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Abstract The purpose of watershed assessments is to
give information about conditions of water quality,
stream morphology, and biological integrity to identify
the sources of stressors and their impacts. In recent
decades, different watershed assessment methods have
been developed to evaluate the cumulative impacts of
human activities on watershed health and the condition
of aquatic systems. In the current research, we propose a
new approach for assessing watershed vulnerability to
contamination based on spatial analysis by using geo-
graphic information systems (GIS) and the analytic hi-
erarchy process (AHP) technique. This new procedure,
designed to identify vulnerable zones, depends on six
basic factors that represent watershed characteristics:
land use/land cover, soil type, average annual precipita-
tion, slope, depth to groundwater, and bedrock type. The
general assumptions for assessing watershed vulnerabil-
ity are based on the response of watersheds to different
contamination impacts and how the six selected factors
interact to affect watershed health. The new watershed
vulnerability assessment technique was used to create
maps showing the relative vulnerabilities of specific
sub-watersheds in the Eagle Creek Watershed in central
Indiana. The results showed a remarkable difference in

watershed susceptibility between the sub-watersheds in
their vulnerability to pollution. To test the reliability of
the proposed vulnerability assessment technique, the
SWAT (Soil and Water Assessment Tool) model was
applied to predict the water quality in each sub-water-
shed. Using the SWAT model, some parameters (e.g.,
total suspended solids [TSS] and nitrate) were tested
based on the availability of the data needed for compar-
ison. Both the SWAT and the newly proposed method
produced good results in predicting water quality loads,
which validated the proposedmethod. Hence, the results
of the evaluation of the predictive reliability of the
watershed vulnerability assessment method revealed
that the proposed approach is suitable as a decision-
making tool to predict watershed health.
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Introduction

Watershed health is impacted by a number of variables,
including climate, soils, hydrology, geomorphology,
and land use/land cover (LULC). Watershed health is
often evaluated by considering stream characteristics,
such as sediment load (Jones et al. 2001; Mano et al.
2009; Hazbavi and Sadeghi 2017), aquatic ecosystems
(Tiner 2004; Rodgers et al. 2012; Herman and
Nejadhashemi 2015), and water quality (Olsen et al.
2012; Luo et al. 2013; Kim and An 2015; Jabbar and
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Grote 2018). Methods to assess watershed health vary,
and in recent decades, different watershed assessment
models have been developed to evaluate the cumulative
impacts of human activities on watershed health and the
condition of aquatic systems. These models have fo-
cused on different parameters that affect watershed
health, such as identifying the impact of land use and
land cover changes (Bateni et al. 2013; Calijuri et al.
2015; Deshmukh and Singh 2016; Peraza-Castro et al.
2018), climate change (Johnson et al. 2012; Fan and
Shibata 2015; Neupane and Kumar 2015), and suscep-
tibility to hydrologic alterations (Pyron and Neumann
2008; Marcarelli et al. 2010). Among the variety of
approaches, statistical analyses and hydrological model-
ing have been widely performed because of the recent
availability of large data sets and flexibility offered by
these techniques.

In the current research, we propose a new approach
for assessing watershed vulnerability to contamination
based on spatial analysis using the geographic informa-
tion system (GIS) and analytic hierarchy process (AHP)
techniques. Due to its simplicity, the proposed method
can easily be used to evaluate watershed vulnerability,
with only a small amount of input information required
and without field or lab work, which minimizes cost and
time commitments. This procedure depends on six basic
factors, which represent watershed characteristics, and it
is designed to identify vulnerable zones. The proposed
factors were land use/land cover, soil type, average
annual precipitation, slope, depth to groundwater, and
bedrock type. Using this approach to identify the vul-
nerable zones within river basins can improve decision-
making for professionals in the area of environmental
planning and management. In this research, we compare
the vulnerability assessment from this method to water
quality measurements from field data and water quality
estimates from hydrological models.

The ability of hydrological models to simulate
and predict real phenomena has increased consid-
erably in recent years. Some of the models are
based on simple empirical relationships with robust
a lgor i thms, whi le others physica l ly-based
governing equations with computationally calculat-
ed numerical solutions. With improvements in
computational power and data availability, the
number of empirical parameters and physical base
functions used in many models has also grown,
which can cause calibration to be more difficult
(Arnold et al. 2015).

The Soil and Water Assessment Tool (SWAT) is an
effective model developed to assess hydrological pro-
cesses, pollution problems, and environmental issues
worldwide. It has been extensively used to investigate
water quality and nonpoint source pollution problems
and to predict the impact of changes in land manage-
ment practices for a range of scales and environmental
conditions (Behera and Panda 2006; Gassman et al.
2007; Zhu and Li 2014). This model is especially useful
for predicting future watershed health, especially in
ungauged basins. The SWAT model is increasingly be-
ing applied to predict sediment yield (Xu et al. 2009; Liu
et al. 2015), nutrient loadings (Hanson et al. 2017;
Malagó et al. 2017), fecal coliform concentrations
(Cho et al. 2012; Bai et al. 2017), and pesticide transport
(Luo and Zhang 2009; Bannwarth et al. 2014; Boithias
et al. 2014). SWAT also efficiently simulates hydrolog-
ical processes (e.g., Im et al. 2007; Hoang et al. 2014).
Im et al. (2007) used SWAT modeling of the Polecat
Creek Watershed in Virginia and was able to simulate
streamflow and sediment yields using the SWAT and
hydrological simulation program-Fortran (HSPF)
models. Similarly, Hoang et al. (2014) found that the
SWAT provided highly accurate predictions for
streamflow for both daily and monthly times, but that
the nitrate fluxes simulations were highly accurate only
for monthly time steps. When compared with the
DAISY-MIKE SHE (DMS) model, Hoang et al.
(2014) found that the SWAT simulated results for
streamflow and nitrate fluxes were identical to DMS
ranges during high flow times but were moderately
low during low-flow times. In this research, SWAT
was used to simulate total dissolved solids and nitrate
concentrations in selected watersheds, as these parame-
ters are useful for assessing watershed vulnerability.

Materials and methods

A case study in the Eagle Creek Watershed

In Central Indiana, in the northern section of the Upper
White River Watershed, located within the Mississippi
River Basin, lies the Eagle Creek Watershed (ECW)
(Fig. 1). With a drainage area of about 459 km2, the
ECW includes 10 sub-watersheds. These range in size
from 26.9 to 70.7 km2. The ECW’s three major branches
(i.e., School Branch, Fishback Creek, Eagle Creek
Branch) flow into the Eagle Creek Reservoir.
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Fig. 1 Location map of the study area in Indiana showing Eagle Creek Watershed
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Indianapolis depends on the Eagle Creek Reservoir as
one of its primary drinking water sources. Eight major
tributaries (i.e., Dixon Branch, Finely Creek, Kreager
Ditch, Mounts Run, Jackson Run, Woodruff Branch,
Little Eagle Branch, Long Branch) feed these branches.
The three primary branches have the following flow
distributions: (1) Eagle Creek—an average flow of ap-
proximately 2.85 m3/s, which contributes 79% of the
reservoir’s water; (2) Fishback Creek—an average flow
of 1.1 m3/s, which contributes 14% of the reservoir’s
water; and (3) School Branch—an average flow of
0.5 m3/s, which contributes 7% of the reservoir’s water
(Tedesco et al. 2005).

At 56%, agriculture is the chief land use in the Eagle
CreekWatershed, with urban land use at 38%, mainly in
the southeastern section. Most of the remaining land is
either forested or grassland. In cooler times of the year,
the area receives storms of long duration and moderate
intensity, but precipitation is delivered in short, high-
intensity storms during late spring and summer. The
ECW receives an average annual precipitation of
1050 mm. February records the least rainfall, averaging
59.7 mm, whereas May records the most rainfall, aver-
aging 115.5 mm. The ECW has a generally flat topog-
raphy, with fewer than 3% slopes. Agricultural areas are
flatter, with steeper slopes observed near streams and
rivers. In the upper part of the watershed, the soil is thin
loess over loamy glacial till, which is deep and poorly
drained. However, in the watershed’s northwest section,
soils range from poorly to well drained. In addition, in
the areas downstream, soils are generally deep, well
drained to slightly poorly drained, and the soils create
a thin, silty layer over the underlying glacial till (Hall
1999). In the extreme northeastern section of the ECW,
the bedrock is mainly brown, fine-grained dolomite to
dolomitic limestone. In contrast, in the southwest sec-
tion, brown sandy dolomite to sandy dolomitic lime-
stone and gray, shaley fossiliferous limestone predomi-
nate. Brownish-black, carbon-rich shale, greenish-gray
shale, and small amounts of dolomite and dolomitic
quartz sandstone characterize the southern part of the
ECW (Shaver et al. 1986; Gray et al. 1987).

Data acquisition and processing

Thematic maps of the study area were generated based
on remote sensing data. A 30-m resolution digital ele-
vation model (DEM) of the topography was used to
investigate key watershed characteristics, including

topographic variability and slope. To calculate water-
shed characteristics (e.g., drainage networks, hydrologic
units, catchment areas, and related features, including
rivers and streams), the National Hydrography Dataset
(NHD) and Watershed Boundary Dataset (WBD), both
managed by the United States Geological Survey
(USGS), were applied (USGS 2016). This study relied
on the National Land Cover Database 2011 (Homer
et al. 2015), with its 15 land use/land cover (LULC)
classifications (Fig. 2a). In our analysis, some classifi-
cations were pooled so as to reduce the number of
variables and to create more meaningful LULC catego-
ries. Categories that had been termed “developed” were
combined to form one “urban” category, while all cate-
gories previously considered “forest” also became one
group, as did all “wetland” categories (Fig. 2b). The data
were analyzed using ArcGIS version 10.4.1, which also
provided the averages of each parameter for every sub-
watershed. To obtain the average annual precipitation
raster for the period 1961–1990, the Parameter-
elevation Regressions on Independent Slopes Model
(PRISM) was used (Daly 1996).

Methodology of watershed susceptibility assessment

Watershed susceptibility assessment factors

In this study, a decision hierarchy was employed to
assign the relative weight for each factor that contributed
to affect the watershed’s susceptibility, which involves
two steps. First, categories were created, using six seem-
ingly significant factors: land use, soil type, precipita-
tion, slope, depth to groundwater, and bedrock type
(Fig. 3). Second, 46 sub-categories were created in order
to assess the watershed’s health. This study synthesized
the judgment of experts and literature reviews in this
field (Blanchard and Lerch 2000; Eimers et al. 2000;
Tran et al. 2004; Lopez et al. 2008; Jun et al. 2011;
Furniss et al. 2013) with other required and available
data about the study area, to arrive at each factor, which
was then categorized into classes or sub-categories.
Next, a suitability rating value was given to each sub-
category. Factors ranked between 0 and 1 (i.e., low
scores) have little impact on water quality, whereas
factors with high scores have a large impact on
water quality. Similarly, sub-categories were rated
from 1 to 10, with 1 meaning that there was a
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negligible impact on water quality, while high
scores correlated with having a very high impact.

Land use/land cover

The LULC can affect surface water quality as either
point or nonpoint source (NPS) pollution, making the
LULC one of the primary factors affecting water quality,
and, therefore, watershed health (Brainwood et al. 2004;
Carey et al. 2011). NPS pollution in surface water,
especially increases in nitrogen (N) and phosphorus
(P), is usually correlated with agricultural use
(Heathwaite and Johnes 1996; Ma et al. 2011). Similar-
ly, urban lands can produce great effects on surface
water quality because they contain substantial amounts
of point and nonpoint source contaminants (Wilson and
Weng 2010). Contamination from nutrients, organic
matter, and bacteria often results from the waste gener-
ated by city wastewater treatment plants as well as from
a variety of anthropogenic sources (Chang et al. 2010).
Based on their impact on watershed health, for this
study, the LULC was separated into eight categories.
Agricultural land uses with the highest impact were

rated “10,” while land use classified as “water” received
the lowest rating or “1” (Table 1).

Precipitation

Precipitation and increasing pollution levels in surface
water are usually assumed to be directly related. For
example, surface runoff of pollutants increases with
rapid precipitation and can degrade the water quality
of rivers and streams (Göbel et al. 2007; Kim et al.
2007). The high correlation of precipitation with water-
shed health results from the impact of rainfall magnitude
and intensity on sediment and nutrient loading. Thus, in
this study, precipitation was classified into 10 groups,
with the highest amount of annual precipitation (>
75 in.) corresponding to a value of “10,” while the
lowest precipitation was given a value of “1.”

Slope

When rapid precipitation combines with slopes, it can
greatly affect surface water quality (El Kateb et al. 2013;
Meierdiercks et al. 2017). A steep slope can increase the

Fig. 2 Land use categories (a) before reclassification and (b) after reclassification and aggregated into eight categories
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flow rate of a water body, which causes soil erosion and
sedimentation, such that many types of pollutants (e.g.,
nutrients, pathogens, and pesticides) can be carried to
nearby rivers (Bracken and Croke 2007). The number of
total suspended solids increases as eroded soil particles
are transported to rivers, negatively affecting the water
quality. Additionally, it has been found that high slopes
have a considerable effect on the infiltration rate to
groundwater, with Fox et al. (1997) finding that the
amount of infiltration decreases as the slope increases.
Therefore, this study formed six categories of slope to
take into account their impact on the amount of rainfall
that becomes overland flow, where it eventually either

connects to the surface water or adds to the amount of
groundwater by infiltration. In these new categories,
gentle slopes are given a value of “1,”while steep slopes
were valued at “10.”

Depth to groundwater

A broad range of catchment processes connects surface
water to groundwater (Brunner et al. 2009; Lehr et al.
2015). In addition, geological factors play a part in
groundwater quality, predominantly through the chem-
ical processes of water-rock interactions. Therefore,
rock and soil components contribute significantly to

Fig. 3 Thematic maps of the layers before rating for (a) soil type, (b) average annual precipitation, (c) slope%, (d) depth to groundwater, and
(e) bedrock type
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Table 1 The relative weights and rating scores of the factors and sub-criteria used for watershed susceptibility assessment

Factor Weighting Sub-criteria Rating Normalized rating

LULC 0.36 Agriculture 10 0.33

Urban 9 0.2

Grassland 7 0.13

Wetland 6 0.12

Forest 5 0.07

Barren land 4 0.06

Shrubland 3 0.04

Water 1 0.03

Soil type 0.22 Clay loam 10 0.23

Silty loam 8 0.17

Silty clay loam 7 0.15

Clay 6 0.14

Silt 5 0.13

Sandy loam 4 0.08

Peat 3 0.07

Sandy 2 0.04

Average annual precipitation (inch) 0.18 > 75 10 0.32

71–75 9 0.18

66–70 8 0.12

61–65 7 0.09

56–60 6 0.08

51–55 5 0.07

46–50 4 0.05

41–45 3 0.04

35–40 2 0.03

< 35 1 0.02

Slope (degree) 0.10 > 60 10 0.35

31–60 8 0.27

16–30 6 0.21

11–15 4 0.07

4–10 2 0.06

< 3 1 0.04

Depth to groundwater (feet) 0.09 < 5 10 0.32

5–10 8 0.18

11–15 6 0.15

16–20 5 0.13

21–25 4 0.08

26–50 3 0.07

51–100 2 0.05

> 100 1 0.03

Bedrock type—depth (0–50 ft) 0.05 Limestone 10 0.30

Dolomite 9 0.29

Shale 7 0.16

Claystone 5 0.11

Sandstone 3 0.08

Metamorphic/igneous 1 0.05
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water quality because these components change the
physical and chemical properties of water (Singh et al.
2005; Varanka et al. 2014). Another category proposed
by this study is depth to groundwater, which was clas-
sified into eight groups; shallow groundwater was given
a rating of “10,” but deep groundwater was given a
rating of “1.”

Bedrock type

Various types of geologic materials (e.g., sedimentary,
igneous, and metamorphic rocks, as well as glacial
deposits) have a large effect on water quality. Due to a
variety of chemical processes, long-term geochemical
interactions (i.e., between rock and water) can take place
between groundwater and the aquifer (Adams et al.
2001). As water runs through fractured rock aquifers,
especially those made of limestone or dolomite, the
groundwater’s chemical properties can be considerably
altered as some carbonate materials dissolve or evapo-
rate. Thus, surface water quality can be altered when
water is exchanged between rivers and shallow aquifers.
This study classified rock types into six classes based on
their resistance to weathering. Metamorphic and igne-
ous rocks were given the low value “1” because these
rocks are normally very hard and resist weathering,
unlike limestone, which was given a high rating of
“10” because it dissolves easily.

Soil type

Soluble materials and suspended sediments in water can
also originate from soil. Overall, sediment is the water
pollutant that has the greatest effect on the quality of
surface water physically, chemically, and biologically.
Larger, heavier sediments (e.g., pebbles and sand) tend
to settle first, with smaller, lighter particles (e.g., silt and
clay) remaining in suspension for a long time, thus
contributing greatly to water turbidity. In addition, a
variety of soluble salts in the soil can increase the
electrical conductivity (EC) of water, thereby negatively
affecting its quality (Chhabra 1996). For example, a
high clay content increases the EC as a result of the high
cation-exchange capacity (CEC) of clayminerals. In this
study, soil types were grouped into eight soil classes
relative to their impact on water quality. Sandy soil was
given a low value (1), while clay loam was valued at
“10,” because clay loam increases turbidity and salinity.

Analytical hierarchy process evaluation model

Multiple-criteria decision analysis (MCDA) problems
include criteria that vary in importance, so the process
determines the weights of these criteria to indicate the
relative significance of each of the chosen criteria in
relation to the result. Therefore, information about the
relative importance of each criterion is needed prior to
assigning weights. As shown in Fig. 4, the analytical
hierarchy process (AHP) is one of the multi-criteria deci-
sion-making methods created by Saaty (1980). It uses
pairwise comparisons that measure all factors (criteria
and sub-criteria) matched to each other. This method is
founded on three major principles: (1) pairwise compar-
ison judgments, (2) decomposition, and (3) synthesis of
priorities. Saaty (1980) recommended using a scale from
1 to 9 to compare the factors, with 1 signifying that the
criteria are equally important, and 9 signifying that a
particular criterion is highly significant. The consistency
ratio (CR) is calculated to assess the differences between
the pairwise comparisons and the reliability of the mea-
sured weights. To be accepted, the CR should be less than
0.1. If not, subjective judgments should be rethought
prior to recalculating the weights (Saaty 2008).

The structure of the decision-making problem for this
study consisted of numbers represented by the symbols
m and n. The values of aij (i = 1, 2, 3…, m) and (j = 1,2,
3..., n) were used to represent the performance values
matrix in terms of the ith and jth elements. The values of
the comparison criterion above the diagonal of the ma-
trix were used to fill the upper triangular matrix, and the
lower triangular of the matrix used the reciprocal values
of the upper diagonal. In the pairwise comparisonmatrix
A, the matrix element aij indicates the relative impor-
tance of the ith and jth alternatives with respect to
criterion A, where aji is the reciprocal value of aij, as
shown in Eq. 1.

Below is an example of a decision matrix, which
combines a typical comparison matrix for any problem
with the relative importance of each criterion:

A ¼
1 a12 ⋯ a1n

1=a12 1 a23 a2n
⋯ 1=a23 ⋯ ⋯

1=a1n 1=a2n ⋯ 1

0
BB@

1
CCA ð1Þ

where aj; I, j = 1, 2, ……, n is the element of row i and
column j of the matrix, which is equal to the number of
alternatives.
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The geometric principles in Eq. 2 were used to cal-
culate the eigenvectors for each row:

Egi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 � a12 � a13 �⋯� a1nn

p ð2Þ

where,Egi represents the eigenvector for the row i, and n
represents the number of elements in row i. The priority
vector (pri) was found by normalizing the eigenvalues to
1, the normalization is a method that used to get numer-
ical and comparable input data, using Eq. 3:

pri ¼ Egi= ∑
n

k¼1
Egk

� �
ð3Þ

Lambda max (λmax) was evaluated based on the
summation of the result of multiplying each element in
the priority vector with the sum of the column of the
reciprocal matrix:

λmax ¼ ∑
n

j¼1
W j � ∑

m

i¼1
aij

� �
ð4Þ

where aij is the sum of the criteria in each column in the
matrix; Wi is the value of the weight of each criterion

corresponding to the priority vector in the matrix of
decision; and where i = 1, 2, … m, and j = 1, 2,… n.

The consistency ratio (CR) can be found using Eq. 5:

CR ¼ CI
RI

ð5Þ

where CI is the consistency index:

CI ¼ λmax−n
n−1

ð6Þ

where λmax represents the sum of the products between
the sum of each column of the comparison matrix and
the relative weights, and n is the size of the matrix.

RI signifies the random index, which describes the
consistency of the randomly generated pairwise com-
parison matrix. In this study, weighted scores for each
factor were obtained using the AHP model (Table 2),
with a similar method employed to obtain rating values
for each sub-criteria within the watershed susceptibility
assessment.

Watershed susceptibility values in the study area
were calculated using weighted overlay analysis:

Fig. 4 Flowchart of the procedures of AHP and watershed susceptibility assessment method
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WS ¼ ∑
n

j¼1
W j � Cij ð7Þ

where WS represents the watershed susceptibility for
area i, Wj represents the relative importance weight of
criterion, Cij represents the grading value of area i under
criterion j, and n represents the total number of criteria.

After AHP analysis was completed, the maps needed
for each layer were constructed as a shapefile (vector) or
raster. Figure 5 shows the raster maps showing the
ratings of each of the six parameters considered: land
uses/land cover, soil type, average annual precipitation,
slope, depth to groundwater, and bedrock type.

Hydrologic modeling using SWAT

SWAT is a hydrological model that quantifies the influence
of changes in landmanagement practices, land use and land
cover changes, and climate change on water quality and
hydrology for a range of scales with a daily time step
(Neitsch et al. 2011). SWAT allows for local spatial hetero-
geneity of any study area by dividing a watershed into sub-
basins according to topographic features. Sub-basins have a
special geographic position in thewatershed but are spatially
connected to each other. Subsequently, sub-basins can be
divided into small portions of the hydrologic response units
(HRUs), which consist of combinations of land cover, soil,
and slope. Multiple HRUs, created by dividing sub-basins,
can provide high accuracy and better physical descriptions.
Ten sub-basins, with 3513 HRUs, are delineated within the
ECWaccording to land use, soil type, and land slope.When
applying SWAT, specific data are required, such as weather,
soil, land use, and topography.

The hydrological cycle can be simulated by the
SWAT model using the water balance equation
(Neitsch et al. 2011), as shown in Eq. 8.

SWt ¼ SW0 þ ∑
i¼t

i¼1
Pday−Qsurf −Ea−Wseep−Qgw

� �
ð8Þ

where SWt and SW0 are the final and initial soil water
content (mm/d), respectively; t is the time (day); Pday is
the amount of precipitation (mm/d); Qsurf is the surface
runoff (mm/d); Ea is the evapotranspiration (mm/d);
Wseep is the percolation (mm/d); and Qgw is the amount
of return flow (mm/d).

Surface runoff in the SWAT can be calculated using
the Soil Conservation Service (SCS) curve number
(CN) method (USDA – SCS 1972):

Qsurf ¼
Rday−0:2S
� �2
Rday þ 0:8S
� � ð9Þ

where Qsurf and Rday are surface runoff (mm) and rain-
fall depth (mm) for the day, respectively; and S is the
retention parameter (mm). In the current study, the
SWAT model was simulated for 9 years from 2010 to
2018, including a 2-year warm-up period from 2010 to
2011 (2 years).

Sensitivity analysis

Sensitivity analysis was employed to determine if key
parameters could be used to calibrate and validate the
SWAT model (Zhang et al. 2009; Arnold et al. 2012).
For this study, global sensitivity analysis was utilized in
the SWAT-CUP 2012 version 5.1.6 (Abbaspour 2015).
To identify the significance of the sensitivity of each
parameter, some indices were used, such as t tests
(Abbaspour et al. 2017).

Table 2 A pairwise comparison matrix developed for assessing the relative importance of the criteria for watershed susceptibility
assessment

Factor LULC ST BRT Slope AAP DTG Weights

LULC 1 3 4 5 3 2 0.36

Soil type (ST) 0.33 1 5 3 2 2 0.22

Bedrock type (BRT) 0.25 0.2 1 0.33 0.33 0.5 0.05

Slope 0.2 0.33 3 1 0.33 1 0.1

Average annual precipitation (AAP) 0.33 0.5 3 3 1 3 0.18

Depth to groundwater (DTG) 0.5 0.5 2 1 0.33 1 0.09

CR value = 0.02
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Calibration and validation of the SWAT model

Calibrating a model modifies parameters based on
field data to confirm the same result over time
(Arnold et al. 2012). Validation is a procedure for
testing the accuracy of the identified parameters by
simulating the observed data with a dataset not used in
the calibration process, without modifying the
model’s parameters (Govender and Everson 2005;

Vilaysane et al. 2015). In the current study, calibration
was performed using 5 years (2012–2016) of monthly
observed data that obtained from monitoring gauge
station at Zionsville (USGS 03353200) for both dis-
charge and nitrate loads, but 4 years of data (2013–
2016) for sediment loads, due to the availability of
each of these data types.

Calibration and validation procedures were exe-
cuted in the SWAT-CUP using the sequential

Fig. 5 Thematic maps of the layers after rating for (a) land use/land cover, (b) soil type, (c) average annual precipitation, (d) slope%, (e)
depth to groundwater, and (f) bedrock type
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uncertainty fitting (SUFI-2) algorithm. The SUFI-2
is a semi-automated procedure for calibration and
an uncertainty analysis algorithm (Schuol et al.
2008; Kundu et al. 2016). The SUFI-2 has been
applied in many studies, such as by Setegn et al.
(2008) in the Lake Tana Basin or Rai et al. (2018)
in the Brahmani and Baitarani river deltas.

The parameters were modified to minimize the varia-
tion between the observed data and simulated results,
using the calibration procedure. Calibration was executed
for the period from 2012 to 2015, using 26 parameters
(Table 3), depending on the results of the sensitivity
analysis and a review of previous studies (Heathman
et al. 2008; Pyron and Neumann 2008; Yen et al. 2014;
Teshager et al. 2015; Jang et al. 2018). Among these, 15
parameters were considered to be more related to
streamflow calibration, with six parameters associated
with sediment load calibration, and five parameters more
related to nitrate load calibration. The validation proce-
dure was performed for the period from 2017 to 2018.

To check the performance of the SWATmodel, many
indices can be employed. In the current research, the
Nash-Sutcliffe (NS) coefficient was used for statistical
evaluation. Nash-Sutcliffe efficiency (NSE) values
range between −∞ and 1; NSE = 1 indicates a perfect
match of the simulated output data to the observed data.

The coefficient of determination (R2) was also
employed in assessing the accuracy of the model. Per-
cent bias (PBIAS) measures the average tendency of the
simulated data to be larger or smaller than the observa-
tions. The optimal value of PBIAS is 0, where low
magnitude values indicate better model simulations. A
positive value indicates the model is underestimation
while the negative value indicates the model is
overestimation.

The calculations of R2, NSE, and PBIAS are com-
puted using Eqs. 10, 11, and 12 (Moriasi et al. 2007).
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∑
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The SWAT model shows the existing relationship, on
a monthly basis, between the observed and simulated
data. For the period from 2012 to 2016 (Fig. 6a), the
model has a good performance in the flow simulation,
with values for the estimators of the efficiency of the
model of 0.78, 0.73, and 14.4, for R2, NSE, and PBIAS,
respectively. When comparing the observed and simulat-
ed data related to streamflow for validation, R2 (0.76),
NES (0.72), and PBIAS (10.4) were slightly less than
with the calibration results. By comparing the observed
and simulated flows through an analysis of linear regres-
sion, the values of R2 and NSE (both for the calibration
and validation period) exceeded 70% of the maximum
possible (Fig. 7a), which is statistically acceptable.

When calibrating the monthly sediment production
from 2013 to 2016, the SWAT model showed a slight
underestimation of sediment production during the rainy
season. The monthly total suspended solids (TSS) sim-
ulated by the model showed lower values of the R2

coefficient, with a correlation of 0.67, NSE 0.64, and
PBIAS 16.4 which evinces a weaker correspondence
between the observed and calculated values. Figure 6
b indicates that the model underestimated the materials
in suspension during the rainy season in most years. The
validation procedure revealed that the coefficient of
determination fell slightly to 0.65, NSE to 0.62, and
PBIAS 22.6 (Fig. 7b), which indicates a lower predic-
tive capacity of the SWAT model during the validation
period. This lower correlation between the observed
sediments and those simulated is possibly associated
with changes in the vegetation cover. As illustrated in
Fig. 6 c, the results of the statistical analysis of the
calibration of nitrate loads from 2012 to 2016 showed
a good adjustment, with values of 0.74, 0.69, and 18.3
for R2, NSE, and PBIAS, respectively. As regards the
validation results, the value of R2 fell to 0.70, NSE 0.63,
and PBIAS 23.4 (Fig. 7c).

To identify the reliability of the proposed technique,
the SWAT model was applied. For this study, with
regard to simulating and predicting the water quality of
watersheds using the SWAT model, some parameters
(e.g., TSS and nitrate) were tested based on the
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availability of the data needed. Both methods produced
good results for predicting that water quality loads,
which are essential for validating the suggested method.

Results and discussion

This study uses a watershed susceptibility assessment
tool that allows for the calculation of a single

vulnerability index value for the watershed area being
investigated, using simple features that are weighted
relative to their influence on surface water pollution.
Based on the index, the vulnerability to pollution can
be determined: watershed vulnerability categories are as
follows—extremely high (70–100), high (50–70), mod-
erate (30–50), low (10–30), and very low (0–10).

After evaluating each watershed for its vulnerability,
maps were generated that displayed the relative

Table 3 The SWAT parameters for calibration of streamflow, sediment load, and nitrate

Streamflow (Q) Parameter Description Ranges

Lower bound Upper bound Calibrated values

ALPHA_BF Baseflow alpha factor 1/day 0.1 1 0.56

CH_K2 Effective hydraulic conductivity (mm/h) 5 300 34.4

CN2 Initial SCS runoff curve number − 0.25 0.25 − 0.04
ESCO Soil evaporation compensation factor 0.01 1 0.92

GW_DELAY Groundwater delay time day 0.1 50 21.3

GW_REVAP Groundwater evaporation coefficient 0.02 0.2 0.15

GWQMN Depth of water for return flow (mm) 0.01 500 69.2

OV_N Manning’s “n” value for overland flow 0.01 0.6 0.30

RCHRG_DP Deep aquifer percolation fraction 0.01 1 0.05

REVAPMN Depth of water for evaporation (mm) 0.01 250 58.6

SMFMN Melt factor for snow on December 21 (mm/°C) 0 10 6.6

SMFMX Melt factor for snow on June 21 (mm/°C) 0 10 5.3

SOL_AWC Available water capacity of the soil layer (mm/mm) − 0.25 0.25 − 0.14
SURLAG Surface runoff lag coefficient 0.1 10 1.03

TIMP Snow pack temperature lag factor 0 1 0.02

Sediment (TSS)

CH_COV1 Channel cover factor 0 0.5 0.03

CH_COV2 Channel erodibility factor 0 0.001 0.0006

PRF Peak Rate adjustment factor for
sediment routing in the main channel

0.5 2 0.62

SPCON Linear parameter for calculating the
maximum amount of sediment that
can be re-entrained during channel sediment routing

0.0001 0.01 0.004

SPEXP Exponent parameter for calculating
sediment re-entrained in channel sediment routing

1 1.5 1.05

USLE_P USLE equation support practice factor 0 1 0.01

Nitrate

ORGN Initial organic N in soils (kg-N ha−1) 1 10,000 7845

ERORGN Organic N enrichment ratio 0 5 0.12

NPERCO Nitrogen percolation coefficient 0 1 0.73

SHALLST_N Initial concentration of NO3 in
shallow aquifer (mg /l or ppm)

0 1000 459.6

SOL_NO3 Initial NO3 concentration in the
soil layer (mg N/kg soil or ppm)

0 100 48.2
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Fig. 6 Comparing the results of the simulated and observed
monthly data at Zionsville (USGS 03353200) for a discharge for
the calibration period (2012–2016) and validation period (2017–
2018), b suspended sediment for the calibration period (2013–

2016) and validation period (2017–2018), and c nitrate load for the
calibration period (2012–2016) and validation period (2017–
2018)
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Fig. 7 Regression relationship between the monthly observed and simulated data for a streamflow, b total suspended solids (TSS), and c nitrate loads
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vulnerabilities of each sub-watershed. The differences in
vulnerability to pollution between the sub-watersheds in
the Eagle Creek Watershed can be seen in Fig. 8. It was
predicted that the upper portion of the watershed (e.g.,
Lion Creek and Finley Creek sub-watersheds) were
likely to have a very high vulnerability to potential
contaminants, as were Dixon Branch, Mounts Run,

and Jackson Run sub-watersheds. Thus, about
37.6 km2 (8%) of the total area of the ECW was con-
sidered to be very highly vulnerable to contamination,
with 284.5 km2 (57%) having a high vulnerability. The
greatest area of vulnerability to contamination lies in the
north and center of the study area, which is primarily
comprised of agricultural land (85% of the total area

Fig. 8 Watershed vulnerability distribution map of the Eagle Creek Watershed
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within the northern sub-watershed). In the ECW, the
area of low vulnerability is 73.8 km2 (14%), while there
is a very low vulnerability within 7.3 km2 (1%).

The areas predicted to have very high vulnerability
are primarily agricultural, so this high vulnerability is to
some degree the result of agricultural runoff. Another
relevant factor might be the soil type. The most wide-
spread type of soil near the drainage channels in the
northern portion of the Eagle Creek Watershed is silty
clay loam. In this segment of the study area, the steepest
slopes occur in proximity to riverbanks. Thus, the slope
can raise the surface runoff rate as well as the rate of soil
erosion, which increases the amount of sediments and
pollutants deposited in neighboring streams (Tedesco
et al. 2005). Additionally, according to Walter et al.
(2017), the bedrock (in this case, limestone), which is
near the surface in northern watersheds, can also con-
tribute to declining water quality. In the southern part of
the study area, the vulnerability of the watersheds was
categorized in a range from medium and weak, espe-
cially in the nearby portions of the sub-watersheds bor-
dering School Branch, Eagle Creek at Grande Avenue,
and Little Creek at 30th Street.

Both the TSS and nitrate load exhibited a similar trend
of increasing when assessed using the SWATmodel or this

study’s proposed method. Regarding the simulation of
sediment load, the comparison of the two methods indi-
cated a high amount of total sediment loadwas observed in
the middle and north portion of the ECW (Fig. 9a). A high
concentration of suspended solids in the central and upper
part of the basin can be supposed to be an indicator that the
highest capacity of erosion and transport occurred in these
areas of the basin, where a large amount of sediment is
transported by streamflow and eventually deposited before
reaching the lower part of the basin. Sediment production
increased in the agricultural land due to decreases in the
areas of natural forest and shrub vegetation, which also
reduced the protection these provide for soil, leaving them
more vulnerable to erosive processes (Bakker et al. 2008;
Lenhart et al. 2011).

Likewise, the difference in land use change between
the upper and lower part of the ECW showed a significant
effect on the simulations of the nitrate loads by the SWAT
versus the proposed method. The SWAT and the new
method estimated high loads of nitrate in the central and
upper part of the ECW. This occurred because agriculture
is the major type of land use, representing up to 80% of
the total land, which reflects the impact of agricultural
activities on surface water quality (Schilling and Spooner
2006; Laurent and Ruelland 2011). Driscoll et al. (2003)

Fig. 9 Spatial distribution map of the ECW showing loads of a TSS and b nitrate
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found that rivers within watersheds in New York and
New England received a significant proportion (from 6
to 45%) of total nitrogen (N) from runoff from agricul-
tural land use. As shown in Fig. 9 b, nitrate load in sub-
watersheds ranged from 75 to nearly 30,000 kg/month.
The northern part of the ECW had a nitrate load greater
than the sub-watershed in the southern extent of the
watershed. Therefore, both types of modeling results
confirmed that the high potential loads of nitrate in the
ECWare primarily associated with agricultural activities,
such as fertilizer input and manure application. Hence,
results of the evaluation of the predictive reliability of the
watershed vulnerability assessment method revealed that
the proposed approach is suitable as a decision-making
tool to predict watershed health.

Conclusions

In this research, the primary parameters affecting water-
shed vulnerability were identified based on the AHP
technique. The vulnerability evaluation of each water-
shed was used to create maps showing the relative
vulnerabilities of the basins. This method showed a
significant difference between the basins in their vulner-
ability to pollution in the ECW. The basins in the upper
portion of study area were classified as likely to have
very high vulnerability to potential contaminants. Sim-
ilarly, the basins in the central part were identified as
highly vulnerable to contamination based on their aver-
age value of vulnerability. The low and very low range
of vulnerability was observed only in the southern por-
tion of the ECW. To test the reliability of the proposed
approach, the SWAT model was used. In this study,
some parameters, such as total suspended solids (TSS)
and nitrate, were used to calibrate and validate the
SWAT model. The monthly TSS simulated by the
SWAT model showed deficient values of the R2 coeffi-
cient, reaching a correlation of 67%, with an NSE of
0.64, indicating a weak correspondence between the
observed and calculated values. For the nitrate load
modeling results, statistical analysis of the calibration
for the period from 2012 to 2016 showed good adjust-
ment, with values of 0.74 and 0.69 for R2 and NSE,
respectively. Hence, these values are statistically accept-
able to predict the water quality status of the ECW. Both
methods produced good results for predicting water
quality. Hence, results of the evaluation of the predictive
reliability of the watershed vulnerability assessment

method revealed that the proposed approach is suitable
as a decision-making tool to predict watershed health.
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