathematical
methods (e.g., support vector machine and differential
dynamic programming) in terms of proper convergence
to optimal Pareto fronts, faster convergence rate, and
diversity of computed solutions.

Keywords Particle swarm optimization .Water
resources . Evolutionary algorithm . State-of-art review

Introduction

Limited water resources and increased water consump-
tion led to the development of integrated water resource
management in many regions (Bozorg-Haddad et al.
2008a; Seifollahi-Aghmiuni et al. 2011; and
Jahandideh-Tehrani et al. 2014). Efficient water re-
sources planning and management are required to over-
come different aspects of water crisis (e.g., water supply
shortage, inefficient water allocation, and drought)
(Noory et al. 2012; Jahandideh-Tehrani et al. 2015).
Numerous optimization techniques have been proposed
and developed to overcome water crisis and achieve
efficient water resources management. These optimiza-
tion techniques can be applied in different fields of water
resources, such as reservoir operation (Afshar et al.
2011; Bozorg-Haddad et al. 2008b, c), water distribu-
tion network design (Soltanjalili et al. 2010; Fallah-
Mehdipour et al. 2011a; Sabbaghpour et al. 2012), hy-
drology (Cho and Olivera 2012), and the aquifer sys-
tems management (Farmer et al. 2015).
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Two main types of optimization methodologies are
applied in water resources management: (1) mathemat-
ical methods and (2) evolutionary and metaheuristic
algorithms (EAs). Linear programming (LP), nonlinear
programming (NLP), dynamic programming (DP), and
stochastic dynamic programming (SDP) are examples
of mathematical methods in water resource manage-
ment. The genetic algorithm (GA), particle swarm opti-
mization (PSO), the harmony search (HS) algorithm, ant
colony optimization (ACO), and honey bee mating op-
timization (HBMO) are classified among the EAs
(Bozorg-Haddad et al. 2015).

Metaheuristics are defined as tools applying structure
random elements to search and follow empirical guide-
lines inspired by natural phenomena (Maier et al. 2014).
Metaheuristics can be divided into two main categories:
(1) population-based algorithms (e.g., GA, PSO, and
ACO) and single point-based algorithms (e.g., simulat-
ed annealing (SA) and tabu search (TS)) (Maier et al.
2014). EAs are the most well-known family of
metaheuristics, belonging to the first stated sub-
category (population-based), which are inspired by di-
verse mechanisms of biological reproduction and evo-
lution such as mutation, crossover, selection, and adap-
tation (Nicklow et al. 2010). EAs search for acceptable
solutions according to randomized operators. These op-
erators simulate mutation and recombination to achieve
new individuals that may survive by natural selection,
and selection operates based on the fitness of an indi-
vidual, or fitness function of current solutions of an
algorithm (Back et al. 2000). Fogel (2000) concluded
that EAs are efficient in solving high-dimensional non-
convex, nonlinear, multimodal, and discrete problems
without having precise knowledge of the problem’s
structure. Following this, multiple functions can be op-
timized simultaneously by EAs (Sarker and Ray 2009).
The teacher-learning-based optimization (TLBO) algo-
rithm does not require algorithm-specific parameter
tuning (inspired by the impact of teacher influence on
learners’ output in a class) (Venkata Rao 2016). In
contrast, most EAs (PSO, GA, NSGA-II (non-dominat-
ed sorting genetic algorithm II), etc.) demand heavy
computational burden and require the adjustments of
algorithmic parameters; yet, they generally outperform
mathematical methods in terms of computational time
and faster convergence (Blickle 1997; Venkata Rao
2016). According to Jahandideh-Tehrani et al. (2019),
the provision of diverse solution space and efficient
objective function by non-animal inspired EAs (e.g.,

GA, SA, and DE (differential evolution)) leads to their
good performance, particularly in complex and multi-
objective problems, while other optimization methods
are beset with large dimensionality (Jahandideh-Tehrani
et al. 2019). Reddy and Kumar (2006) indicated that in
multi-objective problems, mathematical optimization
methods (e.g., LP, NLP, and DP) are generally unable
to obtain good Pareto front as these methods are based
on point by point search approach, which generates a
single optimal solution. Theweighted objective function
approach is applied in multi-objective problems, but it is
unable to consider all objective functions simultaneous-
ly in a Pareto sense. Therefore, EAs have been widely
developed and used in solving optimization problem in
water resources problems.

PSO was introduced by Kennedy and Eberhart
(1995). PSO is a population (swarm)-based stochas-
tic search technique derived from the interactions of
individuals in a social world (Eberhart et al. 2001).
PSO has been applied in a wide range of water
resources problems. Gill et al. (2006) applied PSO
to parameter estimation in rainfall–runoff modeling.
The latter authors calibrated a three-parameter sup-
port vector machine model with PSO. Hassan (2020)
applied PSO to estimate and calibrate the parameters
of a Bartlett-Lewis rectangular pulse (BLRP) model
for daily rainfall disaggregation. They indicated that
the calibrated model is able to simulate extreme rain-
fall with satisfactory agreement. Matott et al. (2006)
applied PSO approach to groundwater contamination
remediation. The PSO was also identified as an ef-
fective algorithm in a pump-and-treat optimization
problem. Kumar and Reddy (2007) applied PSO ap-
proach to reservoir system optimization and derived
operating policies for a multi-purpose reservoir sys-
tem. The PSO was applied to real-time water level
prediction in a river by Chau (2007). This algorithm
was also applied in a water quality model by Afshar
et al. (2011), who calibrated the key parameters of the
CE-QUAL-W2 (two-dimensional, hydrodynamic,
and water quality model) model in a simulation of
water temperature. Regarding the application of PSO
in water distribution networks, Suribabu and
Neelakantan (2006) designed a water distribution
pipeline network with PSO. This approach was tested
with two benchmark optimization design problems.
Based on previous literature studies, it is concluded
that the PSO algorithm was modified and applied in
various fields of water resources management,
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including reservoir operation, surface water, ground-
water, water quality, and water distribution networks.

The purpose of this paper is to assess the-state-of-the-
art based on the applications of PSO algorithm and its
variants in different fields of water resources manage-
ment, such as rainfall–runoff modeling, flood routing,
groundwater modeling, water quality parameter estima-
tion, flow prediction, basin water transfer, water distri-
bution network design, reservoir operation, and irriga-
tion water allocation. First, the features of the basic PSO
algorithm and its search strategy is presented by means
of a basic PSO flowchart. Thereafter, the features of the
applied PSO variants in surveyed papers, including
using single- or multi-objective PSO, comparison be-
tween PSO and other EAs, comparison between PSO
and other mathematical methods, and benchmark appli-
cations are discussed to highlight the potential of PSO
algorithm in optimization problems in the realm of water
resources engineering. The results of the reviewed pa-
pers are also discussed briefly to analyze the perfor-
mance of different PSO variants in terms of convergence
rate, objective function evaluation, Pareto front estima-
tion, and search space evaluation. The remainder of this
paper outlines the discussions on the reviewed literature
and conclusions of the bibliometric survey.

Particle swarm optimization algorithm

PSO is an evolutionary algorithm proposed by Kennedy
and Eberhart in 1995. The particle swarm idea was
inspired by simulating a simplified social system of a
flock of birds that fly towards their unknown destination
(fitness function) in search for the locations of food
resources. The PSO algorithm features birds that evolve
and coordinate their movement to reach their destination
(Shi and Eberhart 1998). The birds (particles) search
their destination according to their own experience (per-
sonal fitness) and the flock of birds’ experience (global
fitness). It is seen in Fig. 1 the PSO algorithm is initial-
ized with random particles (birds) with a specific posi-
tion and velocity for the purpose of computing objective
function of an optimization problem. The best personal
and global fitness positions are computed over each
iteration of running the PSO algorithm. The position
and velocity of each bird is updated according to the
calculated fitness functions until the optimal solution is
obtained (Knight et al. 2015). The position of the ith
particle is calculated as follows:

X i t þ 1ð Þ ¼ X i tð Þ þ Vi t þ 1ð Þ ð1Þ
where Xi(t + 1); Xi(t) denote the positions for the ith particle at (t +
1) and t, respectively; and Vi(t + 1) denotes the new velocity of the
ith particle at time (t + 1). The latter term is determined by the
following equation:

Vi t þ 1ð Þ ¼ w� Vi tð Þ þ C1 � r � X pbest
i −X i tð Þ

� �
þ C2 � r

� X gbest
i −X i tð Þ

� �
ð2Þ

in which Vi(t) denotes the velocity for the ith particle at
time t; w denotes the inertia weight; C1; C1 denote the
weighting coefficients for the personal best and global

best positions, respectively; X gbest
i denotes the ith parti-

cle’s best known position; X gbest
i represents the best

position known to the swarm; and r denotes a random
number between 0 and 1. C1 and C2 should be tuned to
obtain optimal solution.

Many varieties of the PSO have been developed
since its introduction. Table 1 lists those varieties in
chronological order, with the oldest one placed at the
top of the list. It is evident from Table 1 that 22 varieties
of PSO versions were developed by researchers. The
next sections review the main PSOs applied to water
resources engineering in chronological order.

Discrete particle swarm optimization

This PSO algorithm was introduced by Kennedy and
Eberhart (1997). The PSO searches for optimal solu-
tions by operating on discrete and binary variables. The
original particle swarm optimization searches for solu-
tions by manipulating the coordinates of a particle in
binary space, where a particle moves through search
points (Kennedy and Eberhart 1997). Noory et al.
(2012) applied LP, CPSO (continuous particle swarm
optimization) and DPSO to optimize an irrigation water
allocation and a multi-crop planning problem in central
Iran. They demonstrated that both CPSO and DPSO
kept the variations in annual net benefit in the range of
2%. DPSO calculated the optimal annual net benefit and
standard deviation of 50 independent runs by 167,000
and 0.81, respectively, while CPSO estimated the
optimal annual net benefit and standard deviation by
200,000 and 1.09, respectively. Therefore, the latter
authors concluded DPSO algorithm obtained more
accurate results in shorter time than the CPSO
algorithm. Datta and Figueira (2011) introduced an in-
teger DPSO (IDPSO) algorithm. This new algorithm
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operates with real, integer, and discrete variable.
Ezzeldin et al. (2013) applied this algorithm to minimize
total design cost of water distribution networks. Their
results from a benchmark hypothetical two-reservoir
network, IDPSO produced the minimum cost of
1.257 × 108 with 28,036 function evaluations, while
compared to the real cost of 1.263 × 108 with 25,200
obtained in a study by Kadu et al. (2008). It was con-
cluded that IDPSO algorithm improved the search pro-
cess for global optimal solution and saved the compu-
tational time through less function evaluations.

Multi-objective particle swarm optimization

Multi-objective PSO (MOPSO) was proposed by
Moore and Chapman in 1999, who adopted the PSO
for multi-objective optimization by modifying the p-
vector (contains the best particle swarm discovered by
a particle) to determine all the non-dominated solutions
(based on Pareto preference) that a particle could reach.
Gill et al. (2006) employed this algorithm and compared
their results with NSGA-II, micro-GA, and PAES (Pa-
reto Archive Evolutionary Strategy) to minimize the
RMSE (root mean square error) in the process of pa-
rameter estimation in a rainfall–runoff model. The latter
authors concluded that MOPSO was more efficient than
the other three algorithms in determining non-
dominated fronts and spanning its search through the
parameter space. Fallah-Mehdipour et al. (2011b) ap-
plied MOPSO to minimize the sum of square deviations

of reservoir release from demand, storage from target
storage, and generated power from installed capacity.
The latter authors also applied a new warm-up method
(single objective search mechanism) to improve the
quality and quantity of Pareto fronts in MOPSO. The
latter authors indicated that MOPSO coupled with
warm-up method increased flexibility of decisions for
reservoir operation under different conditions as prema-
ture convergence was prevented. Afshar et al. (2013)
applied MOPSO for optimal calibration of water quality
model by linking CE-QUAL-W2 to MOPSO which led
to proper results. They applied MOPSO to optimize two
conflicting CE-QUAL-W2 model calibration objec-
tives, i.e., the minimization of the RMSE for tempera-
ture and water surface elevation, and maximization of
the model performance in predicting changes in dis-
solved oxygen. They concluded that given the strong
correlation between water quality and hydrodynamic
condition of a river-reservoir system MOPSO per-
formed efficiently in generating potential optimal cali-
bration solutions. EL-Ghandour and Elbeltagi (2014)
applied MOPSO to maximize pumping rates and
minimize pumping costs of a groundwater problem.
The latter authors confirmed the capability of MOPSO
in solving groundwater management problems. Vonk
et al. (2015) employed MOPSO in reservoir operation
management. They also compared the performance of
MOPSO and NSGA-II in optimizing the shortage index
and mean annual energy production of the Xinanjiang–
Fuchunjiang Reservoir Cascade. The latter authors

Fig. 1 Flowchart of basic PSO
algorithm
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reported that algorithms performed similarly in
obtaining reservoir operating rules, reducing shortage
index from 0.36 to 0.06 and increasing the mean annual
energy production by 6.4%. Köppen and Yoshida
(2007) introduced many objective PSO algorithm,
which is based on a so-called set of leaders that gener-
alize the global best particle in standard PSO. Sabzkouhi
and Haghighi (2016) applied this algorithm to several
objective functions (parameters) in a water supply pipe
network. The latter authors coupled this algorithm with
a network hydraulic simulation model. The latter author
also compared the results of many objective PSO with
those obtained by NSGA-II. Their results showedmulti-
objective PSO slightly outperformedNSGA-II given the
number of iteration for convergence (233 for many-
objective PSO and 688 for NSGA-II) and the number

of EPANET runs. It was concluded that many objective
PSO reached solution 4.4 times faster than NSGA-II,
while NSGA-II subdivided the problem into eight
groups of objective functions, and many-objective
PSO optimized the objective function in only one sim-
ulation. In the field of inter-basin water transfer,
Mousavi et al. (2017) coupled MOPSO with water
evaluation and planning (WEAP) simulation module
to minimize the project size and maximize the reliability
of irrigation water supply. They demonstrated that the
irrigation demand was met at an acceptable reliability
level (73.2%) achieving 30,000 ha of land development
and 237 million cubic meters of water supply. Hojati
et al. (2018) applied and compared the applications of
MOPSO and NSGA-II to obtain optimal operation of
two reservoirs for the objectives of maximizing income

Table 1 Varieties of PSO

Algorithm Abbreviation Year of
application

Reference

Discrete particle swarm optimization DPSO 1997 Kennedy and
Eberhart

Multi-objective particle swarm optimization MOPSO 1999 Moore and
Chapman

Particle swarm optimization based on artificial neural networks PSO-ANN 2000 Zhang and Shao

Stretching particle swarm optimization SPSO 2001 Parsopoulos

Hybrid particle swarm optimization and genetic algorithm PSO-GA 2002 Robinson et al.

Non-dominated sorting particle swarm optimization NSPSO 2003 Li

Multi-swarm particle swarm optimization-based optimization MSPSO 2004 Blackwell and
Branke

Hybrid particle swarm optimization and simulated annealing PSO-SA 2004 Wang and Li

Quantum-behaved particle swarm optimization QPSO 2004 Sun et al.

Chaotic particle swarm optimization CPSO 2005 Liu et al.

Comprehensive learning particle swarm optimization CLPSO 2006 Liang et al.

Adaptive neuro-fuzzy inference system and particle swarm optimization ANFIS-PSO 2007 Ghomsheh et al.

Elitist-mutated particle swarm optimization EMPSO 2007 Kumar and Reddy

Particle swarm optimization with mutation similarity PSOMS 2007 Liu et al.

Particle swarm optimization based on support vector machine PSO-SVM 2007 Chung-Jui et al.

Adaptive particle swarm optimization APSO 2007 Li and Tang

Hybrid particle swarm optimization and differential evolution PSO-DE 2008 Li et al.

Master–slave swarms shuffling evolution algorithm based on particle swarm
optimization

MSSE-PSO 2010 Jiang et al.

Catfish effect particle swarm optimization algorithm CE-PSO 2011 Chuang et al.

Constrained particle swarm optimization Constrained
PSO

2012 Afshar M. H.

Elite guide particle swarm optimization EGPSO 2013 Zhang et al.

Hybrid bat algorithm and particle swarm optimization BA-PSO 2018 Ehteram et al.
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from power production and flood control. Their results
indicated that the revenues from power generation and
flood control storage were 8.9 million Rial and 10.96
Giga cubic meters for NSGA-II, respectively, while
MOPSO obtained 6.9 million Rial and 10.62 Giga cubic
meters for power generation income and storage of flood
control, respectively. Thus, NSGA-II outperformed
MOPSO in terms of better convergence rate and
calculation of accurate Pareto front. Yousefi et al.
(2018) applied MOPSO to optimize the benefits and
negative impacts of using treated wastewater and
groundwater for crop irrigation. The latter authors con-
cluded the net benefits of optimizing crop patterns,
water supply, and groundwater recharge were increased
by 7, 47, and 15%, respectively. In general, MOPSO is
one of the most frequently applied multi-objective algo-
rithms in water resources management problems.

Particle swarm optimization based on artificial neural
networks

Zhang and Shao (2000) introduced this algorithm. In
such hybrid algorithms, one of two modules acts as a
simulator while the other is an optimization module.
PSO finds optimized calibration model and artificial
neural network (ANN) is a simulation model to assess
PSO’s behavior. Kuok et al. (2010) applied coupled
PSO-ANN algorithm to model daily rainfall–runoff pro-
cess in Sungai Bedup Basin, Sarawak, Malaysia. Their
results revealed that estimated coefficient of correlation
and the Nash–Sutcliffe coefficient over testing period
were 0.90 and 0.81, respectively. Thus, they confirmed
the successful use of PSO-ANN inmodeling rainfall and
runoff. Gaur et al. (2013) and Ch and Mathur (2012)
applied PSO-ANN in groundwater management to min-
imize pumping and piping cost for the installation of
new pumping wells and minimize parameter error, re-
spectively. The latter authors both indicated that PSO-
ANN performed well in their case studies. Gaur et al.
(2013) demonstrated that the coupled PSO-ANN can
address the computational burdens and identify the
optimal location of well. Ch and Mathur (2012) applied
coupled PSO-ANN for the estimation of the storage
coefficient and transmissivity. A comparison between
PSO and other training algorithms (e.g., gradient de-
scent (GD) backpropagation, gradient descent momen-
t um , a n d a d a p t i v e l e a r n i n g r a t e (GDX )
backpropagation, and one-step secant (OSS)
backpropagation) has been conducted, where PSO

featured the lowest error index (13.8%) with faster con-
vergence compared to other methods. Buyukyildiz et al.
(2014) employed PSO to estimate monthly water level
change of a lake, and compared their results with SVR
(support vector regression), MLP (multi-layer artificial
neural networks), RBNN (radial basis neural networks)
and ANFIS (adaptive network-based fuzzy inference
system). However, PSO-ANN showed poor results,
while SVR was the most successful method. Kisi et al.
(2017) applied PSO-ANN and DE-ANN to model
groundwater parameters (SO4 and sodium adsorption
ratio (SAR)). They calculated three goodness-of-fit
measures, RMSE, mean absolute error (MAE), and
coefficient of determination (R2), to assess the capability
of the groundwater model. It was concluded after com-
paring the performance of DE-ANN with PSO-ANN
that DE-ANN generated more accurate results (closer
to the observed SO4 and SAR) for various numbers of
hidden nodes. For instance, over the testing period with
18 hidden nodes, PSO-ANN obtained 3.76, 2.46, and
0.85 for RMSE, MAE, and R2, respectively, while DE-
ANN obtained 2.91, 1.88, and 0.88 for RMSE, MAE,
and R2, respectively for SO4 modeling. Pandayee et al.
(2017) predicted river water level in Thailand using
PSO-ANN. PSO has been applied as an optimization
toll to tune the ANN parameters (e.g., weights and
biases) over training process. According to their results,
PSO improved the water level prediction as well as
reducing the training process time.

Stretching particle swarm optimization

This algorithm was introduced by Parsopoulos et al.
(2001). The latter authors adopted a function
“stretching” PSO to tackle the occasional convergence
to local minima. This function consists of two-stage
objective function transformations that remove the local
minima. Mirfenderesgi andMousavi (2016) applied this
algorithm to minimize the capacity of new reservoir
construction projects and water shortage. In their study,
they linked SPSO with MODSIM model, which re-
quired high computation time. Thereafter, to tackle the
high computation time, they replaced MODSIM by
ANN, support vector machine (SVM), kriging, and
polynomial functions, and compared results with those
obtained by coupled SPSO-MODSIM, which showed
all the four replaced function obtained efficient solutions
with less computation time. In the area of climate
change predictions, Fereidoon and Koch (2018) studied
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the impacts of climate change on agricultural crop pat-
tern. They developed a coupled simulation-optimization
tool SWAT1-LINGO-MODSIM2-PSO (SLMP) to opti-
mize future cultivation crop pattern with focus on eco-
nomic benefit maximization in the south of the Karkheh
River Basin. They successfully applied PSO as an opti-
mization tool to optimize the cultivation areas of differ-
ent crops. They demonstrated that the annual total ben-
efits are 88.33 and 72.07 (million US$) under Repre-
sentative Concentration Pathways (RCP) 4.5 and 8.5,
respectively. They concluded that PSO application im-
proves the SLMP model in terms of speed and efficien-
cy in maximizing the agricultural benefits.

Hybrid particle swarm optimization and genetic
algorithm

Robinson et al. (2002) proposed PSO-GA. The PSO
population of solutions is input as the starting popula-
tion of the GA after fitness evaluation. Wu et al. (2015)
and Chang et al. (2013) applied this approach in rainfall
prediction and operation of a multi-reservoir system,
respectively. Wu et al. (2015) compared their results
with conventional GA and NN (neural network) and
showed the search efficiency of the PSO-GA and its
capacity to avoid premature convergence. Chang et al.
(2013) compared their results with PSO and GA and
concluded the hybrid method was capable of obtaining
optimal solutions and with rapid convergence. Babu and
Vijayalakshmi (2013) applied the PSO-GA algorithm to
optimize the size of the pipes and compared their results
with PSO and GA. The authors confirmed the efficiency
of the PSO-GA algorithm compared to PSO. The con-
ventional PSO was unable to identify the historically
reported optimal solutions of benchmark water distribu-
tion networks, while PSO-GAwas able to find the pipe
diameter combinations to meet the required minimum
nodal hydraulic-head with minimum cost. Gholami
et al. (2018) employed coupled PSO-GA in an ANFIS
model for back profile shape prediction in a laboratorial
stable channel with a sand bed. According to their
results and comparison with measured data, the deter-
mination coefficient and mean absolute relative error
(MARE) calculated by 0.9951 and 0.1575, respectively,
which indicated high accurate prediction of stable bank

shape. In general, the hybrid PSO-GA performed much
better than PSO and GA in the surveyed papers.

Non-dominated sorting particle swarm optimization

Li (2003) proposed this algorithm. Instead of using a
single comparison between a particle’s personal best and
its offspring, Li (2003) used all particles’ personal bests
and their offspring to achieve more effective non-
domination comparison. Liu (2009) applied this ap-
proach to minimize the RMSE of peak flow and low
flow. Based on their comparison with NSGA-II, non-
dominated sorting PSO (NSPSO) was found to reach
superior and diverse solutions. Li et al. (2015a, b)
coupled NSPSO with a SWMM (stormwater manage-
ment model) to minimize the engineering cost and
flooding risk of different urban stormwater drainage
system designs in China. Their results confirmed the
feasibility and validity of their method in solving multi-
objective design of detention tanks (cost and flooding
risk reduction). The latter authors reported that to ad-
dress flooding risk, there was a requirement of at least
68 detention tanks with a total cost of 86.07 million
RMB (Chinese currency unit).

Guo et al. (2013) implemented an improved NSPSO
algorithm to optimize a multi-reservoir system. I-
NSPSO maintains the diversity of non-dominated solu-
tions in multi-objective optimization problems. Guo
et al. (2013) combined the multi-population mechanism
with non-dominated sorting PSO to generate I-NSPSO
for minimization of pump station costs and maximiza-
tion of the lowest water level (for lift delivery reduction)
at Guanyinge reservoir. They concluded that I-NSPSO
calculated the Pareto optimal set accurately and obtained
hedging rules for which the maximum reduced percent-
age reached 10, 10, and 30% for municipal life, industry,
and agricultural supply, respectively, which improved
reservoir operation compared to the standard operation
policy (SOP) rule.

Multi-swarm particle swarm optimization-based
optimization

Blachwell and Branke introduced multi-swarm PSO-
based optimization (MSPSO) in 2004. It is an efficient
approach to dynamic environments. The latter authors
developed a single-population PSO through construct-
ing interactive multi-swarms. Ostadrahimi et al. (2012)
applied this approach to a multi-reservoir system in the

1 Soil and water assessment tool
2 Modeling and simulation
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USA and four test problems to obtain optimal reservoir
operation rules. They also compared their results with
the HEC-ResPRM and other stochastic approaches,
finding the MSPSO outperformed conventional PSO,
FATPSO (fuzzy adaptive turbulence PSO), RegPSO
(regrouping PSO), and the GA in terms of positioning
near-optimal solutions with fewer function evaluations.
Thereafter, they combined MSPSO with the HEC-
ResPRM simulation model to obtain real-time operating
rules for the three-reservoir system, Columbia River
Basin. They determined such coupled model can reduce
the average, minimum, and maximum possible penalties
(the HEC-ResPRM defined optimal flow and storage
through minimization of the total penalties in a system).
A multi-swarm comprehensive learning PSO was
employed to solve multi-objective operation of the
Three Gorges cascaded hydropower system to maxi-
mize the hydropower generation and to minimize the
difference between estimated outflow and outflow lower
target (Yu et al. 2016). The reason for using the multi-
swarm comprehensive learning PSO was to distribute
multiple non-dominated solutions over the true Pareto
front. The latter author compared their results with
multi-swarm PSO and revealed that the multi-swarm
comprehensive learning PSO optimization framework
leads to more efficient convergence rate and solution
diversity and extremity. For instance, the mean spacing
metric was estimated by 1.19 × 10−2 and 2.70 × 10−2 for
the multi-swarm comprehensive learning PSO and
multi-swarm PSO, respectively.

Hybrid particle swarm optimization and simulated
annealing

Wang and Li (2004) introduced this hybrid algorithm.
They applied this hybrid algorithm to increase the di-
versity of the search particles. The probability of finding
the optimal solution is increased. Nikoo et al. (2014)
used this approach coupled with SDP (stochastic dy-
namic programming) to obtain optimized water and
waste load allocation rules. PSO was applied to handle
the constraints of the problem and SA was used to
enforce the upper and lower bounds of constraints.

Quantum-behaved particle swarm optimization

Quantum-behaved PSO (QPSO) was introduced by
Sun et al. (2004). It is based on quantum machine and
applied for nonlinear and non-convex optimization

problems. Wang et al. (2015) applied this approach to
obtain rule curves coupled to multiple hedging rules
in a multi-reservoir system. The latter authors dem-
onstrated that considering water transfer and water
supply of bidirectional inter-basin is efficient. Tian
et al. (2011) applied this algorithm to minimize the
difference between measured and computed source of
contamination in a groundwater problem. The QPSO
was found to be efficient and valid in their case study.
Chen et al. (2016) used QPSO in a water quality
problem that minimizes the sum of squared differ-
ence between observed concentration and the com-
puted the mass concentration of the tracer. The latter
authors compared the performance of the QPSO with
ABC (artificial bee colony) algorithm. The latter
authors confirmed that ABC and QPSO performed
almost similarly given the convergence rate. Further-
more, a scenario of adding noise (random number) to
the known mass concentration was assumed. Under
such assumed scenario, ABC reached better solution
than QPSO, which calculated 0.2947 as the value of
the objective function (minimization of mass concen-
tration) with larger standard deviation (0.066) over
20 independent runs. In terms of combining QPSO
with SVM, Zhou et al. (2008) proposed SVM based
on QPSO (SVM-QPSO) algorithm. This approach
selects the least squares SVM (LS-SVM) hyper-
parameters based on the QPSO. Ch et al. (2013a, b)
obtained the optimal values of SVM parameter by
minimizing the normalized mean square error
(NMSE). They confirmed the suitable performance
of this algorithm in predicting monthly streamflow
with high degree of accuracy and computational ef-
ficiency. In Ghorbani et al. (2018), QPSO was
coupled with ANN to predict daily evaporation rate.
The measured and predicted evaporation were com-
pared, and estimated MAE, RMSE, and Nash–
Sutcliff were 0.521, 0.755, and 0.88 mm/day, respec-
tively, which were more efficient compared to those
obtained by PSO-ANN model. For the purpose of
daily runoff prediction, Niu et al. (2018) combined
QPSO with extreme learning machine (ELM) to ad-
dress the drawbacks of ELM (e.g., trapping in local
optimum). The latter authors applied hybrid ELM-
QPSO to predict the hydrologic time series of the
Xinfengjiang reservoir in China. According to their
results, the ELM-QPSO reduce the RMSE and BIAS
by 2.6 and 16.1%, respectively, compared to the
simple ELM method.
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Chaotic particle swarm optimization

Liu et al. (2005) introduced chaotic PSO (CPSO). It is a
hybrid algorithm designed to escape from local optima
and to keep a dynamic balance between local search and
global search. Wang et al. (2012) applied this CPSO to a
water-saving planting structure considering four objec-
tive functions, water productivity, total net output, total
grain yield, and ecological benefits. The latter authors
applied this algorithm to improve search performance
and prevent trapping in local optimum. According to
their results, CPSO indicated a high convergence rate
and led to saving 7% irrigated water. He et al. (2014)
used CPSO algorithm in a multi-reservoir hydropower
system. Furthermore, they compared CPSO’s results
with those from the GA, DE, and PSO. The latter
authors indicated that CPSO generated the best solutions
for objective functions (minimum flood peak and min-
imizing the maximum upstream water level) with the
minimum flood peak discharge (49,300 m3/s) and the
maximum peak-clipping rate of 22.85%. Zhong et al.
(2017) applied CPSO to obtain optimal operation (pow-
er generationmaximization) of a cascade reservoir in the
Upper Yellow River, China. According to their results,
the estimated total power generation has increased by
almost 3% compared to the actual power generation.

The adaptive CPSO algorithm was introduced by
Chuanwen and Bompard in 2005, which belongs to
the sub-category of CPSO algorithms. They proposed
this method to increase the convergence rate and
resulting precision of PSO. Bai et al. (2014) applied this
approach to obtain the optimal combination of the RVR
(relevance vector regression) model parameters. They
applied three criteria (normalized RMSE (NRMSE),
mean absolute percentage error (MAPE), and the R2)
to assess the accuracy of daily forecasts of urban water
demand. Using 10 particles, the NRMSE, MAPE, and
R2 equaled 0.0207 m3, 1.53%, and 0.85 for testing data,
respectively. They demonstrated that the proposed
coupled ACPSO with RVR captures the chaotic pattern
of daily urban water demand.

Comprehensive learning particle swarm optimization

This algorithmwas proposed by Liang et al. (2006). The
novel learning strategy included all other particles’ his-
torical best information to update a particle’s velocity.
The main advantage of this strategy is the preservation
of the swarm diversity to avoid premature convergence.

Piotrowski and Napiorkowski (2011) applied this ap-
proach to a hydrologic problem and compared the re-
sults with those from DE, DDE (distributed DE), self-
adaptive DE, and Levenberg–Marquardt algorithm. The
Levenberg–Marquardt algorithm was found to obtain
the most efficient performance criteria (mean absolute
error and Nash–Sutcliff error) given convergence speed
and the median of objective function evaluations over
training, validation, and testing periods. Zhang et al.
(2016) applied enhanced comprehensive learning PSO
(CLPSO) to obtain optimal operation of multi-reservoir
hydropower systems. Such enhanced CLPSO outper-
form conventional CLPSO in terms of exploitation per-
formance. After comparing the enhanced CLPSO re-
sults with global and local PSO, the latter authors re-
vealed that enhanced CLPSO, global PSO, and local
PSO obtained hydropower generation of 18,378,
18,283, and 28,290 × 107 kWh, respectively, which in-
dicates the superior of enhanced CLPSO.

Adaptive neuro-fuzzy inference system and particle
swarm optimization

Ghomsheh et al. (2007) introduced this algorithm. PSO
is used to train the parameters of ANFIS in this ap-
proach. Ch and Mathur (2010) employed ANFIS-PSO
to find an optimal solution to a groundwater flow and
contaminant transport problem. Their results indicated a
reduction of the computation burden of ANFIS-PSO
compared to vertex method given two imprecise param-
eters for one-dimensional solute transport in steady uni-
form flow. ANFIS-PSO reduced the computational bur-
den by 41%, which also guaranteed less number of
simulations for model training. Qasem et al. (2017)
applied ANFIS-PSO to optimize sediment transport
prediction. They compared the ANFIS-PSO results with
those obtained by ANFIS-DE and ANFIS-GA. Accord-
ing to their comparisons, ANFIS-PSO outperformed by
obtaining higher performance indices (e.g., R2 = 0.98,
RMSE = 0.26, and BIAS = − 0.004).

Elitist-mutated particle swarm optimization

Kumar and Reddy (2007) applied this algorithm to
improve PSO. This method replaces the worst parti-
cle solutions with the best solution in particle
swarms. Therefore, the solution is improved preserv-
ing the diversity of the population. This algorithm
has been applied to single reservoir hydropower
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(Kumar and Reddy 2007; Afshar 2009; and Ghimire
and Reddy 2014). A comparison was made between
elitist-mutated PSO (EMPSO), GA, PSO, dynamic
programming with successive approximation
(DPSA) algorithm, discrete differential dynamic pro-
gramming (DDDP), and folded dynamic program-
ming (FDP). Their results established that EMPSO
outperformed PSO and the GA in terms of generating
quality solutions with fewer functional evaluations.
Afshar (2009) applied EMPSO to find optimal set of
reservoir release given the maximization of total
power generation. Latter authors concluded EMPSO
performed better than PSO through generating better
minimum and average cost solutions. Reddy and
Kumar (2009b) maximized the total relative crop
yields (nine different crops) in a single reservoir
problem. EMPSO resolved the shortcomings of the
standard PSO with fewer function evaluations and
converting to the global optimal solution.

In terms of multi-objective optimization, Reddy
and Kumar (2007) proposed elitist-mutated MOPSO
(EM-MOPSO) algorithm. They coupled an innova-
tive mechanism named elitist mutation (EM) with the
algorithm to explore the search space and keep the
diversity of the population. EM is able to develop the
performance of PSO using the EM operator which
uniformly distributed the non-dominated solutions on
the optimal Pareto front. Their case study was a
single hydropower reservoir. Reddy and Kumar
(2007) indicated that the EM-MOPSO was more ef-
ficient than NSGA-II in terms of providing a wide
range of solutions with proper convergence to the
optimal Pareto front in a multi-objective reservoir
operation problem (the Bhadra reservoir system in
India). Three competing objective functions have
been defined in this research: (i) minimization of
the annual irrigation deficit, (ii) maximization of
annual hydropower production, and (iii) maximiza-
tion of acceptable water quality level. After compar-
ing the results, it was concluded that EM-MOPSO
generated less standard deviation (37.68) with higher
mean spacing metric (258.28) compared to those
obtained by NSGA-II (standard deviation of 180.51
and mean spacing metric of 504.32). Reddy and
Kumar (2009a) applied EM-MOPSO to minimize
the flood risk, maximize the hydropower production,
and minimize the irrigation deficit. Similar results
were obtained showing the superiority of EM-
MOPSO over NSGA-II.

Particle swarm optimization with mutation similarity

Liu et al. (2007) proposed this approach. PSO with
mutation similarity (PSOMS) is based on a similarity
between the particle and the current global best particle
in the particle swarm. Collectivity was applied to mutate
the position of the particles randomly. Zarghami and
HajyKazemian (2013) applied this algorithm to mini-
mize the cost, maximize water supply, and minimize the
environmental hazards of an urbanwater resources man-
agement problem. The latter authors compared the re-
sults of PSOMS with PSO and GA, and concluded that
PSOMS exhibited more rapid convergence, more suit-
able results, and improved Pareto frontier relative to the
PSO and the GA.

Particle swarm optimization based on support vector
machine

Chung-Jui et al. (2007) introduced this algorithm. They
applied PSO to implement a feature selection and SVM
as a fitness function of PSO for a classification problem.
Ch et al. (2013a, b) and García Nieto et al. (2014)
applied PSO-SVM in the realm of water quality and
reported proper results. Ch et al. (2013a, b) applied
PSO-SVM to identify optimal pumping rate and well
location to obtain optimal cost in a bioremediation sys-
tem. The application of PSO-SVM reduced the average
number of required simulations by 92, 87, and 92%,
compared to GA, SA, and parallel recombinative SA
(PRSA), respectively. Similarly, the cost of pumping has
declined 9.5, 9.9, and 5.7% compared to GA, SA, and
PRSA, respectively. García Nieto et al. (2014) applied
PSO-SVM to turbidity prediction and compared results
with experimental data. The latter authors demonstrated
that the estimated correlation coefficient was 0.90, 0.90,
and 0.87 over high, medium, and low waters,
respectively. Su et al. (2013) applied GA-SVM and
PSO-SVM in optimizing the parameters of the radial
basis function (RBF), kernel function, and the penalty
parameter of a reservoir operation and management
problem. The latter authors indicated that GA-SVM
outperformed PSO-SVM in calibration and prediction
of monthly reservoir storage. Wang et al. (2013) applied
PSO-SVM coupled with ensemble empirical model de-
composition (EEMD) in a rainfall-runoff model. They
concluded that proposed algorithm (PSO-ANN-EEMD)
improved the rainfall–runoff forecasting by 65.99% and
reduced the RMSE and the average absolute relative
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error (AARE) by 67.7 and 65.38%, respectively. Liu
et al. (2019) also employed hybrid PSO-SVM to 15
farms in China to evaluate agricultural water resiliency.
According to their results, PSO-SVM obtained more
accurate agricultural water resource resilience evalua-
tion compared to TOPSIS and simple SVM models.
Overall, PSO-SVM enhances SVM modeling, while
one paper confirmed better optimizing efficiency than
the GA-SVM.

Adaptive particle swarm optimization

Li and Tang (2012) first applied this approach. This
algorithm applies an adaptive dynamic parameter con-
trol mechanism for parameter setting. Montalvo et al.
(2010) applied self-adaptive PSO to designwater supply
systems through two benchmark problems, the Hanoi
Water Supply System and the New York Tunnel Water
Supply System. According to their results, self-adaptive
PSO required at least 1459 iterations to obtain optimum
solution, while non-self-adaptive PSO needed 1293 as
self-adaptive version of this algorithm had search space
with higher dimension. The latter authors reported that
the proposed self-adaptive version needed no initial
feasible particle and complex operators. Zhang et al.
(2014a) also applied improved APSO approach to max-
imize reservoir hydropower generation and compared
the results of improved APSO with standard PSO, adap-
tive PSO, and linearly decreasing PSO. ImprovedAPSO
gave results that were more efficient, rapidly conver-
gent, and robust than other algorithms.

Hybrid particle swarm optimization and differential
evolution

Li et al. (2008) introduced this algorithm. It is a parallel
algorithm that enhances the population of solutions with
frequent information sharing. Sedki and Ouazar (2012)
applied this approach to minimize the cost design of
water distribution systems. In the example of two-loop
network, PSO-DE indicated 3080 for the average num-
ber of function evaluations, while PSO, GA, SA, shuf-
fled frog leaping algorithm (SFLA), HS, and scatter
search (SS) evaluated objective functions by 3120,
65,000, 25,000, 11,323, 5000, and 3215, respectively.
Hence, PSO-DE outperformed the standard PSO as the
mean fitness values were 419,000 and 422,700 for PSO-
DE and PSO, respectively. Overall, it is concluded that
PSO-DE calculated better fitness values with fewer

function evaluations. Al-Ani and Habibi (2013) applied
MOPSO and DE (MOPSO-DE) algorithm. They ap-
plied this algorithm to solve constrained optimization
problems. PSO is useful when the system is under the
risk of converging to premature solutions. To achieve
the particles’ best positions in the search space, PSO is
coupled with DE. Ahmadianfar et al. (2016) employed
this approach to obtain the hedging rules for reservoir
operation with improved long-term shortage index. The
proposed hedging rule improved the maximum modi-
fied shortage index (MSI) by at least 34 and 21% for the
annual minimum flow and agriculture deficits,
respectively.

Master–slave swarms shuffling evolution algorithm
based on particle swarm optimization

Jiang et al. (2010) introduced this method by sampling a
population of points randomly from the feasible space
and then partitioning it into several sub-swarms. The
latter authors used this approach to minimize the differ-
ence between simulation and observation discharge for
hydrological parameters. After comparing the estimated
standard deviation of function values and mean CPU
time over 20 independent runs, master–slave swarms
shuffling evolution algorithm based on PSO (MSSE-
PSO) enhanced the accuracy of calibration, reduced
the computational time, and improved algorithmic
stability compared to conventional PSO. Jiang et al.
(2013) used master–slave swarms shuffling evolution
algorithm based on self-adaptive PSO (MSSE-SPSO),
for parameter estimation of the HIMS hydrological
model through water balance error estimation. The latter
authors compared the MSSE-SPSO results with simple
PSO and MSSE-PSO, where the relative error over the
calibration periods estimated by 5.02, 4.33, and 4.29%
for PSO, MSSE-PSO, and MSSE-SPSO, respectively.
The computed correlation coefficient of PSO, MSSE-
PSO, and MSSE-SPSO over the calibration period were
0.72, 0.77, and 0.78, respectively. Therefore, they
concluded that the application of the stated algorithm
improved parameter estimation process and hydrologic
modeling. In another study by Jiang et al. (2015)
Master–slave swarms shuffling evolution algorithm
based on self-adaptive dynamic PSO (MSSE-SDPSO)
algorithm was employed to minimize average values of
measured and simulated discharges in a rainfall–runoff
modeling. MSSE-SDPSO had faster convergence and
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more stable performance in calibrating the parameters of
a rainfall–runoff compared with SCE-UA and PSO.

Catfish effect particle swarm optimization algorithm

Chuang et al. (2011) proposed this algorithm. They
applied the catfish effect to enhance the performance
of the binary PSO through the introduction of new
particles in the search space. Peng et al. (2014) applied
catfish effect PSO (CE-PSO) algorithm to optimize
sediment trapping and flow regulation in a multi-
objective optimization. They obtained optimal solutions
for flood control and sediment transport through opti-
mizing both downstream and upstream impounding
time of Xiluodu–Xiangjiaba Cascade Reservoirs, China.
They demonstrated that the impounding time of the
downstream reservoir would be advanced from Septem-
ber 21 to September 8 if power generation was increased
from 0.47 to 0.67.

Constrained particle swarm optimization

Afshar (2012) proposed this approach. The latter author
applied this fully constrained PSO (FCPSO) to maxi-
mize water supply and power generation of a large-scale
reservoir problem. FCPSO considers the periods of
operation in reverse order by defining a new set of
bounds for storage volume. FCPSO was found to be
superior to the basic PSO and GA in terms of locating
near-optimal solutions and convergence characteristics.
Afshar (2012) proposed partially CPSO (PCPSO).
PCPSO forces the particles of the particles swarm to
fly in the feasible area of the search space except for
very rare cases. PCPSO was relatively insensitive to the
swarm size and the initial swarm in comparison with the
original unconstrained PSO and GA. Afshar et al.
(2013) proposed partially constrained PSO I
(PCPSO1) algorithm to define a new set of bounds for
decision variable. The new constraints on the corre-
sponding state variables are satisfied. The latter author
employed this algorithm to a hydropower multi-
reservoir system and compared the results with FCPSO,
unconstrained PSO, and PCPSO2. Constrained algo-
rithms, particularly FCPSO, performed better than
UCPSO, DDP (differential dynamic programming),
GA, and ACOA. Moeini and Bababaei (2017) applied
FCPSO and PCPSO to optimize a large-scale reservoir
operation optimization problem in Iran (Dez reservoir).
Their results demonstrated that FCPSO and PCPSO

obtained feasible solutions under different operation
periods, while constrained PSO could not calculate a
feasible solution over the long operation periods
(480 months). The FCPSO’s search space was smaller
than PCPSO’s and unconstrained PSO’s, which led to
the achievement of the best solution cost.

Elite guide particle swarm optimization

Zhang et al. (2013) proposed multi-elite guide PSO
(EGPSO) algorithm. This algorithm introduced archival
sets into standard PSO while external archival sets that
maintain elite solutions over the evolution process are
applied to provide multi-elite flying directions for the
search particles. The latter authors established MGPSO
reduced the energy deficit by 126.21 and 19.9 compared
to DE and PSO, respectively. They concluded that
MGPSO was robust as after 100 independent runs, the
simulation results were raging between 45.75 and 46.15.
This algorithm obtained better solutions than standard
PSO with lower energy deficit. Zhang et al. (2014b)
proposed EGPSO algorithm. It prevents trapping in
local optima through an external archival set. Therefore,
elite solutions are preserved over the evolutionary
search process. The latter authors demonstrated EGPSO
is efficient in high-dimensional and complex optimiza-
tion problems in terms of convergence and computing
time.

Hybrid bat algorithm and particle swarm optimization

Ehteram et al. (2018) applied coupled bat algorithm
(BA) with PSO to optimize the parameters of a Muskin-
gum model for accurate flood routing in three different
case studies in the USA and UK. The aim of coupling
two stated algorithms was to improve the convergence
rate and obtain optimal absolute response with the pur-
pose of addressing poor performance (e.g., trapping in
local optima) of one algorithm. For example, over the
Wilson flood, the estimated average solution by BA-
PSO was 4.23, while conventional PSO and BA obtain-
ed average solution of 5.55 and 5.34, respectively. The
BA-PSO model error decreased by 23.71 and 20.70%
compared to PSO and BA, respectively. Hence,
proposed hybrid algorithm improved flood routing
process with less computational time. Zarei et al.
(2019) used hybrid BA-PSO to study the operation of
a multi-purpose reservoir in Fars, Iran. Total monthly
water supplies for agricultural, urban, industrial, and
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environmental purposes have been specified using hy-
brid BA-PSO. Comparison of the results of the proposed
BA-PSO with conventional BA and PSO established
that the volumetric reliability of supplying urban,
environmental, agricultural, and industrial demands
were 0.92, 0.89, 0.79, and 0.75, respectively, while
less values were obtained for individual BA and PSO.
In another study by Yaseen et al. (2019) applied hybrid
BA-PSO to optimize power production and irrigation
supply of a multi-purpose reservoir system in the state of
Karnataka, India. This algorithm reduced the computa-
tion time of estimating average monthly irrigation de-
mand by 28, 36, 39, 82, and 88% compared to the shark
algorithm, BA, weed algorithm (WA), PSO, and GA,
respectively. Given the power generation, hybrid BA-
PSO generated 18.08 × 106 kWh, while the shark algo-
rithm, BA, WA, PSO algorithm, and GA produced
17.99, 17.32, 16.96, 16.32, and 15.34 (× 106 kWh).
The proposed BA-PSO demonstrated its superiority
over other stated algorithms.

Discussion

The review presented in the previous sections identified
22 varieties of PSO. It is found that the PSO algorithm
and its varieties are applicable and efficient in different
fields of water resource engineering, including (i) hy-
drological modeling (e.g., rainfall–runoff modeling,
rainfall prediction, evaporation prediction, and flow pre-
diction), (ii) hydraulic modeling (e.g., water level pre-
diction, pipe network design, water distribution net-
works, and flow regulation), (iii) reservoir operation
(hydropower and non-hydropower operation, reservoir
storage design, and hedging rule derive), (iv) ground-
water modeling (e.g., well pumping rate design, well
positioning, and groundwater parameter calibration), (v)
water quality (e.g., water quality model calibration,
turbidity prediction, and sediment transport), and (vi)
water management (e.g., flood control, flood routing,
stormwater, and basin water transfer).

Our comparisons between algorithms and mathemat-
ical methods demonstrate the PSO algorithm performed
efficiently when coupling with other statistical methods
(e.g., SVM, ANN, and ANFIS) and evolutionary algo-
rithms (e.g., SA, GA, BA). Based on the reviewed
literature, it is evident that EMPSO and NSPO
outperformed NSGA-II with faster convergence,
spanned search space, diverse and efficient solution

provision, and higher spacing metric. Moreover, differ-
ent variants of PSO such as PSO-GA, MSPSO, CPSO,
EMPSO, PSOMS, PSO-SVM, APSO, PSO-DE, CPSO,
and constrained PSO performed better than GA, primar-
ily in terms of a faster convergence rate. Given the
complex evolutionary process of the GA, many itera-
tions are required to reach global optimal solution. As
claimed by Banks et al. (2008), the GA generates new
population of solutions whose newly generated off-
spring suffer from lack of knowledge about the group’s
best positions. It is also concluded that the coupling of
the PSO with other evolutionary algorithms such as SA,
DE, GA, and shark algorithm leads to proper conver-
gence to optimal Pareto fronts.

Conclusion

Our review demonstrated that PSO has been widely
applied in water resources optimization problems. A
comprehensive literature review was conducted based
on applications of different PSO variants in different
fields of water resources engineering. Thirty-three vari-
ants of the PSO algorithm were found. The features and
performance of the cited algorithms were discussed, and
comparisons were made with other EAs and mathemat-
ical methods in different fields of water resources engi-
neering. It was found that PSO variants perform effi-
ciently in six main water engineering fields, including
hydrological modeling (e.g., rainfall–runoff modeling,
rainfall prediction, and flow prediction), hydraulic
modeling (e.g., water level prediction, pipe network
design, water distribution network design, and flow
regulation), reservoir operation (hydropower and non-
hydropower operation, single- and multi-objective res-
ervoir, reservoir storage design, reservoir pumping sta-
tion rate design, and hedging rule derive), groundwater
modeling (e.g., well pumping rate design, well position-
ing, and groundwater parameter calibration), water qual-
ity (e.g., water quality model calibration, turbidity pre-
diction, and sediment transport), and water management
(e.g., flood control, flood routing, stormwater, and basin
water transfer). This paper’s review of the surveyed
literature revealed that PSO has the potential for hybrid-
ization, because it can efficiently be coupled with other
statistical methods (e.g., SVM, ANN, and ANFIS) and
evolutionary algorithms (e.g., SA, GA, BA, and shark
algorithm). Moreover, many multi-objective variants of
PSO outperformed NSGA-II due to faster convergence,
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diverse search space, and efficient solution provision.
Similarly, many variants of single-objective PSO (e.g.,
PSO-GA, MSPSO, CPSO, EMPSO, PSOMS, PSO-
SVM, APSO, PSO-DE, CPSO, and constrained PSO)
outperformed conventional GA in terms of fewer re-
quired iterations in obtaining the global optimum.More-
over, CPSO outperformed the standard GA, DE, and
PSO, because it calculated more accurate results with
higher convergence speed.

Surveyed applications of the PSO algorithm in water
optimization problems revealed that there is no applica-
tion of the PSO to hydrodynamic parameter calibration,
wave prediction, coastal erosion prediction, flood level
prediction, coastal well positioning, and storm surge
analysis. Furthermore, combination of PSO with other
EAs such as HBMO, ant colony optimization (ACO),
firefly algorithm (FA), WCA, and imperialist competi-
tive algorithm (ICA) hold potential in the water re-
sources field as our review determined a gap in applica-
tions of such coupled EAs in the water engineering field.
It is clear the PSO variants hold substantial potential to
solve a wide range of water resources problems.
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