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Abstract The aim of this study was to quantify heavy
metal pollution for environmental assessment of soil
quality using a flexible approach based on multivariate
analysis. The study was conducted using 241 soil sam-
ples collected from agricultural, urban and rangeland
areas in northwestern Iran. The heavy metals causing
soil pollution (SP) in the study area were determined.
The efficiency of principal component analysis (PCA)
and discriminate analysis (DA) were compared to iden-
tify the critical heavy metals causing SP. Fourteen soil
pollution indices were developed using non-linear and
linear scoring equations and different integration
methods. The indices were validated using the integrat-
ed pollution and potential ecological risk indices and by
comparing their ability to detect soil pollution risk
levels. Chromium (Cr), lead (Pb), Zinc (Zn) and copper
(Cu) were identified as the significant pollutant elements
using PCA, and the main pollutant elements identified
using DA comprised cadmium (Cd), Zn and Pb. DA
yielded a better data set for indexing SP and indicated
high pollution risks for Cd > Pb > Zn. Sources of heavy
metals were reliably identified using PCA, variation
assessment and interrelationship evaluation of soil var-
iables. Cr, nickel (Ni) and cobalt (Co) were found to
have geogenic sources, and anthropogenic sources con-
trolled the accumulation of Pb, Zn, Cd and Cu in soil.

Linear function and additive integration were the best
scoring and integrating methods for indexing HMP. The
multivariate analysis provided a reliable and rapid meth-
od for indexing and mapping soil HMP.
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Abbreviations
ADS Anthropogenic data set
ANOVA Analysis of variance
Cd Cadmium
CEC Cation exchange capacity
Co Cobalt
Cr Chromium
Cu Copper
CV Coefficient of variation
DA Discriminant analysis
DF Discriminate function
EC Electrical conductivity
Ei
r Ecological risk factor

GDS Geogenic data set
HMP Heavy metal pollution
HPDS High pollutant data set
IPI Integrated pollution index
LSD Least significant difference
MDS Minimum data set
Ni Nickel
Pb Lead
PC Principal component
PCA Principal component analysis
PI Pollution index
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RI Potential ecological risk index
SOC Soil organic carbon
SP Soil pollution
SPI Soil pollution index
TDS Total data set
Zn Zinc

Introduction

Heavy metal accumulation in soil is a threat to bio-
ecosystems (Chen et al. 2018; Mishra et al. 2019; Shi
et al. 2018). The reduction of soil quality (SQ) and soil
degradation caused by excessive concentrations of
heavy metals in soil have been well studied (e.g.
Khalid et al. 2017; Wang et al. 2018; Zhang et al.
2018). High concentrations of heavy metal in soil cause
global concern regarding the detrimental and toxic effect
of these elements (Herath et al. 2017; Timofeev et al.
2019). The accumulation of heavy metals in soil, water,
air and sediment could have natural (geogenic) or an-
thropogenic sources (Alvarez et al. 2017). The geolog-
ical component of the Earth’s surface can affect the
concentration of heavy metals (Liu et al. 2015).

Volcanic eruptions, weathering and erosion of min-
eral deposits and pedogenic processes are the main
geogenic factors causing heavy metal pollution (HMP)
in soil (Alvarez et al. 2017; Guan et al. 2018; Hu et al.
2018; Yalcin et al. 2007). Industrial, agricultural and
urban activities are the three major anthropogenic
sources of intensive soil pollution (SP). Smelting facto-
ries, industrial complexes, mining, traffic and cities are
the most frequently reported sources of HMP in the soil
and environment (Cao et al. 2010; Hou et al. 2013;
Jamal et al. 2018). Differentiation of anthropogenic
and geogenic contributions by heavy metal sources in
soil is complicated. The composition of parent materials
and anthropogenic activity can both affect the accumu-
lation of heavy metals in a region. Multivariate analysis
such as principal component analysis (PCA) and evalu-
ation of the variation of elements are practical methods
for determining the source of heavy metals (e.g. Cunha
et al. 2019; Ding et al. 2017; Esteki et al. 2017;
Rodríguez et al. 2008). Soil properties such as organic
matter content, pH and clay content can affect the accu-
mulation of heavy metals in soil (Fernández et al. 2018).
Some of these properties are controlled by anthropogen-
ic activity and correlation analysis of heavy metals with
soil attributes can also help to verify the source of HMP.

The quantification of SP is based on laboratory mea-
surements and the calculation of soil pollution indices.
The commonly used indices for assessing SP are includ-
ing the integrated pollution index (IPI), potential eco-
logical risk index (RI), hazard index, geo-accumulation
index and carcinogenic risk (Jiang et al. 2018; Khalid
et al. 2017; Singh et al. 2018; Wu et al. 2018). All
conventional pollution indices are calculated with re-
spect to specific parameters such as the geochemical
background concentration of heavy metals, pre-
industrial reference, specific toxicity response coeffi-
cient or the daily intake of elements into the human
body (Kowalska et al. 2018; Sun et al. 2019), which
may result in shortcoming in a situation that these pa-
rameters are not appropriately determined (Mazurek
et al. 2017). In addition, considerable time and cost are
usually required to determine these parameters for all
pollutant elements. Accordingly, a quick and reliable
framework for indexing HMP based on multivariate
analysis can provide a practical tool for monitoring
and controlling the level of heavy metals in soil.

Accurate data collection is considered as the
most important step for indexing and monitoring
soil threats (Askari and Holden 2014). An appro-
priate minimum data set (MDS) provides rapid and
precise data for a cost-effective assessment of SP
(Li et al. 2019; Raiesi 2017). PCA is a commonly
used approach to determine a MDS in soil re-
searches (Askari and Holden 2015). Discriminant
analysis (DA) has also the potential for determin-
ing essential variables (Nosrati 2013). DA has
been mostly used to categorize the soil variables
among land uses (e.g. Hamidi Nehrani et al. 2020;
Nosrati 2013), while its efficiency for assessing
the pollution risk of soil heavy metals has not
been researched. The evaluation of multivariate
technique efficiency for identifying the most criti-
cal and high pollutant elements is required for
attaining a reliable assessment of HMP in soil.

Zanjan Province in northwestern Iran is an important
region for agricultural production. Several studies have
revealed considerable HMP in Zanjan’s soil that can
pose a main threat to the health of humans and animals
(e.g. Naderi et al. 2017; Zamani et al. 2015). Zn, Cd, Pb,
Ni, Co, Cu and Cr are commonly reported as causes of
SP in this province (e.g. Jamal et al. 2018; Maleki et al.
2014; Naderi et al. 2017; Zamani et al. 2015). A flexible
framework for indexing SQ was employed by Askari
and Holden (2014 and 2015) and Masto et al. (2008).
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This research evaluated the potential to deploy the
framework to index the threat of HMP in soil. In this
framework, the quantification of SP is based on the
selection and interpretation of soil variables and their
integration into a single index using linear and non-
linear functions (Askari and Holden 2015). To the best
of our knowledge, the ability of this framework for
quantifying HMP in a polluted land, such as Zanjan
Province, has not been researched. Despite considerable
literature on the use of multivariate analysis, especially
PCA, there has not been any study that compares the
efficiency of PCA and DA for identifying critical heavy
metals. In this study, the efficiency of multivariate anal-
ysis was evaluated for indexing SP and for identifying
the geogenic and anthropogenic sources of heavy
metals. The objectives were to select the best multivar-
iate techniques (DA and PCA) for identifying the critical
pollutant elements as a MDS, to evaluate the capability
of multivariate analysis for determining the potential
source of heavy metals (anthropogenic or geogenic) in
the soil and to select the best scoring and integrating
methods for indexing SP.

Materials and methods

Site characterization and experimental design

The study was conducted in Zanjan Province in
northwestern Iran, located at 36° 20′ N to 36° 45′
N latitude and 48° 19′ E to 48° 54′ E longitude
(Fig. 1; ca. 2000 km2). The average annual precip-
itation is 310 to 360 mm, and the mean daily tem-
perature is 15.7 °C. The soil in the study was clas-
sified according to USDA Soil Taxonomy as
Inceptisol (Soil Survey Staff 2014). Agriculture (ir-
rigated and rained farming), rangeland and urban
areas are the major land uses in Zanjan Province.
Therefore, these three land uses were used to collate
soil samples for this study. Sampling was carried out
on two grids at intervals of 3 km for agricultural
areas and rangeland and 1.5 km in the urban area.
The sampling intervals were greater for agricultural
land and rangeland because of the larger areas of
these two types of land use (Fig. 1). A total of 241
samples were collected at depths of 0–10 cm, in-
cluding 137 samples under agriculture, 77 samples
under rangeland and 27 samples in urban.

Laboratory analysis

Of the potential pollutant elements in the soil, Cd, Zn,
Pb, Ni, Cr, Co and Cu were reported in the study area
(Eslami et al. 2007; Khodadadi et al. 2013;
Parizanganeh et al. 2012; Zamani et al. 2015). Thus,
the concentration of Cd, Zn, Pb, Ni, Cr, Co and Cu were
determined according to USEPA 3050B (USEPA 1996).
Soil samples were air-dried and sieved prior to chemical
analysis. An atomic absorption spectrometry (Perkin-
Elmer: AA 200) was employed to determine Zn, Pb,
Co, Cu, Cr and Ni and a Rayleigh; WF-1E graphite
furnace atomic absorption was used to determine Cd.
Soil organic carbon (SOC) was determined using
Walkley–Black wet dichromate oxidation method
(Nelson and Sommers 1996). Hydrometer method was
used to measure particle size distribution (Gee and Or
2002). An electrical conductivity (EC) meter and a pH
meter were employed to determine soil EC (Rhoades
1996; Amanifar et al. 2019) and soil pH (Thomas 1996).
Cation exchange capacity (CEC) was measured using
ammonium acetate method (Chapman 1965). The re-
sults were an average of three replicates.

Critical pollutant elements

The efficiency of PCAwas compared with the ability of
DA to identify a minimum data set for assessing SP.
PCA was performed on standardized values of heavy
metals to determine the high pollutant data set (HPDS).
The principal components (PCs) with eigenvalues of
greater than one were used to determine the critical
elements (Askari and Holden 2014). The interpretability
of components was increased by performing a Varimax
rotation (Govaerts et al. 2006). Varimax rotation, which
is an orthogonal rotation, transforms the loadings of PCs
to maximize the correlations between variables and PCs
(Forina et al. 1989; Hamidi Nehrani et al. 2020). The
minimum data set was identified using loading values of
components, and 10% of the highest loading value was
used for selecting pollutant elements (Rezaei et al.
2006). The elements with a low loading value and a
high correlation coefficient were eliminated (Hamidi
Nehrani et al. 2020; Raiesi 2017), and the first HPDS
was identified using PCA (HPDS-1).

To perform the DA on the measured heavy metals,
soil samples were classified into three levels of pollution
risk (low, moderate and high) according to the suggested
critical limits for heavy metals (Table 1) as determined
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by the Department of Environment in Iran (DEIRI
2013). The pollution risk levels were used as grouping
categories and measured heavy metals were the inde-
pendent variables. A quadratic discriminate function
and within-group covariance matrices were employed
to perform DA using SPSS v. 21.0 (SPSS Inc.). The
stepwise approach was applied to normalized value of
elements to identify the variables discriminating among
pollution risk levels (Nosrati 2013). The Wilks lambda
method was used for the stepwise DA. The elements
that were significantly different among pollution risk
classes (p value < 0.05) and minimized Wilks lambda
value were identified as second HPDS by DA (HPDS-
2).

Heavy metal sources

An exploratory analysis was conducted in three steps to
identify heavy metals sources (anthropogenic or
geogenic). In the first step, the interrelationship among
elements was explored using principal component hav-
ing eigenvalues of greater than one, as calculated in
“Critical pollutant elements”. A plot of loading values
for selected components and the correlation matrix of
the heavy metals were used (Rodríguez et al. 2008). In
the second step, the coefficient of variation (CV) was

calculated for the elements and used as an indication of
heavy metal variability. The elements with CVs of
greater than 50% (representing large variability) are
usually affected by anthropogenic sources (Qishlaqi
et al. 2009). Eventually, the relationship between soil
properties and heavy metals was evaluated.

Soil pollution indices

The SP indices were developed using five data sets
including HPDS-1 (identified using PCA), HPDS-2
(determined using DA), anthropogenic data set (ADS),
geogenic data set (GDS) and all measured elements as
the total data set (TDS). The indexing approach for
developing each soil pollution index (SPI) was summa-
rized in Fig. 2. A “less is better curve”was used to score
the variables (Andrews et al. 2004). Non-linear and
linear equations were used for scoring the elements.
The non-linear scoring was done based on Eq. 1:

SNL ¼ 1= 1þ x=x0ð Þ b̂ð Þ ð1Þ
where SNL is the non-linear score of elements, x0 is

the mean value of the elements, x is the value of heavy
metals and b is the slope (+ 2.5) for a “less is better”
curve (Askari and Holden 2014). The linear scores
were calculated using Eq. 2:

Fig. 1 Location of study area and sampling points
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SL ¼ 1− x−lð Þ= h−lð Þð Þ ð2Þ
where SL is the linear score, x is the element value, h

is the maximum value and l is the minimum value and of
heavy metals (Askari and Holden 2015).

Additive (Eq. 3 for all four data sets; Fig. 2) and
weighted additive (Eq. 4 for TDS and HPDS-1; Fig. 2)
methods were used to integrate the scores of elements
into indices (Andrews et al. 2002).

SPIA ¼ ∑n
i¼1Si=n ð3Þ

SPIW ¼ ∑n
i¼1WiSi ð4Þ

where SPIA is additive index, SPIw is weighted addi-
tive index, Si is the variable score, n is the number of
elements in each data set and Wi is the weighting value
of heavy metals (Askari and Holden 2015).

The ratio of the element’s communality and the sum
of communalities calculated in PCAwere used to weight
the indicators for the TDS (Askari and Holden 2014).
The elements from the HPDS-1were weighted using the
variance of each selected component in PCA normal-
ized to unity (Liu et al. 2018). Finally, fourteen SPIs
were developed in this study (Fig. 2).

Validation of the SPI

RI (Hakanson 1980) and IPI (Chen et al. 2005), as
the best-known pollution indices, were used to
judge the efficiency of indices. RI and IPI are
two conventional tools for risk assessment of soil
heavy metals (Tume et al. 2018). Therefore, they

were employed to validate SPIs developed in this
study. Equations 5, 6 and 7 were used to calculate
RI as follows:

Ci
f ¼

Ci
n

Ci
0

ð5Þ

Ei
r ¼ Ti

r � Ci
f ð6Þ

RI ¼ ∑n
i¼1E

i
r ð7Þ

where Ci
f is the pollution factor of each indicator

(element i), Ci
0 is the concentration of element i and Ci

n
is the corresponding background value (Kusin et al.
2017; Shen et al. 2017). Ei

r is the potential ecological

risk factor of each indicator; Ti
r is the toxic-response

factor of each indicator (Zn:1, Pb:5, Cr:5, Ni:5, Cd:30)
(Suresh et al. 2012).

IPI was determined by averaging the values of the
pollution index (PI) calculated using Eq. 8.

PIi ¼ Ci

Bi
ð8Þ

where Ci is the content of heavy metals, Bi is the
background value of metals and PIi is pollution index
for each element (Chen et al. 2005). The background
concentrations of heavy metals were estimated accord-
ing to the instruction presented by Cabrera et al. (1999).
To calculate Bi, 53 samples were collected for the nat-
ural region (The areas far from human activities and
industrial zones) and geometric mean of soil heavy

Table 1 Soil pollution risk levels of heavy metals. These levels were determined by Department of Environment in Iran (DEIRI 2013)

Land use Soil pollution risk Cd
(mg kg−1)

Cr
(mg kg−1)

Co
(mg kg−1)

Cu
(mg kg−1)

Pb
(mg kg−1)

Ni
(mg kg−1)

Zn
(mg kg−1)

Agriculture low < 5 < 110 < 50 < 200 < 75 < 110 < 360

moderate 5–13 110–765 50–200 200–1950 75–375 110–710 360–6800

high > 13 > 765 > 200 > 1950 > 375 > 710 > 6800

Rangeland low < 8 < 480 < 50 < 500 < 165 < 530 < 5620

moderate 8–24 480–1230 50–200 500–3930 165–380 530–1410 5620–9380

high > 24 > 1230 > 200 > 3930 > 380 > 1410 > 9380

Urban low < 2 < 165 < 50 < 400 < 80 < 155 < 850

moderate 2–10 165–580 50–150 400–1320 80–380 155–500 850–3500

high > 10 > 580 > 150 > 1320 > 380 > 500 > 3500
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metals were considered as the background value of
metals (Azimzadeh and Khademi 2013). The IPI values
were classified into non-pollution (IPI ≤ 2), moderate
level of pollution (1 < IPI ≤ 2), high level of pollution
(2 < IPI ≤ 5) and extremely high level of pollution (IPI >
5) (Chen et al. 2005; Meza-Montenegro et al. 2012).

Values of the potential ecological risk factor and
index (Ei

r and RIÞ were also categorized based on their
ecological risk (Men et al. 2018) and presented in Ta-
ble 2. Finally, the SPIs were verified by assessing their
correlation with IR and IPI, and the best SPI was de-
ployed for the evaluation of HMP. Furthermore, the
differentiation ability of SPIs was compared among
pollution risk classes presented in Table 1.

Statistical analysis and spatial distribution of HM

The analysis of histograms and Kolmogorov–Smirnov
test were utilized to examine the normality of heavy
metals, and non-normal variables were log-transformed.
The homogeneity of variance was tested using Levene’s
test. The analysis of variance (ANOVA) was carried out
with SPSS 20.0 software (Ho 2013) to compare mean
differences with 95% confidence based on the least
significant difference (LSD). Scoring and indexing were
performed using Microsoft Excel (Frye 2015). Spatial
distribution of SPI was determined and mapped using
ordinary Kriging (The exponential semi-variance mod-
el) interpolation method in GIS software.

Dataset Scoring Integrating Index

TDS

SPI-1

SPI-2

SPI-3

SPI-4

Additive

Weighted Additive 

Additive

Weighted Additive 

Non-linear

Linear

HPDS-1

SPI-5

SPI-6

SPI-7

SPI-8

Additive

Weighted Additive 

Additive

Weighted Additive 

Non-linear

Linear

HPDS-2

SPI-9

SPI-10

Additive

Additive

Non-linear

Linear

ADS

GDS

SPI-11

SPI-12

Additive

Additive

Non-linear

Linear

SPI-13

SPI-14

Additive

Additive

Non-linear

Linear

Fig. 2 The producer for
developing soil pollution indices
using five datasets (TDS, HPDS-
1, HPDS-2, ADS and GDS)
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Results

The statistical parameters of soil properties measured in
this study are presented in Table 3. Pb ranged from 40 to
1358mg kg−1, Zn from 86 to 1354 mg kg−1, Cu from 11
to 353 mg kg−1, Cd from 0.24 to 4 mg kg−1, Co from 17
to 36 mg kg−1, Ni from 13 to 87 mg kg−1 and Cr from 7
to 66mg kg−1. Themean concentrations of heavymetals
were in the order of Zn > Pb > Ni > Cu > Co > Cr > Cd
and were higher than their corresponding natural back-
ground concentrations. The background contents of
0.25, 57.80, 91.80, 26.99, 40.74, 19.99 and
24.18 mg kg−1 were determined for Cd, Pb, Zn, Cu,
Ni, Cr and Co, respectively.

Identifying critical elements using PCA

A total of 74.3% of the total variance of original vari-
ables were explained using three PCs having eigen-
values of greater than one (Table 4). The most effective
elements in each component were identified based on
the loading matrix of selected components. In the first
PC, which explained 38.8% of the variance, the loading
values of Cr and Ni were within 10% of the highest
value. A significant correlation was found between them
(Table 5; r = 0.74). Thus Cr, which had the highest
loading value, was chosen from PC1. In the second
component, which described 20.8% of the total vari-
ance, Pb and Znwere within the 10% of highest loading.
Their correlation coefficient value was less than 0.7
(Table 5). Therefore, both Pb and Zn were selected from
the PC2. Cu was the only element within the 10% of the
highest loading value of the third component and was
therefore selected from PC3. Cr, Pb, Zn and Cu were
identified as the HPDS-1 using PCA.

Identifying critical elements using DA

DA identified two significant functions for differentiat-
ing heavy metals based on their pollutant risk (Table 6).
The first discriminate function (DF) explained 94.4% of
the total variance, and the second DF described 5.6% of
the variance. Cu, Ni, Cr and Co were removed through
stepwise removal approach, and Zn, Pb and Cd, which
minimized Wilks lambda value and highly correlated
with DFs, were identified as elements having the most
pollutant risk (Table 7). Therefore, HPDS-2 comprised
Cd, Zn and Pb. The canonical discriminant coefficients
of elements were presented in Table 8. Cd had higher
discriminant coefficient than Zn and Pb (Table 8).

Table 2 The risk classification of the potential ecological risk factor (Ei
r) and potential ecological risk index (RI) (Men et al. 2018)

Potential ecological risk class
Ei
r

Potential ecological risk index (RI) RI

Low potential ecological risk
Ei
r < 40

Low ecological risk RI ≤ 150

Moderate potential ecological risk
40 < Ei

r ≤ 80
Moderate ecological risk 150 < RI ≤ 300

Considerable potential ecological risk
80 < Ei

r ≤ 160
Considerable ecological risk 150 < RI ≤ 600

High potential ecological risk
160 <Ei

r ≤ 320
Very high ecological risk RI > 600

Very high potential ecological risk
Ei
r ≥ 320

Table 3 Statistical parameters of measured soil properties

Variable Mean Minimum Maximum Std %CV

Cu (mg kg−1) 40.35 11.25 352.50 31.13 77.14

Cd (mg kg−1) 0.97 0.24 4.11 0.81 83.87

Zn (mg kg−1) 186.99 86.25 1353.75 156.47 83.68

Pb (mg kg−1) 89.62 40.00 1357.50 99.59 111.12

Ni (mg kg−1) 48.29 12.75 86.75 14.28 29.56

Cr (mg kg−1) 23.63 7.00 65.75 9.17 38.79

Co (mg kg−1) 24.62 17.00 35.75 3.49 14.17

EC (dS m−1) 0.47 0.12 4.24 0.69 145.82

pH 7.37 6.92 7.80 0.19 2.55

CEC (cmol
kg−1)

19.01 8.84 27.27 4.35 22.87

OM % 1.64 0.39 6.80 1.39 84.53

Silt % 41.83 19.95 74.01 12.60 30.12

Sand % 38.70 8.30 73.40 16.26 42.02

Clay % 19.47 2.04 36.95 8.27 42.46

Std standard deviation, CV coefficient of variation, EC electrical
conductivity, CEC cation exchange capacity, OM organic matter
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Source of heavy metals

The measured elements were categorized into two
groups based on the loading plot of three PCs as pre-
sented in Fig. 3. Group 1 comprised Cd, Zn, Pb and Cu,
and group 2 comprised Ni, Cr and Co. The elements in
group 2 had a low and negative correlation with the
elements in group 1. Cadmium correlated significantly
(Table 5; r ≥ 0.4) with Cu, Zn and Pb. A high correlation
was also noted between Ni and Cr (Table 5; r = 0.74)
and Cr and Co (r = 0.59). The correlation results be-
tween heavy metals and other soil properties showed
that Zn, Cd and Cu correlated significantly and positive-
ly with EC and organic carbon (Table 9; r > 0.47). The
CVs for Cu, Cd, Zn and Pb exceeded 50% (Table 3),
indicating considerable variability so that these elements
could have been affected by anthropogenic activity (Fan
and Wang 2017; Yongming et al. 2006). Ni, Cr and Co
had lower CVs (less than 50%), which could represent

the effect of geogenic rather than anthropogenic factors
(Table 3). Therefore, Ni, Cr and Co were identified as
GDS, and Zn, Pb, Cd and Cu were identified as ADS in
the study soil.

Soil pollution indices

The procedure for developing fourteen SPIs using
five data sets (TDS, HPDS-1, HPDS-2, ADS and
GDS) was summarized in Fig. 2. Cu had the highest
(Table 4; 0.158) and Cd had the lowest (Table 4;
0.118) weight and contribution to the weighted SPI
developed using TDS (Fig. 2; SPI-2 and SPI-4). For
weighted SPIs calculated by HPDS-1 (Fig. 2; SPI-6
and SPI-8), Cr had the highest weight (Table 4;
0.408) and Cu had the lowest weight (Table 4;
0.154). The weights of SPI-6 and SPI-8 were calcu-
lated according to Eq. 9.

Table 4 Result of principal component analysis

PCs parameters PC1 PC2 PC3

Eigenvalue 2.72 1.46 1.03

Variance (%) 38.81 20.81 14.68

Cumulative (%) 38.81 59.62 74.30

Indicators Eigenvectors Communalities TDS Weight HPDS-1 Weight

Cr 0.902 − 0.081 − 0.058 0.8 0.154 0.408

Ni 0.878 − 0.097 − 0.039 0.641 0.123

Co 0.718 − 0.042 − 0.315 0.756 0.145

Pb − 0.078 0.878 0.065 0.78 0.150 0.218

Zn − 0.074 0.856 0.138 0.782 0.150 0.218

Cu − 0.086 − 0.015 0.89 0.824 0.158 0.154

Cd − 0.198 0.342 0.697 0.617 0.118

Italicized loading values correspond to elements selected from each component

Table 5 Correlation matrix of heavy metals

Indicators Cu Cd Zn Pb Ni Cr Co

Cu 1

Cd 0.509** 1

Zn 0.339** 0.470** 1

Pb 0.261** 0.423** 0.424** 1

Ni − 0.128* − 0.259* − 0.078 − 0.237** 1

Cr − 0.159* − 0.269** − 0.091 − 0.221** 0.737** 1

Co − 0.352** − 0.337* − 0.164* − 0.174** 0.486** 0.585** 1

Italicized loading values correspond to elements selected from each component

**Correlation is significant at p < 0.01 (2-tailed); *Correlation is significant at p < 0.05 (2-tailed)
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SPI ¼ 0:408 Crð Þ þ 0:218 Pbð Þ þ 0:218 Znð Þ
þ 0:154 Cuð Þ ð9Þ

The SPIs ranged from 0 to 1. The increase of SPI
value indicated a better soil condition and less HMP.
The SPI value closer to zero showed a high risk of HMP.

Validating and mapping the SPI

The average values of PI, Ei
r, IPI and IR in each land use

were presented in Table 10. The IPI values varied from0.96
to 3.37 under agricultural area, 1.01 to 3.21 under rangeland
and 2.15 to 6.65 in the urban area. RI valueswere in a range
of 47.66 to 374.82 in agricultural land, 196.56 to 518.15 in
the urban area and 65.31 to 5.11.15 in rangeland. The urban
land use had the greatest IPI value of 3.35, followed by an
IPI value of 1.58 in agricultural land use and 1.54 in
rangeland. The average PI values > 2 were observed for
Cd, Zn, Pb and Cu under the urban area and for Cd in both
agricultural area and rangeland. Medium level of pollution
(Table 10; 1 < PI < 2) was noted for other metals in agri-
cultural land and rangeland. Cd indicated a considerable
potential ecological risk (Ei

r > 80Þ in three land uses.
Regarding the RI values, a high ecological risk for the
urban area (Mean RI > 300) and low ecological risk for
agricultural land and rangeland (Mean RI < 150) were ob-
served. The correlation matrix of SPIs with IPI and RI was
shown in Table 11. SPI-1, SPI-2, SPI-10, SPI-11 and SPI-
12 highly correlated with IPI (Table 11; r> 0.9). SPI-5 and

SPI-9 had also a good correlation with IPI (Table 11; r>
0.8). A high correlation with RI (r> 0.9) was obtained for
SPI-10 and SPI-12. The correlation coefficients of SPI-9
and SPI-11 with RI were also higher than 0.8. The differ-
entiation results of SPIs among the pollution risk levels
determined according to DEIRI (2013) were summarized
in Table 12. Except for the SPI-13 and SPI-14 (developed
using GDS), all other indices were significantly different
among SP levels (Table 12; p < 0.01). Higher F-values
were noted for the indices developed using HPDS-2 and
ADS, particularly for the indices calculated using linear
function (Table 12; SPI-10 and SPI-12).

The best discriminating capability (F value = 103)
and the highest correlation with both IPI and IR (r >
0.92) were obtained for SPI-10. Therefore, SPI-10 was
suggested as a reliable index for evaluating HMP in
Zanjan Province. HMP in the study area was mapped
(Fig. 4) using 95% confidence intervals of pollution risk
levels for SPI-10. The value of 0.79 was identified as the
cut-off value of SPI-10 between the high and medium
risk of SP, and the value of 0.92 was determined as the
cut-off point between medium and low level of HMP.
Thus, the values ≥ 0.92 were identified as a good soil
condition (low HMP), and the values of less than 0.79
were considered as a poor soil condition (high HMP).

Discussion

Seven soil heavy metals (Cd, Zn, Pb, Cr, Ni, Cu and Co)
that were identified as potential elements causing SP in
Zanjan Province in Iran (Eslami et al. 2007; Jamal et al.
2018; Khodadadi et al. 2013; Maleki et al. 2014;

Table 6 Summary of discriminate functions

Function Eigenvalue Variance (%) Cumulative (%) Canonical correlation

1 2.00 94.37 94.37 0.82

2 0.12 5.63 100.00 0.33

Table 7 Absolute corre-
lation between each var-
iable and discriminant
functions

*Correlation is signifi-
cant at p < 0.05 (2-tailed)
aThis variable not used in
the analysis

Variable Function

1 2

Pb 0.88* − 0.337
Zn 0.589* 0.361

Nia − 0.200* − 0.145
Cra − 0.173* − 0.173
Cd 0.263 0.836*

Cua 0.039 0.286*

Coa − 0.142 − 0.241*

Table 8 Canonical dis-
criminant function
coefficients

Variable Function

1 2

Cd 0.170 1.153

Pb 0.013 − 0.008
Zn 0.004 0.003

Environ Monit Assess (2020) 192: 162 Page 9 of 17 162



Zamani et al. 2015) were measured and considered for
development of SPIs for rangeland, urban areas and
agricultural land. These three land uses are the dominant
types of land use in Zanjan. A lead and zinc smelting
factory, mines, industrial complexes, traffic and agricul-
tural activities were the most likely sources of HMP in
the study area (Naderi et al. 2017; Zamani et al. 2015).

Critical elements identified by PCA and DA

Three PCs with eigenvalues of greater than one, which
explained 74% of the total variance, were used to

identify Cr, Pb, Zn and Cu as HPDS-1. PCA is based
on the correlation matrix of the soil variables and the
interrelationship of elements is the main factor for re-
moving less important variables (Raiesi 2017; Rezaei
et al. 2006). Although PCA is a conventional approach
for removing redundant data (Askari and Holden 2015),
some failures have been reported when interpreting
statistical parameters to identify the most proper vari-
ables (Rossi et al. 2009). For instance, the importance of
each element and their degree of pollution risk are not
considered using PCA, and it may result in a failure to
identify essential elements for indexing SP.

Cu

Variable

Cd
Co
Cr

Ni

Pb
Zn

Cr

Ni

Co

Zn

Pb

Cu

Cd
PC

1

PC3

Fig. 3 The loading plot of three
principal components

Table 9 Correlation coefficients between heavy metals and soil properties

Soil properties Cu Cd Zn Pb Ni Cr Co

EC 0.589** 0.649** 0.614** 0.371** − 0.243* − 0.214 0.345**

pH − 0.471** − 0.383** − 0.331** − 0.273* 0.242* 0.107 0.288*

CEC − 0.116 − 0.242* − 0.166 0.238* 0.389** 0.392** 0.411**

OM 0.521** 0.541** 0.467** 0.291* − 0.074 − 0.014 − 0.179
Silt − 0.048 − 0.208 − 0.114 − 0.217 0.417** 0.557** 0.375**

Sand 0.045 0.267* 0.185 0.246* − 0.597** − 0.651** − 0.410**
Clay − 0.094 − 0.260* − 0.369** − 0.302** 0.370** 0.223 0.058

EC electrical conductivity, CEC cation exchange capacity, OM organic matter

**Correlation is significant at p < 0.01 (2-tailed); *Correlation is significant at p < 0.05 (2-tailed)
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DA indicated the importance of Cd > Pb > Zn as
HPDS-2 for assessing SP (Table 8). The DA results are
consistent with those of Parizanganeh et al. (2012) and
Zamani et al. (2015), who found that Cd, Zn and Pb
were key indicators for the evaluation of SP in Zanjan
Province. The maximum values of Cd, Zn and Pb
(Table 3) were higher than their maximum allowable
thresholds determined by the World Health Organiza-
tion and Food and Agricultural Organization. The max-
imum allowable limits reported for Cd, Zn and Pb were
3, 100 and 300 mg kg−1, respectively (Khalid et al.
2017). Cd had the highest level of pollution (PI > 3)
and ecological risk (Ei

r > 90) under all three land uses.
The urban and industrial areas were highly polluted by
Cd, Zn and Pb (Table 10). These results confirmed the
superiority of DA over PCA for best identifying pollut-
ant elements in Zanjan soil.

Sources of heavy metals

The scatter plots of three PCs (Fig. 3) revealed spatial
adjacency for Cr, Co and Ni, which had higher loading
values in the PC1 (Table 4). These elements had small
coefficients of variation (Table 3; CV < 40%) and were
highly correlated (Table 5). Zn, Pb, Cu and Cd were also
spatially close together (Fig. 3). The higher loading
values in PC2 were for Zn and Pb and in PC3 were for
Cu and Cd (Table 4). A similar grouping for soil heavy
metals was reported by Rodríguez et al. (2008) and
Qishlaqi et al. (2009). Cd, Cu, Zn and Pb correlated
significantly, and these elements had CV > 70%. High
correlations are usually reported among elements that
have a common source of pollution (Hu et al. 2018; Li
and Feng 2012; Zhang et al. 2018).

Heavy metals with geogenic sources have relatively
smaller CVs than elements that accumulate in soil

owing to anthropogenic activity (Yongming et al.
2006). Many studies have used a high CV to identify
heavy metals, having anthropogenic sources in soil
(Ding et al. 2017; Fan and Wang 2017). Because Cr,
Co and Ni had low and negative correlations with Pb,
Zn, Cd and Cu, it could be inferred that the total con-
centrations of these two sets of heavy metals were
controlled by different factors. In addition, Zn, Cd and
Cu (r > 0.47) correlated significantly with EC and or-
ganic carbon (Table 9). SOC and EC are more likely to
be affected by human activity compared with the other
soil properties measured in this study (Husson et al.
2018; Schweizer et al. 2018). The amount of Cr, Ni
and Co in the soil was usually controlled by pedogenic
and geogenic factors such as weathering of calcareous
parent-material. Anthropogenic factors less affected
their contents in the soil (Qishlaqi et al. 2009;
Rodríguez et al. 2008).

Comparison of the concentration of heavy metals and
soil standard ranges reported for Iranian soil resource
quality guidelines (DEIRI 2013) and the globally ac-
cepted standard values of heavy metals in non-polluted
soils (Sherameti and Varma 2015) showed that the Cu,
Cd, Pb and Zn concentrations were higher than their
normal range for non-polluted soil. High pollution by
Cd, Zn, Pb and Cu was also confirmed by considering
their Ei

r and PI values (Table 10). These results con-
firmed the efficiency of the techniques used to identify
anthropogenic or geogenic sources of heavy metals in
this study. Lead and zinc smelting and mining could be
the main sources for Pb and Zn accumulations. The
increases of Cu and Cd might be related to urban and
agricultural activity such as traffic and the application of
phosphorus fertilizer (Li et al. 2009). Nicholson et al.
(2003) concluded that agro-genic activity results in the
accumulation of Cd and Cu in soil.

Table 10 The average values of PI, Ei
r, IPI and IR under each land use

Land use Factor Cu Cd Zn Pb Ni Cr Co IPI RI

Agriculture PI 1.39 3.01 1.83 1.19 1.29 1.31 1.03 1.58

Ei
r

6.96 90.27 1.83 5.97 6.46 2.61 – 114.09

Rangeland PI 1.21 3.33 1.60 1.39 1.09 1.08 1.04 1.54

Ei
r

6.07 99.81 1.60 6.97 5.46 2.16 – 122.08

Urban PI 2.81 9.86 4.35 3.81 0.91 0.85 0.88 3.35

Ei
r

14.07 295.91 4.35 19.04 4.56 1.70 – 339.62
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Indexing and mapping soil pollution

Of the requirements for monitoring soil condition, cost,
reliability and the simplicity of sampling and measurement
are mentioned as important factors, which can affect the
practicality of assessment methods (Askari and Holden
2014 and 2015). This study evaluated a simple yet com-
prehensive indexing framework that could be applied to
identify the critical elements and integrate them into a SPI.
Unlike the conventional soil pollution indices, such a
framework avoids the possibility of the unsuitable choice
of specific factors such as the geochemical background
concentration, pre-industrial reference or specific toxicity
response coefficient, particularly when the determination
of these factors are considered costly, inaccurate or diffi-
cult. This framework had the ability to determine the
anthropogenic and geogenic source of HM in soil. Thus,
it could be used for monitoring anthropogenic activities
that caused the accumulation of heavy metals.

For a practical assessment of SP, it is important to
identify critical pollutants in the soil as essential indica-
tors for indexing SP. Accordingly, all elements, which
were recommended as potential pollutant heavy metals
in the study area, were considered as the TDS for
evaluating HMP. Although a more comprehensive result
might be obtained using indices developed based on all
potential pollutant elements (Askari et al. 2015), an
appropriate MDS could reduce time and cost of SP
assessment and could remove co-linearity and data re-
dundancy (Bünemann et al. 2018). Therefore, fourteen
SPIs were calculated using five data sets (TDS, HPDS-
1, HPDS-2, ADS and GDS). The validation of SPI was
imperative to assure that the elements were selected
wisely for developing the SPI. An inappropriate omis-
sion of some elements from SPI causes uncertainty
during SP evaluation and reduces the comprehensive-
ness of SPI. On the other side, an improper inclusion of
elements may reduce the efficiency of SPI for precisely
assessing the pollution risk degree and the ecological
risk of critical elements.

Different assessment methods were considered to
evaluate the reliability of SPIs using the best-known
pollution indices (Ei

r, PI, IPI and RI) and the pollution
risk classes (Table 1). The degree of pollution risk for
each individual element was evaluated by employing Ei

r
and PI. The holistic assessment of HMP in soil was
considered by the use of IPI and RI, which combined
all analysed elements for a comprehensive assessmentT
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of SP. RI and Ei
r have been suggested as reliable indices

for evaluating the ecological risk of soil HMP (Men
et al. 2018; Mohseni-Bandpei et al. 2017). PI and IPI

have been also tested as practical approaches for
assessing the pollution level of heavy metals (Chen
et al. 2005; Meza-Montenegro et al. 2012). The differ-
entiation ability of SPIs among the pollution risk levels
(Tables 1 and 12) was also examined, as a complemen-
tary approach, to determine objectively whether the SPIs
reflected the actual risk of HMP in the studied lands. A
better validation result was observed for linear indices
(SPI-10 and SPI-12) compared with non-linear indices
(SPI-9 and SPI-11) that was consistent with the findings
of Askari and Holden (2015) and was contrary to the
findings of Masto et al. (2008) and Andrews et al.
(2002) who reported better results using non-linear in-
dices for indexing the soil condition. The greatest accu-
racy was obtained for SPI-10 developed using HPDS-2
and the linear scoring function.

Owing to the lower mean standard error and mini-
mum RMSE, ordinary kriging (exponential semi-
variance model) was applied to map the SP of heavy
metals in this study (Naderi et al. 2017). Kriging inter-
polation is a conventional approach used to map heavy
metal distribution in many studies (Alyazichi et al.
2015; Moore et al. 2016). The SP map based on the
cut-off values of SPI-10 (Fig. 4) indicates that 3.8% of
the study area had excessive accumulations of heavy

Table 12 Mean comparison of SPI among soil pollution risk
levels

Index Minimum Maximum Mean Std ANOVA

F p value

SPI-1 0.30 0.79 0.57 0.10 69.09 0.000

SPI-2 0.30 0.80 0.57 0.10 69.35 0.000

SPI-3 0.55 0.94 0.78 0.07 19.59 0.000

SPI-4 0.56 0.94 0.78 0.07 18.99 0.000

SPI-5 0.24 0.86 0.58 0.13 67.13 0.000

SPI-6 0.29 0.85 0.57 0.11 63.56 0.000

SPI-7 0.55 0.97 0.88 0.06 65.43 0.000

SPI-8 0.57 0.98 0.85 0.07 20.48 0.000

SPI-9 0.03 0.87 0.61 0.20 86.69 0.000

SPI-10 0.30 0.99 0.90 0.11 102.67 0.000

SPI-11 0.09 0.87 0.61 0.19 84.84 0.000

SPI-12 0.44 0.98 0.90 0.09 92.53 0.000

SPI-13 0.23 0.85 0.52 0.13 2.03 0.134

SPI-14 0.18 0.95 0.61 0.15 2.51 0.083
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metals and could be classified as having poor soil qual-
ity, 31.5% was classified as moderate HMP and 64.7%
was classified as having a low level of HMP. The
indexing approach used can provide a simple and reli-
able method for assessing HMP in soil.

Conclusion

With regard to the research objectives

1. Pb, Zn and Cu were identified using PCA as HPDS-
1, and Cd, Zn and Pb were identified as HPDS-2
using DA. DAyielded a better data set for indexing
SP and showed the highest pollution risk for Cd in
Zanjan.

2. A combination of PCA, variation assessment and
interrelationship evaluation of soil variables yielded
a reliable approach for identifying heavy metal
sources. The exploratory multivariate analysis used
in this study indicated that Cd, Zn, Pb and Cu had
accumulated in the soil from anthropogenic sources
and Cr, Ni and Co from geogenic sources.

3. The highest accuracy for indexing HMP was ob-
tained using a minimum data set of Cd, Zn and Pb,
which were identified as HPDS using DA. The
linear function and additive method provided the
best scoring and integrating approach for indexing
SP.

The validation results confirmed the efficiency of the
suggested multivariate approaches for reliable identifi-
cation of critical pollutant elements, source appointment
and indexing HMP. Excessive accumulation of Cd > Pb
> Zn > Cu in Zanjan soil, particularly in urban and
agricultural areas, poses a serious risk to the health of
humans and animals.
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